- Mikleš, J., Fikar, M.: Process Modelling, Identification, and
Control
- Part 1: Models and dynamic characteristics of continuous
processes
- Part 2: Identification and Optimal Control.
Back to index.
Files to selected examples
Files need MATLAB/Simulink (tested with v 6.5), some need Polynomial Toolbox and IDTOOL.
Contents
Part 1: Models and dynamic characteristics of continuous processes
Dynamical Behaviour of Processes
- Chapter 4.1.1: Unit Impulse Response
- Example 4.1.1, Fig. 4.1.1: exm411.m
- Chapter 4.1.2: Unit Step Response
- Example 4.1.2, Fig. 4.1.2, 4.1.3: exm412.m
Example 4.1.3, Fig. 4.1.4, 4.1.5: exm413.m
Example 4.1.4, Fig. 4.1.7: exm414.m
Example 4.1.5, Fig. 4.1.8: exm415.m
- Chapter 4.2.3: Runge-Kutta Method for a System of Differential Equations,
Example 4.2.1
- Program 4.2.1: ruku4.bas
Program 4.2.2: ruku4.c
Program 4.2.3: simss.m
Simulink (Fig. 4.2.1): simssl.mdl
Fig. 4.2.2: simssg.m
- Chapter 4.2.4: Time Responses of Liquid Storage Systems
- Program 4.2.4: hs11m.m
Fig. 4.2.3: hs11sl.mdl (+hs11m.m)
Fig. 4.2.4: hs12g.m
(+hs12m.m,
hs12sl.mdl)
- Chapter 4.2.5: Time Responses of CSTR
-
Program 4.2.5: rea7m1.m
Fig. 4.2.5: rea712.mdl (+rea7m1.m)
Program 4.2.6: kolire8.m
Fig. 4.2.6-8: rea8g.m
(+rea8.mdl, rea7m1.m)
- Chapter 4.3.1: Response of the Heat Exchanger to Sinusoidal Input Signal
-
Fig. 4.3.1: graph1m.m (+sin1.mdl)
Exm. 4.3.1 (Fig. 4.3.2-3): exm431.m
- Chapter 4.3.3 Frequency Characteristics of a First Order System
- Fig. 4.3.7: obr437e.m
- Chapter 4.3.5 Frequency Characteristics of an Integrator
- Fig. 4.3.9: obr439e.m
- Chapter 4.3.5 Frequency Characteristics of Systems in Series
- Example 4.3.2 (Figs. 4.3.10-11): exm432.m
Part 2: Identification and Optimal Control
Process Identification
- Example 2.2.1: Approximation with the first order system
- Fig. 2.2.2: o426.dat,
id21exm1.m
- Example 2.2.2: Underdamped system
- Fig. 2.2.4: id21exm2.m
- Example 2.2.3: Higher order system approximation
- Fig. 2.2.6: id21exm3.m
- Example 2.3.2: Second order system identification
- Program 2.3.1: rls.m
Fig. 2.3.1: rlss.mdl
Fig. 2.3.2: rls.dat + id3exm1.m
Fig. 2.3.3: rlsids.mdl +
IDTOOL
- Example 2.3.3: Second order system
- Fig. 2.3.5: rlsconts.mdl
Fig. 2.3.6: rlscont.dat + id3exm2.m
Fig. 2.3.7: rlscontids.mdl +
IDTOOL
The Control Problem and Design of Simple Controllers
- Example 3.4.1: Proportional control of a heat exchanger
- Simulation: vympid.mdl, Fig.
3.4.1: obr6pvymd.m, Fig. 3.4.2:
obr6pvymw.m
- Example 3.4.2: Proportional control of a higher order system
- Simulation: sys4pid.mdl, Fig.
3.4.3: sys4preg.m
- Example 3.4.3: Heat exchanger control with the PI controller
- Simulation: vympid.mdl, Fig.
3.4.4: obr6pivymd.m, Fig. 3.4.5:
obr6pivymw.m
- Example 3.4.4: Higher order system with the PI controller
- Simulation: sys4pid.mdl, Fig.
3.4.6: sys4pireg.m
- Example 3.4.5: Higher order system PID control
- Simulation: sys4pid.mdl, Fig.
3.4.6: sys4pidreg.m
- Example 3.4.6: Integrator windup
- Simulation: obr6awas.mdl, obr6awbs.mdl, Fig. 3.4.10: obr6awab.m
- Example 3.4.8: The Strejc method
- Simulation: sys4pid.mdl, Fig.
3.4.13: m6str.m
- Example 3.4.9: Pole placement design for a heat exchanger
- Simulation: vympid.mdl, Fig.
3.4.14: m6rvym.m
- Example 3.4.10: The Ziegler-Nichols method
- Simulation: sys4pid.mdl, Fig.
3.4.16: m6zn.m
- Example 3.4.11: Astrom-Hagglund method
- Simulation: m6ahs.mdl, Fig.
3.4.17: m6ah.m
Optimal Process Control
- Example 4.1.1: Optimal control of a heat exchanger
- Fig. 4.1.2: opt012.m
- Example 4.2.1: Optimal feedback control of a heat exchanger
- Simulation: opt021s.mdl, Fig.
4.2.1: opt021.m
- Example 4.2.2: Optimal feedback control of two heat exchangers in series
- Simulation and Fig. 4.2.4: lqvym2r.mdl, Program 4.2.1 and Fig.
4.2.5: lqvym2rm.m,
- Example 4.6.1
- exm061.m
- Example 4.6.2
- exm062.m
- Example 4.6.3
- exm062.m
- Example 4.6.4
- exm064.m
- Example 4.7.2: The dead-beat controller for a continuous-time second
order system
- Program 4.7.1: opt108.m,
Simulation: opt108s.mdl, Fig.
4.7.9: opt108g.m
Adaptive Control
- Chapter 6.3.1: Discrete-Time Adaptive Dead-Beat Control of a Second Order System
- Program 6.3.1: ad031init.m,
Program 6.3.2: stdiscon.m,
Simulation: ad031s.mdl, Fig.
6.3.2: ad031g.m
- Chapter 6.3.2: Continuous-Time Adaptive LQ Control of a Second Order System
- Program 6.3.3: ad033init.m,
Program 6.3.4: stconcon.m,
Simulation: ad033s.mdl, Fig.
6.3.4: ad033g.m
- Chapter 6.3.3: Continuous-Time Adaptive MIMO Pole Placement Control
- Program 6.3.5: ad035init.m,
Program 6.3.6: st2i2ocon.m,
Simulation: ad035s.mdl, Fig.
6.3.6: ad035g.m