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a b s t r a c t

A given explicit piecewise affine representation of an MPC feedback law is approximated by a single
polynomial, computed using linear programming. This polynomial state feedback control law guarantees
closed-loop stability and constraint satisfaction. The polynomial feedback can be implemented in real
time even on very simple devices with severe limitations on memory storage.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

In explicit Model Predictive Control (Bemporad, Morari, Dua, &
Pistikopoulos, 2002), parametric programming (Borrelli, 2003) is
used to construct a function µ which maps state measurements
x onto the optimal control inputs. Provided such a µ exists, real-
time implementation ofMPC inRecedingHorizon fashion (RHMPC)
boils down to a mere function evaluation. For a rich class of MPC
setups, µ can be shown to be a piecewise affine (PWA) function
defined over NR polytopic regions. The main practical limitation,
however, is that the number of regions growsquicklywith problem
size, having negative impact on the required memory storage and
processing power. The number of regions of µ can be reduced
e.g. by move blocking (Tøndel & Johansen, 2002), by model
reduction techniques (Hovland, Willcox, & Gravdahl, 2008), or by
relaxing optimality (Bemporad & Filippi, 2003). Another direction
is to a-posteriori simplify the regions either by merging (Geyer,
Torrisi, & Morari, 2008; Kvasnica & Fikar, 2010), by replacing them
by hyperboxes (Johansen & Grancharova, 2003) or by simplices
(Hovd, Scibilia, Maciejowski, & Olaru, 2009). Evaluation of µ for a
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particular value of x can be simplified by organizing the regions
into a binary search tree (Tøndel, Johansen, & Bemporad, 2003),
or by building a lattice representation (Wen, Ma, & Ydstie, 2009)
of the PWA function µ. A common denominator of all referenced
approaches is that they lead to a simpler (sub)optimal RHMPC
feedback µ̃, which still is a PWA function. As a consequence,
although a remarkable reduction of complexity can be achieved in
certain cases, the memory footprint of the approximation µ̃ still
typically exceeds ten kilobytes. In this work, we aim at simplifying
the RHMPC in such a way that it can easily be implemented on
typical industrial hardware platforms, such as programmable logic
controllers, which usually only provide 2–8 kB of memory.

We propose to remove all regions of µ completely and to
approximate it by a single polynomial feedback µ̃(x) of an
a-priori fixed degree such that closed-loop stability and constraint
satisfaction are preserved. The approach is applicable not only
to linear systems, but also covers switched affine systems which
belong to the class of hybrid systems (Bemporad & Morari,
1999). Building upon our previouswork (Kvasnica, Christophersen,
Herceg, & Fikar, 2008; Kvasnica, Löfberg, Herceg, Éirka, & Fikar,
2010), the approximation is performed in two steps. First, a
parameterization of a set of stabilizing controllers, referred to as
the stability tube (Christophersen, 2007), is obtained using basic
computational geometry tools. Subsequently, we show how to
search for the coefficients of µ̃ by solving a single linear program
(LP). If the LP is feasible, the polynomial control law is guaranteed
to reside in the stability tube, and hence it is closed-loop stabilizing
and satisfies constraints for all time.

The key advantage is that the memory footprint of the
approximate feedback µ̃ is minute compared to the storage of µ.
In particular, for the type of problems considered here, the total

0005-1098/$ – see front matter© 2011 Elsevier Ltd. All rights reserved.
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storage for µ̃ is roughly equal to the footprint of a single region
of µ. It follows that the overall memory requirements are reduced
NR times. The price to be paid is the inherent loss of optimality.
Moreover, certain assumptions on the shape of the stability tube
have to be imposed in order to formulate the search for coefficients
of µ̃ as a single LP. Because of this, and since the LP-based search
is based on sufficient conditions, it does not have to be always
successful.

Compared to our previous work (Kvasnica et al., 2008, 2010),
we report a detailed complexity analysis of the overall design
procedure. A large case study is provided to illustrate how the
computation scales with increasing problem size and to assess the
overall success rate. More importantly, new ideas for reducing the
size of the LP problem are presentedwhich extend the applicability
of our approach to larger problems.

2. Preliminaries

The set of non-negative real numbers is denoted byR�0. Interior
of a set ⌦ is int(⌦). We call a collection of polytopes {Ri}NR

i=1 the
partition of a set ⌦ if ⌦ = SNR

i=1 Ri, and int(Ri) \ int(Rj) = ;
for all i 6= j. Each polytope Ri will be referred to as a region of the
partition. A functionµ : Rnx ! Rnu with domain⌦ ✓ Rnx is called
Piecewise Affine (PWA) over polytopes if {Ri}NR

i=1 is a partition of⌦
and µ(x) := Kix + Li 8x 2 Ri, i = 1, . . . ,NR .

We consider well-posed (Bemporad & Morari, 1999), stabiliz-
able PWA systems in discrete time xt+1 = fPWA(xt , ut), composed
of finitely many local affine dynamics, each valid in a polytope
Dd ✓ Rnx :

fPWA(xt , ut) := Adxt + Bdut + ad if xt 2 Dd, (1)

where xt 2 Rnx are the states and ut 2 Rnu the inputs. The task is to
control the PWA system (1) toward the origin (which is assumed to
be an equilibrium of (1)) while fulfilling state and input constraints
for all time, i.e. xt 2 X, ut 2 U, 8t � 0, where X ✓ Rnx and
U ✓ Rnu are assumed to be non-empty polytopic sets containing
the origin in their respective interiors.

We define for the PWA system (1) the constrained finite time
optimal control (CFTOC) problem

J⇤N(xt) = min
UN

`N(xt+N) +
N�1X

k=0

`(xt+k, ut+k) (2a)

s.t.
⇢
xt+k+1 = fPWA(xt+k, ut+k),
ut+k 2 U, xt+k 2 X, xt+N 2 Xf ,

(2b)

where xt+k is the future evolution of (1) over a prediction horizon
N , given the initial condition xt and the vector of future control
inputs UN := [uT

t , . . . , u
T
t+N�1]T .Xf ✓ X is a polytopic terminal

set with 0nx 2 Xf , `N(xt+N) = kQNxt+Nkp is the terminal penalty,
and `(xt+k, ut+k) = kQxxt+kkp + kQuut+kkp is the stage cost. It is
assumed that p 2 {1, 1} in (2a). For problems of modest size it is
possible to characterize the RHMPC feedback law µ : ⌦ ! U

and the optimal value function J⇤N : ⌦ ! R�0 explicitly as
PWA functions of xt (Bemporad et al., 2002; Borrelli, 2003). Here,
⌦ := {xt | 9ut , . . . , ut+N�1s.t. (2b) hold}, and it is partitioned into
NR polytopic regions Ri.

Assumption 2.1. The RHMPC feedback µ(xt) is closed-loop sta-
bilizing, feasible for all time (Christophersen, 2007) and a PWA
Lyapunov function V : ⌦ ! R�0 for the closed-loop system
f CL := fPWA(xt , µ(xt)) exists 8xt 2 ⌦ and is given.

This is not a restricting requirement but rather the aim of most
(if not all) control strategies. We remark that if N,Qx,Qu,QN , Xf
are chosen as in Baoti¢, Christophersen, and Morari (2006), then
µ(·) satisfies Assumption 2.1 and V := J⇤N is a Lyapunov function.

Theorem 2.2 (Lazar,Munoz de la Pena, Heemels, &Alamo, 2008). Let
⌦ be a bounded positively invariant set with 0nx 2 int(⌦) and let
�(·) and �(·) be K1-class functions. Then if there exists function V :
⌦ ! R�0 with V (0nx) = 0, bounded by �(kxk)  V (x)  �(kxk),
and satisfying V (f CL(x))  � V (x) for some � 2 [0, 1) and for all
x 2 ⌦ , then the closed-loop system f CL is asymptotically stable in ⌦ .

The freedom in � allows one to find a set of stabilizing
controllers which render the function V a control Lyapunov
function. Such sets are denoted as stability tubes (Christophersen,
2007):

S(V , � ) :=
⇢

x
u

�
| u 2 U, x 2 ⌦, f (x, u) 2 ⌦,

V (f (x, u))  � V (x)
�

. (3)

For the type of PWA systems (1), PWA Lyapunov functions V , and
fixed � , the tube can be computed explicitly using reachability
analysis (Christophersen, 2007, Ch. 10.4) and represented as a
(possibly non-convex) union of polytopes. To see this, note that for
each feasible transition from region Ri to region Rj for which the
value of V decreases, (3) is a polytope Si,j in the x � u space. The
whole stability tube is then given by S(V , � ) := SNR

i=1 Si, where
Si := SNR

j=1 Si,j, i = 1, . . . ,NR .

3. Main results

We aim at approximating a given RHMPC control law µ by a
single multivariate polynomial µ̃ of pre-specified degree �:

µ̃(x) = ↵1x + ↵2x2 + · · · + ↵�x�. (4)
Here, ↵i 2 Rnu⇥nx , i = 1, . . . , �, are the coefficients to be
determined, and xi is the element-wise i-th power of a vector x 2
Rnx , i.e. xi = [xi1, xi2, . . . , xinx ]T . Note that in amulti-input case with
nu > 1, (4) is a vector-valued polynomial. The constant offset ↵0
is not considered in (4) since µ̃(0nx) = 0nu must hold to attain
stability. Formally, we aim at solving the following problem.

Problem 3.1. Find the coefficients ↵ = {↵1, . . . ,↵�} of the
polynomial state-feedback law (4) of fixed degree � such that µ̃ ⇡
µ asymptotically stabilizes the PWA system (1) to the origin while
fulfilling state and input constraints for all time.

To solve this problem, we exploit the inherent freedom of the
Lyapunov function V , captured by its stability tube.

Theorem 3.2 (Christophersen, 2007). Let the stability tube S(V , � )

be given. Then every control law µ̃(x) fulfilling
h

x
µ̃(x)

i
2 S(V , � )

asymptotically stabilizes the system x+ = fPWA(x, µ̃(x)) for all x 2 ⌦
to the origin.

Remark 3.3. The concept of stability tubes does not require that
the function V originates as a solution of the MPC problem (2).
In fact, the tube can be constructed for an arbitrary feedback law
which admits a PWA2 Lyapunov function on ⌦ . It follows that
the presented procedure can be applied to approximate arbitrary
feedback laws with this property.

In the sequel we show that, given a stability tube S(V , � ), the
polynomial µ̃ satisfying

h
x

µ̃(x)

i
2 S(V , � ), 8x 2 ⌦ can be found by

solving a single linear program under the following assumption.

2 For piecewise quadratic Lyapunov functions the tube can no longer be
represented as a union of polytopes, in general.
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Assumption 3.4. For a given Lyapunov function V there exists a
� 2 [0, 1) for which:

A1: a full-dimensional stability tube S(V , � ) := SNR

i=1 Si exists;
A2: for each i = 1, . . . ,NR eitherSi := [j Si,j is a convex polytope,

or an inner polytopic approximation Si ✓ [j Si,j exists such
that projxSi = Ri;

A3: the union [i Si is connected.

The existence of S(V , � ) hints at the existence of control
laws, other than µ, which would provide closed-loop stability and
constraint satisfaction for all time. Connectivity is implied by the
objective of approximating µ by a single continuous polynomial
valid over the whole domain dom(µ̃) = ⌦ . Finally, convexity
(and hence uniqueness) is dictated by the desire of being able to
perform the approximation in a computationally efficient manner.
If A2 does not hold, µ̃ can still be found by solving a combinatorial
problem. If A3 is violated, the remedy would be to approximate
independently each connected part of the tube, giving rise to a
piecewise polynomial type of approximation.

Under this assumption, the tube consists of NR polytopes in the
state-input space:

Si :=
⇢

x
u

� ����
⇥
Sxi Sui

⇤ 
x
u

�
 S0i

�
. (5)

We remark that the whole tube S(V , � ) := [i Si is not required to
be convex. Define, for each i = 1, . . . ,NR , a set of polynomials

pi(↵, x) := S0i � Sxi x � Sui µ̃(x), (6)

where the cardinality of pi(·) is equal to the number of constraints
of the i-th element of the stability tube, i.e. the number of rows of
S0i . Then we get the following straightforward result.

Lemma 3.5. Let a stability tubeS(V , � ) satisfying Assumption 3.4 be
given. If there exist coefficients ↵1, . . . ,↵� of µ̃ as in (4) such that

pi(↵, x) � 0, 8x 2 Ri, i = 1, . . . ,NR, (7)

then µ̃ solves Problem 3.1.

Proof. First note that (7) with pi(↵, x) as in (6) is equivalent, for
a fixed i, to (5) with u = µ̃(x). Therefore, if (7) admits a solution,
then

h
x

µ̃(x)

i
2 Si8x 2 Ri. Hence if (7) holds for all i = 1, . . . ,NR ,

it follows from Theorem 3.2 that µ̃ provides closed-loop stability
and constraint satisfaction for all x 2 ⌦ . ⇤

Lemma 3.5 suggests that finding µ̃ of the form (4) as a
solution to Problem 3.1 can be cast as finding the coefficients
↵1, . . . ,↵� such that polynomials pi(↵, x) are non-negative over
corresponding regions. There is a subtle, yet very important issue
which makes solving problem (7) far from straightforward: even
for a fixed i, all polynomials pi(·) associated to region Ri must be
non-negative for all points x 2 Ri, not just for some of them (e.g. for
the vertices ofRi). One approach is to employ the Positivstellensatz
and show positivity of polynomials by solving a sum-of-squares
problem, as suggested in Kvasnica et al. (2008). However, as
documented in Kvasnica et al. (2010), such a procedure is, from
a practical point of view, limited to small-scale problems only. A
different direction is therefore persuaded here, which is based on
the following theorem, originally formulated byHardy, Littlewood,
and Pólya (1952) to show strict positivity of polynomials and later
extended to the non-strict case by Mok and To (2008).

Theorem 3.6 (Pólya’s Theorem). If a homogeneous polynomial
pi(↵, x) is non-negative over a unit simplex, then all the coefficients of
the extended polynomial pMi (↵, x) = pi(↵, x) ·

�Pnx
j=1 xj

�M are non-
negative for a sufficiently large Pólya degree M.

Remark 3.7. Search for the coefficients ↵, such that pMi (↵, x) is
non-negative over a simplex can be performed by using the more
obvious reverse of Pólya’s theorem, i.e. non-negative coefficients of
the extended polynomial imply its non-negativity over the whole
simplex.

Corollary 3.8. Given a symbolic representation of coefficients of
pMi (↵, x), the coefficients ↵ of µ̃ can be found by solving a linear
program. To see this, observe that ↵ enters (6) in a linear fashion per
definition of µ̃ as in (4). All constraints in (7) are therefore linear in ↵.

Note, however, that Theorem 3.6 is not directly applicable to
find ↵ from (7) as Ri are not unit simplices with 0nx 2 Ri, in
general. Therefore, we propose to represent the polytopic regions
in their equivalent vertex representation, i.e. by

Ri =
(

x | x =
|Vi|X

j=1

�j[Vi]j, � 2 ⇤i

)

, (8a)

⇤i =
(

� | 0  �j  1,
|Vi|X

j=1

�j = 1

)

. (8b)

Here, Vi are the vertices the i-th region, |Vi| denotes their
cardinality, [Vi]j is the j-th vertex of Ri, and � = [�1, . . . , �|Vi|].
By substituting for x = P

j �j[Vi]j into (6) and (7), we get

pi(↵, �) � 0, 8� 2 ⇤i, i = 1, . . . ,NR. (9)

Note that ⇤i in (9) are now |Vi|-dimensional unit simplices and
Theorem 3.6 can therefore be applied to find ↵ such that pi(↵, �) is
non-negative 8� 2 ⇤i, i = 1, . . . ,NR . Also note that such change
of variables is needed even if allRi originally were simplices, since
the Pólya’s Theorem only applies if 0nx 2 Ri.

We can now state the main result of the paper, which
is Theorem 3.9 and Algorithm 1 for calculating values of the
coefficients ↵1, . . . ,↵� of the polynomial feedback law µ̃ which is
an admissible solution to Problem 3.1.

Algorithm 1 Polynomial approximation
INPUT: Optimal RHMPC feedback law µ, PWA Lyapunov function

V , scalar � 2 [0, 1), degree of the approximation polynomial
�, Pólya degreeM .

OUTPUT: Coefficients ↵1, . . . ,↵� of the polynomial feedback law
(4).

1: Obtain the stability tube S(V , � ) per (5).
2: Calculate extremal vertices Vi of all regions Ri.
3: Formulate polynomials pi(↵, �) per (8)–(9).
4: Homogenize pi(↵, �) by multiplying single monomials by⇣P|Vi|

j=1 �j

⌘
until all monomials have the same degree.

5: Obtain symbolic representation of coefficients cMi of Pólya’s

polynomials pMi (↵, �) = pi(↵, �) ·
⇣P|Vi|

j=1 �j

⌘M
.

6: Search for ↵ by solving a linear program:
find ↵1, . . . ,↵�, (10a)

s.t. cMi � 0, i = 1, . . . ,NR. (10b)

Theorem 3.9. Let the input arguments of Algorithm 1 satisfy As-
sumption 2.1 and assume that the tube S(V , � ) computed in
Step 1 satisfies Assumption 3.4. If the LP (10a) is feasible, the poly-
nomial feedback law µ̃ of the form (4) calculated by Algorithm 1 is a
solution to Problem 3.1.
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Proof. If (10) is feasible, then, according to Theorem 3.6,
polynomials pi(↵, �) are non-negative over corresponding regions
Ri. This in turn implies that (7) is satisfied, which, according
to Lemma 3.5, shows that µ̃(x) belongs to the stability tube
S(V , � ),8x 2 ⌦ . Therefore, by Theorem 3.2, µ̃ is guaranteed to
be closed-loop stabilizing and feasible for all time. ⇤

Remark 3.10. Algorithm 1 is a non-iterative procedure and
therefore it always terminates in a single pass, provided that all
of its steps are successful. However, since Theorems 3.2 and 3.6 are
only sufficient conditions for the existence of a stabilizing feedback
µ̃, the algorithm may fail to find it even if one exists.

Instead of a pure feasibility objective in (10a), an alternative
is to minimize the point-wise distance |µ(xj) � µ̃(x)(xj)|q with
q 2 {1, 1} over some points xj (e.g. over the vertices of each
Ri). Doing so will let µ̃ to follow the shape of µ(x) more tightly,
hence mitigating the induced loss of optimality. Another approach
is to aim for low-order polynomials. This can be done in three
ways: (i) minimize the `1 norm of ↵, which tends to give sparse
solutions; (ii) use bisection in conjunctionwith Algorithm1; or (iii)
minimize the number of non-zero coefficients to a globalminimum
by solving a mixed-integer version of (10).

Example 3.11. Consider the following open-loop unstable PWA
system (Kvasnica et al., 2008):

xt+1 =
⇢
6/5xt � 2ut if xt � 0,
�4/5xt + ut otherwise, (11)

with ut 2 [�1, 1] and xt 2 [�4, 4].With the choice of p = 1,Qx =
1,Qu = 1,N = 1 in (2) we obtain a stabilizing feedback µ and
a Lyapunov function J⇤N defined over 6 regions. The stability tube
S(V , � ) for V := J⇤N and � = 0.7, the optimal RHMPC feedback
µ(xt), and its polynomial approximations µ̃ of degrees � = 3, 5, 7
computed by Algorithm 1 are shown in Fig. 1.

4. Complexity analysis

4.1. Complexity of Algorithm 1

Computation of stability tubes S(V , � ) in Step 1 can be done in
O(N2

R
) time, since all possible transitions between various regions

have to be investigated. The LP in Step 6 has nunx� variables
(the coefficients ↵1, . . . ,↵�) and O(Nc) constraints. Here, Nc =PNR

i=1 Nc,i is the total number of coefficients of Pólya polynomials
pMi (↵, �), with Nc,i =

⇣
�p+|Vi|�1

�p

⌘
and �p = � + M , where |Vi| is

the number of vertices of the i-th region.

Remark 4.1. The number of Pólya’s coefficients, and hence the
number of constraints of the LP (10), grows quickly with the
number of states nx. In the most general case, |Vi| = O(2nx).
This is the main bottleneck of the presented procedure. One way
to mitigate such a quick growth is to triangulate the regions Ri.
Although this will increase the total number of regions to, at most,
O

⇣PNR

i=1 |Vi|dnx/2e
⌘
, the gained advantage is that |Vi| stays fixed

at nx + 1, 8i. From numerical experiments, we have observed that
employing triangulation reduces the total number of constraints in
(10) by a factor of 5, on average.

Remark 4.2. Another option to reduce the size of the linear
program (10) is to eliminate the redundant constraints. Full
redundancy elimination would require solving O(Nc) copies of the
LP (10), which clearly is not an option. Note, however, that a valid
solution to (10) has to be non-negative due to Theorem 3.6 and

Fig. 1. Stability tube S(V , � ) for � = 0.7 (gray sets), optimal control law
µ (blue dashed line), and stabilizing polynomials µ̃ of different degrees �. (For
interpretation of the references to colour in this figure legend, the reader is referred
to the web version of this article.)

Remark 3.7. Therefore, eliminating from (10b) those constraints
where all constant multipliers in cMi are non-negative will not
affect feasibility. Numerical examples suggest that such a simple
elimination reduces the number of constraints of (10) by a factor
of 2, on average.

4.2. On-line complexity

Implementing µ̃ in a feedback arrangement reduces to a mere
evaluation of the polynomial for a given x. Since the polynomial
continuously covers the whole state-space of interest, no region
search is necessary. Using Horner’s scheme (Eve, 1964), µ̃ can
be evaluated3 by at most 1/2nunx(3� + 5) FLOPS. Storing the
coefficients↵1, . . . ,↵� consumes �nunx floating point numbers. On
the other hand, evaluating the optimal feedback lawµ via a binary
search tree (Tøndel et al., 2003) requires O(log2 NR) FLOPS and
the tree consumes O(NR(nx + nu)) memory elements. Complexity
of the lattice representation (Wen et al., 2009), both in terms of
runtime and memory, is O(N2

U
) where NU denotes the number of

unique feedback laws.

5. Examples

5.1. Standard PWA benchmark

Consider the following PWA system with 2 states and one
input, introduced in Bemporad and Morari (1999): x+ =h
cos ✓ � sin ✓
sin ✓ cos ✓

i
x +

h
0
1

i
u, where the value of ✓ switches depending

on the value of the first element of the state vector: ✓ = �⇡/3 if
x1  0, and ✓ = ⇡/3, otherwise. State constraints |xi|  5, i =
1, 2 are assumed, along with input bounds |u|  1. Even though
the system is open-loop stable, a controller is needed to guarantee
constraint satisfaction for all time. The explicit RHMPC feedback
lawµwas constructed by solving (2) with Qx = 1,Qu = 1, p = 1
and N = 1, and consists of 112 regions shown in Fig. 2(a). We
have then applied Algorithm 1 to find approximate feedbacks µ̃ of
degrees � = 1, . . . , 7. The stability tube in Step 1was computed for
� = 0.99 and it satisfied Assumption 3.4. The polynomial of degree
7 is shown in Fig. 2(b). To assess the induced loss of optimality,
we have analyzed closed-loop profiles of states and inputs. The
performance degradation is given by �J := (J⇤ � J̃)/J⇤, where J⇤
is the value of (2a) for a closed-loop profile obtained by applying
the optimal feedback µ(x), while J̃ is the cost of the closed-loop
evolution driven by u = µ̃(x). The average values of �J over 1000
equidistantly spaced initial conditions are reported in Table 1.

3 If only fixed-point arithmetics is available, evaluation can be done as in
Brisebarre, Chevillard, Ercegovac, Muller, and Torres (2008).
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(a) RHMPC feedback µ. (b) Polynomial µ̃ of degree 7.

Fig. 2. Optimal RHMPC feedback law and its approximation.

Table 1

Performance degradation for various degrees of the polynomial approximation µ̃.

� 1 2 3 4 5 6 7

�J (%) 48 46 43 37 36 28 28

5.2. Linear system

Consider the following linear system with 4 states and 1 input:

x+ =

2

64

0.7 �0.1 0.0 0.0
0.2 �0.5 0.1 0.0
0.0 0.1 0.1 0.0
0.5 0.0 0.5 0.5

3

75 x +

2

64

0.1
1.0
0.0
0.0

3

75 u,

which is subject to constraints |xi|  5, i = 1, . . . , 4, and |u|  5.
The optimal RHMPC feedback law for Qx = 10 · 14,Qu = 0.1,
and N = 3 has 230 regions in 4D state space. The lowest feasible
degree of µ̃ was � = 1, leading to the linear feedback µ̃(x) =
�0.0715x1. It follows that while the on-line implementation of
the optimal RHMPC controller would require the storage of 9290
floating point numbers (8140 for describing the 230 regions, and
1628 for the associated feedback laws), the polynomial feedback
requires storing exactly one floating point number at the price of a
35% worst-case drop of performance.

This case also illustrates practical consequences of Remarks 4.1
and 4.2. Without any of them applied, the LP (10) for � = 3 would
have 5.8 · 106 constraints, which is above the limit of most LP
solvers.4 Performing triangulation per Remark 4.1 led to 1.8 · 106

inequalities. Further elimination of trivially redundant constraints
per Remark 4.2 decreased this figure to 0.9 · 106.

5.3. Random systems

To assess versatility of the presented approach, we have
analyzed random PWA systems with 2 dynamics under state
constraints |x|  5 and input bounds |u|  1. Three batches
of random systems of various dimensions were considered, with
100 systems in each batch. For each system the optimal RHMPC
feedback lawµwas computed5 by solving (2) withQx = 1nx ,Qu =
1nu , and N = 5. QN and Xf were designed as in Baoti¢ et al.
(2006) Subsequently, the stability tubes S(V , � ) were constructed
for V := J⇤N and � = 0.99. In 62% of the 300 investigated problems
the respective stability tubes satisfied Assumption 3.4. Important
to notice is that the success rate was 97% when investigating a
supplemental batch of 100 random linear systems.

4 For instance, the 32-bit version of CPLEX only allows around 2 ·106 constraints.
5 On a 2.5 GHz CPU and 2 GB of RAM using Matlab R2009a and MPT 2.6.3.

Table 2

Data for random systems.

nx/nu NR NT Step 1 (s) Step 6 (s) �min �J (%)

2/1

117 215 28 1 1 77
180 329 54 2 5 23
251 485 103 1 3 51
288 552 152 2 6 37

2/2

115 206 62 3 2 81
197 379 135 1 1 65
277 522 164 1 5 35
376 738 328 7 4 42

3/1

270 1258 293 3 3 12
450 1755 551 1 1 72
606 2963 829 12 6 41
834 4278 1453 3 4 65

The tubes were then triangulated according to Remark 4.1 and
further processed by Algorithm 1. The runtime of triangulation
never exceeded 20 s for any of the investigated examples.
Enumeration of vertices in Step 2 never took more than 1 s
using MPT (Kvasnica, Grieder, & Baoti¢, 2004). The LP in Step 6
was formulated by YALMIP (Löfberg, 2004) and solved by CPLEX
12.1 (ILOG, 0000). Only degrees up to 7 were investigated due to
practical reasons. The success rate of the LP-based procedure was
81%. No obvious correlation between the number of regions of µ
and the required degree � in (10) was observed. Around 25% of all
feasible cases admitted the existence of a linear approximation µ̃,
regardless of nx and nu. Higher order approximationswithminimal
feasible degrees � = 2, . . . , 6 appeared with a roughly equal
distribution.

A representative selection of the results is reported in Table 2
which shows how the computation scaleswith increasing problem
size. Columns of the tables denote, respectively, state and input
dimensions, number of regionsNR , number of triangulated regions
NT , runtime of construction of the stability tube in Step 1, runtime
of the LP in Step 6, minimum degree �min for which the LP
was feasible, and the average performance degradation induced
by using µ̃ of the minimal degree. Even though the average
performance drop �J might sound large, one has to take into
account three facts. First, as discussed previously, performance
usually improves if � is enlarged. Second, and more importantly,
design of any stabilizing feedback controller for PWA systems is a
non-trivial task, even putting optimality aside. Finally, magnitudes
of the reported performance drops are similar to what can be
achieved by other techniques; see e.g. Bemporad, Oliveri, Poggi,
and Storace (2010) and Hovd et al. (2009).

6. Conclusions

We have presented a novel way of deriving simple stabilizing
feedback laws for the class of constrained linear and PWA systems.



M. Kvasnica et al. / Automatica 47 (2011) 2292–2297 2297

Stability and feasibility of the approximate polynomial controllers
are guaranteed by employing the concept of stability tubes, which
can be viewed as a parameterization of stabilizing feedback laws.
It was illustrated that coefficients of the polynomials can be found
by solving a single linear program. Triangulation and a cheap
redundancy elimination were proposed as a way to significantly
mitigate the size of the LP, hence allowing to process even large
problems. Although the presented procedure inherently induces
sub-optimality, the synthesized polynomial feedback not only
guarantees stability and constraint satisfaction, but also puts very
low requirements on its implementation in real time.

Certain restrictions have to be imposed on the shape of stability
tubes in order to be able to find the approximation by solving a
single LP. Investigation of a large number of random cases showed
that a suitable tube was found in 60% of PWA systems, while the
success rate is close to 100% when considering linear systems. If
the tube has ‘‘unfavorable’’ shape, one would need to resort to
a piecewise polynomial nature of the approximation. Although
no obvious correlation between the number of elements of the
tube and the degree of the approximate polynomial was observed,
it cannot be ruled out that higher order polynomials might be
necessary to approximate more complex tubes.
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a b s t r a c t

The problem of reducing complexity of explicit MPC feedback laws for linear systems is considered. We
propose to simplify controllers defined by continuous Piecewise Affine (PWA) functions by employing
separating functions. If a state resides in a region where the optimal control action attains a saturated
value, the optimal control move is determined from the sign of the separator. Thus, instead of storing all
regions, only the unconstrained regions and the separator are needed. We propose several approaches to
construct separators with different efficacy and properties.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Implementation of MPC in the Receding Horizon fashion
(RHMPC) boils down to repetitively solving, at each sampling in-
stance, an optimization problem initialized by the current state
measurements x. As shown in Bemporad, Morari, Dua, and Pis-
tikopoulos (2002), for MPC problems of modest size one can
precompute the explicit RHMPC optimizer u⇤ = (x) as a PWA
function which is definedover a set of polytopic regions. Comput-
ing u⇤ on-line then reduces to a mere function evaluation, which
can be done quickly on embedded hardware. However, the num-
ber of regions of  , which is problem-dependent, tends to be large,
easily exceeding the storage capacity of the hardware. Therefore
it is important to keep the number of regions as low as possi-
ble. One way to reduce the complexity of  is to construct a sub-
optimal replacement function ̃ such that ̃(x) ⇡ (x), see e.g.
Bemporad, Oliveri, Poggi, and Storace (2011), Johansen and Gran-
charova (2003), Jones and Morari (2010) and Scibilia, Olaru, and

I The authors are pleased to acknowledge the financial support of the Scientific
Grant Agency of the Slovak Republic under grant 1/0095/11 and the contribution
of the Slovak Research and Development Agency under project APVV 0551-11.
M. Kvasnica was also supported by the Ministry of Education of the Czech Republic
under the Centralized Project for University Development CSM 100 TALENT. The
material in this paper was not presented at any conference. This paper was
recommended for publication in revised form by Associate Editor Lalo Magni under
the direction of Editor Frank Allgöwer.

E-mail addresses: michal.kvasnica@stuba.sk (M. Kvasnica),
juraj.hledik@vgsf.ac.at (J. Hledík), iva.rauova@gmail.com (I. Rauová),
miroslav.fikar@stuba.sk (M. Fikar).
1 Tel.: +421 2 59325352; fax: +421 2 59325340.

Hovd (2009). Another option is to find a replacement ̃ which is
not only simpler than the original function, but also maintains the
equivalence (x) = ̃(x) for all x 2 dom(). Employing ̃ in-
stead of  therefore does not incur any loss of optimality and per-
formance. In Geyer, Torrisi, and Morari (2008) such a replacement
is constructed by merging together regions which share the same
expression of the optimal feedback law. The downside being that
merging regions optimally is of combinatorial complexity. If  is
a continuous PWA function, its lattice representation (Wen, Ma, &
Ydstie, 2009) can be built, leading to a replacement ̃ of smaller
complexity. Evaluation of  on-line for a given value of x can be ac-
celerated by constructing a search tree (Tøndel, Johansen, & Bem-
porad, 2003). However, creating such trees can be prohibitive for
large numbers of regions. In our related work (Kvasnica & Fikar,
2012), the equivalent replacement ̃ was constructed by remov-
ing some of the so-called saturated regions from the definition of  ,
followed by applying a clipping filter to restore equivalence.

Following our preliminary work (Kvasnica, Rauová, & Fikar,
2011), in this paper we present a novel approach to reducing com-
plexity of explicit RHMPC feedback laws described by continu-
ous PWA functions. The central idea is that typical explicit RHMPC
feedbacks usually containmany regions where the optimal control
action is either constantly on the upper limit or constantly on the
lower limit. These two sets of regions will be denoted by R and
R, respectively. We show that if there exists a function ⇠ which
strictly separates R and R, then these two sets of regions can be
completely removed from the definition of  . Finding such a strict
separator, however, is not trivial, since the unions of polytopes R
andR are non-convex, in general. In Kvasnica et al. (2011)we have

0005-1098/$ – see front matter© 2013 Elsevier Ltd. All rights reserved.
http://dx.doi.org/10.1016/j.automatica.2013.02.018
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shownhow to find, off-line, a strict separator in the formof amulti-
variate polynomial by employing an iterative procedure with two
considerable drawbacks: (1) at each iteration a nonlinear program-
mingproblemhad to be solved, and (2) no guarantees of finite-time
convergence could be given. In this work we address these limita-
tions and show how to find the separating polynomial by solving
a single linear program (LP). Moreover, we also present a proce-
dure which implicitly defines the value of ⇠(x) for a given point
x. The advantage of this method is twofold. First, the off-line pre-
processing is virtually zero.More important, though, is the fact that
such an implicit separation guarantees complexity reduction even
when no analytic form of the separator could be found.

Notation and definitions

A finite set of n elements I := {I1, . . . , In} will be denoted
as {Ii}

n
i=1 and its cardinality by |I|. The interior of a set R is de-

noted by int(R). Given a function , dom() denotes its domain.
A polytope is the bounded convex intersection of finitely many
closed affine half-spaces, i.e., R := {x 2 Rnx | Fx  g}. We call
the collection of polytopes {Ri}

R
i=1 the partition of a polytope R

if R =
SR

i=1 Ri, and int(Ri) \ int(Rj) = ; for all i 6= j. Each
polytope Ri will be referred to as the region of the partition. The
function  : Rnx ! Rnu with x 2 R ⇢ Rnx , R being a polytope, is
called piecewise affine over polytopes if {Ri}

R
i=1 is the partition of

R and (x) := Kix + Li if x 2 Ri, with Ki 2 Rnu⇥nx , Li 2 Rnu , and
i = 1, . . . , R. the PWA function  is continuous if Kix+Li = Kjx+Lj
holds 8x 2 Ri \ Rj, i 6= j.

2. Preliminaries and problem statement

2.1. Explicit model predictive control

We consider the class of discrete-time, stabilizable linear time-
invariant systems
x(t + 1) = Ax(t) + Bu(t), (1)
which are subject to polytopic constraints x 2 X ⇢ Rnx and u 2

U ⇢ Rnu . Assume the following constrained finite-time optimal
control problem:

min
UN

N�1X

k=0

xTk+1Qxxk+1 + uT
kQuuk (2a)

s.t. xk+1 = Axk + Buk, xk 2 X, uk 2 U, (2b)
where xk and uk denote, respectively, the k-th step state and in-
put predictions over a finite horizon N , given the initial condition
x0 = x(t) where x(t) is the state measured at time t . It is as-
sumed that Qx = QT

x ⌫ 0,Qu = QT
u � 0 in (2a), i.e., that (2) is

a strictly convex QP. The receding horizon MPC feedback then be-
comes u⇤ = [1 0 · · · 0]U⇤

N , where U⇤

N := [uT
0, . . . , u

T
N�1]

T is the
optimal solution to (2). For problems of modest size, it is possible
to characterize the optimal feedback explicitly as a PWA function
of2 x by solving (2) as a parametric quadratic program (pQP):

Theorem 2.1 (Bemporad et al., 2002). The RHMPC feedback for prob-
lem (2) is given by u⇤ = (x) where:
1. The set of feasible initial conditions ⌦ is a polytope.
2.  : ⌦ ! Rnu is a continuous PWA function defined over R regions

Ri, i = 1, . . . , R:
(x) = Kix + Li if x 2 Ri. (3)

3. Regions Ri are full-dimensional polytopes.
4. {Ri}

R
i=1 is a partition of ⌦ .

2 To simplify thenotation,wewill henceforth abbreviate x(t), the initial condition
of (2), by x.

2.2. Problem statement

We aim at replacing the RHMPC feedback function  in (3) by a
different function ̃ which meets two requirements:
1. ̃ is equivalent to  in the sense that ̃(x) = (x) for all x 2 ⌦ ,
2. ̃ is simpler than  , i.e., it consists of fewer regions.
If such a replacement function ̃ can be found, one can implement
the explicit RHMPC feedback using smaller amounts of memory
and using fewer computations.

3. Complexity reduction via separation

Denote by  and  the maximal and minimal values which 
attains over its domain ⌦ = dom() (Kvasnica & Fikar, 2012)
 = max{(x) | x 2 ⌦},  = min{(x) | x 2 ⌦}. (4)

Then each region Ri of the domain ⌦ = {Ri}
R
i=1 can be classi-

fied as follows. If Ki = 0 and Li =  , then region Ri is saturated at
the maximum. If Ki = 0 and Li =  , then region Ri is saturated at
the minimum. Otherwise the region is called an unsaturated region.
Denote by Imax and Imin the index lists of regions saturated at the
maximum and minimum, respectively, and by Iunsat the index list
of unsaturated regions. Let U = {Ri}i2Iunsat , R = {Ri}i2Imax , and
R = {Ri}i2Imin . With this classification, we can rewrite (3) as

(x) =

8
<

:

Kix + Li if x 2 U, i 2 Iunsat
 if x 2 R,
 if x 2 R.

(5)

Lemma 3.1. Let a function ⇠ : Rnx ! R which satisfies

⇠(x) > 0, 8x 2 R, (6a)
⇠(x) < 0, 8x 2 R. (6b)

be given. Define

̃(x) =

(Kix + Li if x 2 U, i 2 Iunsat
 if x 62 U, ⇠(x) > 0,
 if x 62 U, ⇠(x) < 0.

(7)

Then ̃(x) = (x) for all x 2 dom().

Proof. Follows directly from (5) and from the definition of ⇠ in
(6). We remark that, since polytopes Ri do not overlap due to
Theorem 2.1, we have dom() = R [ U [ R, int(R) \ int(U) =

;, int(U) \ int(R) = ;. Moreover, due to continuity of  we have
R \ R = ;. ⇤

Lemma 3.1 indicates that if we are able to find the function ⇠
that strictly separates sets R and R, then  can be evaluated by
only looking at the unsaturated regions U. If 9r 2 Iunsat such
that x 2 Rr , then (x) = Krx + Lr . Otherwise, based on the
sign of ⇠(x), one either takes (x) =  or (x) =  . As will be
evidenced later, a typical explicit RHMPC feedback law  contains
a significantly smaller number of unsaturated regions as compared
to the number of saturated ones, i.e., |Iunsat| ⌧ |Imax| + |Imin|.
Therefore ̃ will require significantly less memory than  , and will
be faster to evaluate too, if ⇠ is a ‘‘simple’’ separator of the two sets
R and R.

Efficiency of the presented procedure depends on the ratio of
unsaturated regions to the total number of regions. If  does not
contain any saturated regions, then no simplification can be
achieved. As observed e.g. in Grieder and Morari (2003) and Kvas-
nica and Fikar (2012), the number of unsaturated regions depends
mainly on two factors: tightness of input constraints U and selec-
tion of the input penalty Qu in (2a). The tighter the constraints
and/or the lower Qu, the more regions will become saturated,
hence enabling our approach to be more efficient.
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All procedures of this paper are applicable to generic PWA func-
tions  : Rnx ! Rnu as long as they are continuous and all their
regions Ri are full-dimensional polytopes. The scope of this work
therefore extends to cases where 1- or 1-norms are used in (2a),
or when tracking of a non-zero reference is achieved by a suitable
augmentation of the state vector. If nu > 1, then  can be de-
composed (Kvasnica & Fikar, 2012) into nu scalar-valued functions
j : Rnx ! R, j = 1, . . . , nu, where each j is defined over the orig-
inal partition {Ri}

R
i=1. Denote by  j and  j the maximum andmini-

mum of j per (4), and let  = [1, . . . , nu ]
T ,  = [1, . . . , nu ]

T .
Then one option to select saturated regions is to pick regionswhere
all scalar-valued functions are jointly saturated either atmaximum
(i.e., (x) = ) or at minimum (i.e., (x) = ). Another option is
to apply Lemma 3.1 to each component j individually. The latter
approach is typically more effective (Kvasnica & Fikar, 2012).

4. Finding the separator

Problem 4.1. Given are two collections of polytopes R =

{Ri}i2Imax andR = {Ri}i2Imin withR\R = ;. Find the separating
function ⇠ : Rnx ! R which satisfies (6).

If ⇠ is chosen as a linear function, then its parameters can be
found using standard support vector machine (SVM) approaches
(Cortes & Vapnik, 1995). However, as pointed out in Section 6,
many practical cases require nonlinear types of separators. The
difficulty of devising a suitable nonlinear separator then stems
from the fact that (6) has to hold for all points from the (in general
non-convex) sets R and R, not just for some points (e.g., for the
vertices). Hence SVM-like approaches are not directly applicable
in such cases.

4.1. Polynomial separation

In this section we show how to find coefficients of a multi-
variate polynomial

⇠(x) :=

i1+···+in�X

i1=···=in=0

↵i1,...,in x
i1
1 · · · xinn (8)

of pre-specifiedmaximal degree � such that ⇠ of (8) satisfies (6). The
proposed approach is based on the fundamental result of Pólya:

Theorem 4.2 (Pólya’s TheoremHardy, Littlewood,& Pólya, 1952). Let
� be a n�-dimensional unit simplex

� =

(

� 2 Rn� | � � 0,
n�X

k=1

�k = 1

)

, (9)

and let ⇠ be a homogeneous polynomial. Then ⇠(�) > 0 8� 2 � if all
coefficients of the extended polynomial

⇠̃(�) := ⇠(�) ·

 
n�X

k=1

�k

!P

(10)

are positive for a sufficiently large Pólya degree P. ⇤

Despite being only a sufficient condition for positivity of a polyno-
mial over a simplex, the advantage of Pólya’s theorem is that coeffi-
cients of ⇠ can be found by solving a linear programming problem.
However, Theorem 4.2 cannot be directly applied to solve Prob-
lem 4.1 since polytopes Ri are not unit simplices with 0 2 Ri, in
general. To work around this issue we represent each polytope as
a convex hull of its vertices, i.e.,

Ri =

(

x | x =

|Vi|X

k=1

�k[Vi]k, � 2 �i

)

, (11)

where Vi are vertices of the i-th polytope, [Vi]k is the k-th vertex,
|Vi| is the number of vertices, and �i is a unit simplex as in (9).

Lemma 4.3. Let ⇠i(�) are obtained by substituting for x =
P

k �k
[Vi]k into (8) for each i 2 Imax [ Imin. If there 9↵ such that

⇠i(�) > 0, 8� 2 �i, 8i 2 Imax, (12a)
�⇠i(�) > 0, 8� 2 �i, 8i 2 Imin, (12b)

then ⇠ as in (8) satisfies (6).

Proof. If (12a) holds for some i 2 Imax, then ⇠i(�) > 0 for all
� 2 �i implies ⇠(x) > 0 for all x 2 Ri by (11). By enforcing validity
of (12a) for each i 2 Imax we have that ⇠(x) > 0 for all x 2 R. The
argument behind (12b) is similar, just with an opposite sign. ⇤

Remark 4.4. The coefficients which multiply various powers of �k
in ⇠i(�)will be different for each polytope since they depend on the
verticesVi and the parameters ↵ in (8). But sinceVi are known, the
coefficients will only be a linear function of ↵.

Theorem 4.5. Let the collections of polytopes R and R be given.
Obtain vertices Vi of all polytopes in R and R. Form polynomials
⇠i(�) by substituting for x =

P
k �k[Vi]k into (8). Homogenize

each ⇠i(�) by multiplying its single monomials by (
P|Vi|

k=1 �k) until
all monomials have the same degree. Select a Pólya degree P and
create extended polynomials ⇠̃i per (10). Denote by coeffs(⇠̃i) the
symbolic representation of coefficients of ⇠̃i, cf. Remark 4.4. If the
linear program

min k↵k1 (13a)

s.t. coeffs(⇠̃i) > 0, 8i 2 Imax, (13b)

coeffs(�⇠̃i) > 0, 8i 2 Imin, (13c)

is feasible, then ⇠ as in (8) solves Problem 4.1.

Proof. If (13) is feasible then (12) holds by Theorem 4.2. Then,
(6) follows from (12) by Lemma 4.3. Therefore ⇠ as in (8) strictly
separates R and R. ⇤

Byminimizing the `1 norm in (13a) we obtain a sparse ↵. Doing
so is recommended to keep complexity of the separator (which
is proportional to the number of non-zero coefficients) small. We
remark that Theorem4.5 can also be used to find a linear separator,
i.e., with � = 1 in (8).

4.2. Implicit separation

Instead of searching for an explicit form of the separator ⇠ , in
this section we present a procedure which implicitly defines the
value of ⇠(x) for a given query point x. In particular, we show
how to evaluate ⇠(x) using only the information provided by the
unsaturated regions of  . The advantage of the proposed procedure
is that it does not require enumeration of vertices, which can be
time consuming and/or numerically sensitive.

Consider a new PWA function ̂ which is defined only over the
unsaturated regions U = {Ri}i2Iunsat of the original function :

̂(x) = Kix + Li if x 2 Ri, i 2 Iunsat. (14)

Theorem 4.6. Let  be a continuous PWA function as in (5) with
dom() convex and ̂ be as in (14). Let a query point x 2 dom()
be given. Denote by x̂ any point in U closest to the query x, i.e.,

x̂ = argmin {kz � xk | z 2 U}. (15)

Then

(x) = ̂(x̂), 8x 2 dom(). (16)
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Proof. We first prove two intermediate statements:

x 2 R ) L(x̂, x) ✓ R, (17a)

x 2 R ) L(x̂, x) ✓ R, (17b)

where L(x̂, x) denotes a line segment between points x̂ and x, i.e.,
L(x̂, x) = {✓ x̂ + (1 � ✓)x | 0  ✓  1}. To prove (17a), we shall
show that

x 2 R ) L(x̂, x) \ U = {x̂}, (18a)

x 2 R ) L(x̂, x) \ R = ;, (18b)

x 2 R ) x̂ 2 U \ R. (18c)

We show (18a) by contradiction. Assume there exists a point
z 6= x̂ such that z 2 L(x̂, x) \ U. This would mean that z is closer
to x than x̂ is, i.e., kz � xk < kx̂ � xk, a contradiction with (15).
We remark that x̂ 2 L(x̂, x) \ U follows directly from (15) and
from the definition of the line segment. Therefore (18a) holds. To
prove (18b), assumeby contradiction there exists a z 2 L(x̂, x)\R.
Without loss of generality take z = x̂. Since x 2 R and x̂ 2 R is
now assumed, we have (x) =  and (x̂) =  . Because  is as-
sumed to be continuous, there must be a point y 6= x̂, y 2 L(x̂, x)
which satisfies  < (y) <  . This can only happen if y 2 U.
But due to (18a) we have that no such y 6= x̂ exists, and therefore
(18b) holds. Next, to show (18c) note that L(x̂, x) ✓ dom() with
dom() = R [ U [ R since dom() is assumed convex. But due
to (18b) we have L(x̂, x)\R = ; and therefore L(x̂, x) ✓ U[R.
SinceU andR are bounded and closed sets (thoughnot necessarily
convex), x̂ obtained from (15)will be on the boundary ofU. Since 
is assumed to be continuous, we have that x̂ is also on the boundary
of R and (18c) follows. Combining (18a)–(18c) with the fact that
L(x̂, x) ✓ dom() due to convexity of dom(), we get (17a). The
proof of (17b) follows the same lines and is therefore omitted.

Finally,weprove that (17) imply (16). If x 2 U, then (16) follows
immediately from (14) since x̂ = x minimizes (15) for any x 2 U.
If x 2 R then we have (x̂) =  because x̂ 2 R by (18c). But si-
multaneously x̂ 2 U by (18a). Since  is assumed to be continuous,
we therefore have (x̂) = ̂(x̂) by (14). Finally, since L(x̂, x) ✓ R
by (17a), we have that (y) =  for any y 2 L(x̂, x) and therefore
(x) = ̂(x̂). The proof for x 2 R implying (16) is identical. ⇤

Theorem 4.7. Let ̂ be as in (14) and denote by x̂ the projection of x
onto U per (15). Then

⇠(x) := ̂(x̂) �
1
2
( + ) (19)

solves Problem 4.1.

Proof. For all x 2 R we have (x) =  by definition of R, and
̂(x̂) =  by Theorem 4.6. Since  >  , the quantity  �

1
2 ( + )

is positive, which shows that (6a) holds. The proof of (6b) is similar
and follows from the fact that  �

1
2 ( + ) < 0. ⇤

Theorem 4.7 says that we can obtain the value ⇠(x) by evaluat-
ing the simpler function ̂ as follows: (i) given x, compute x̂ from
(15); (ii) evaluate ̂(x̂) per (14); and (iii) obtain ⇠(x) from (19).
The only technical difficulty is that the union U = [i Ui is non-
convex, in general, therefore finding x̂ as a projection of x onto U
from (15) is not straightforward. In general, one can compute x̂i for
each polytope Ui by solving (15) as a quadratic program, i.e.,

x̂i = argmin{kz � xk | z 2 Ui}, i = 1, . . . , |U|, (20)

followed by taking

x̂ = argmin{kx̂i � xk | i = 1, . . . , |U|}. (21)

However, determining x̂ by solving optimization problems on-
line can be time consuming. Therefore we propose a simpler
method for obtaining x̂. We distinguish between two cases. If x 2

Ui for some i = 1, . . . , |U|, then x̂ = x by (17). Consider therefore
x 62 [i Ui and note that Theorem 4.6 holds even when the search
for x̂ from (20) to (21) is restricted to any line segment L(x, x0)
where x0 is any point3 with x0 2 int(U), i.e.,

x̂i = argmin {kz � xk | z 2 Ui, z 2 L(x, x0)}. (22)

Then we can find the intersection between Ui and L(x, x0) as
follows. Since each Ui is a polytope, its half-space representation
is Ui = {x | Fix  gi} where Fi contains the normal vectors
of the defining half-spaces fi,1, . . . , fi,ci , and ci is the number of
defining half-spaces of the i-th polytope. Then the intersection x̂i,j
between the hyperplane Hi,j = {z | f Ti,jz = gi,j} and the line
{z | z = x + ✓(x0 � x)} passing through x0 and x is given by

x̂i,j = x + ✓̂i,j(x0 � x), (23)

where

✓̂i,j =
gi,j � f Ti,jx

f Ti,j(x0 � x)
. (24)

If the denominator in (24) is zero, we adopt the notion that ✓̂i,j =

1. The point x̂i,j is a valid intersection between the line segment
L(x, x0) and Hi.j if 0  ✓̂i,j  1. In such a case ✓̂i,j also denotes the
distance of x̂i,j from x along L(x, x0).

For a given polytope Ui with ci facets, we can find x̂i as in (22)
by a simple procedure:

(1) Compute intersection points x̂i,j for j = 1, . . . , ci from (23) to
(24).

(2) Identify valid intersections, i.e., those satisfying 0  ✓̂i,j  1
and Fix̂i,j  gi.

(3) Among the valid intersections, select the one which is closest
to x, i.e., the one with minimal value of ✓̂i,j. If there is no
intersection between Ui and L(x, x0), return an empty set.

By repeating this procedure for all polytopes Ui, i = 1, . . . ,
|U|, we obtain a set of points {x̂i} among which x̂ is chosen by (21).
Note that the distances kx̂i � xk in (21) are readily available in ✓̂i.
Since x0 is the interior point of U, then there will always exist at
least one polytope Ui which intersects L(x, x0) and therefore the
minimum in (21) is always attained.

5. Complexity analysis

In terms of off-line pre-processing, searching for a polynomial
separator from Theorem 4.2 requires two pre-processing steps.
First, vertices of polytopes forming R and R need to be
computed. Subsequently, coefficients of the separator are found by
solving (13). The linear program in (13) has

� nx+�
�

�
variables and

2
P

i2Imax[Imin
Mi constraints. Here,Mi is the number of coefficients

of the Pólya polynomials ⇠̃ in (10) and is given byMi =

⇣
�p+|Vi|�1

�p

⌘

with �P = � + P . The implicit separator, described in Section 4.2,
only requires one cheap pre-processing step in which the interior
point x0 2 int(U), used in (22), is determined at the expense of a
single LP with nx + 1 variables.

In terms of on-line computation, obtaining the value of ̃(x) on-
line for a given point x from (7) first requires to assess whether
x 2 U. Searching through the unsaturated regions sequentially can
answer this query in

P
i2Iunsat

ci(2nx + 1) time (we recall that ci is

3 If (2) is a regulation MPC problem, then x0 can be chosen to be the origin.
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the number of half-spaces defining the i-th polytope). If x 2 Rr
for some r 2 Iunsat, then (x) = Krx + Lr . Otherwise, ⇠(x) is
evaluated by, at most, �

� nx+�
�

�
FLOPs, and based on its sign either

(x) =  or (x) =  is returned. Obtaining the value ⇠(x) per the
implicit description of Section 4.2 requires, at most, 2|Iunsat|(nx +

1)+
P

i2Iunsat
ci(4nx+2) FLOPs. These figures are to be compared to

PR
i=1 ci(2nx+1), the effort needed to evaluate the original function

(3) by sequential search. Therefore the achievable reduction in on-
line computation is proportional to the ratio between the number
of unsaturated regions, |Iunsat|, to the total number of regions, R, cf.
Section 6.2.

Finally, we quantify the required on-line storage. Storing the
original function  would require

PR
i=1 ci(nx + 1) numbers. The

simpler function ̃ as in (7) only requires storing the separator
and the unsaturated regions, i.e., only S(⇠) +

P
i2Iunsat

ci(nx + 1)
numbers. Here,S(⇠) is the size of the separatorwithS(⇠) 

� nx+�
�

�

for coefficients of the polynomial separator and S(⇠) = nx for the
implicit separator, which only requires storing the single interior
point x0.

5.1. Comparison to other approaches

Other methods can be used to derive the replacement function
̃ . The lattice representation (LR) of Wen et al. (2009) converts the
original function  into a series of min /max operations over lin-
ear functions, eliminating the need to store the underlying regions
Ri. Evaluation of such a lattice description requires O(R2

unique) op-
erations, where Runique is the number of regions where the feed-
back law is unique. The memory storage is also proportional to
O(R2

unique). The clipping-based procedure (Kvasnica & Fikar, 2012)
removes some of the saturated regions and replaces them by ‘‘ex-
tensions’’ of the unsaturated ones. In the best case, ̃ is thendefined
over |Iunsat| regions. On average, ̃ consists of 1.3|Iunsat| regions.
In the worst case, however, no reduction can be achieved even if
|Iunsat| < R.

6. Examples

6.1. Illustrative example

Consider a 2-state 1-input system of the form (1) with A =h
0.755 0.680
0.651 �0.902

i
, B =

h
0.825

�0.139

i
, subject to constraints |xi|  10 for

i = 1, 2 and |u|  1. The MPC problem (2) was formulated with
N = 10,Qx = 1 and Qu = 1 and solved as a pQP according to
Theorem 2.1. Using the MPT Toolbox (Kvasnica, Grieder, & Baoti¢,
2004), the explicit RHMPC feedback  was obtained in 4 s (on a
2.2 GHz Core i7 CPU with 8 GB of RAM using MATLAB 7.8 and MPT
2.6.3) as a PWA function defined over 225 regions, shown in Fig. 1.
The partition of  consists of 29 unsaturated regions U, 98 regions
R where (x) = 1, and 98 regions R with (x) = �1.

Solving for coefficients of (8) with � = 3 from (13) resulted in
⇠(x) := �x1�x2�0.0011x31�0.254x32. The totalmemory footprint
of the original function  with 225 regions is 27 kB. The equivalent
replacement ̃ in (7), on the other hand, only requires 3.5 kB
(16 bytes ofwhich are consumed by ⇠ ). These figures correspond to
a reduction of memory consumption by a factor of 7.7. The worst-
case computational effort needed to evaluate the original function
 is 4470 FLOPs. By employing (7) this figure can be reduced to
570 FLOPs (560 FLOPs to find out whether x 2 U and 10 FLOPs
to evaluate ⇠(x)), a reduction by a factor of 7.8. The replacement ̃
can also be evaluated using the implicit separator per Section 4.2,
without the need to construct ⇠ in its explicit form. In this case
evaluating ⇠(x) per (21)–(24) requires 1792 FLOPs, in the worst
case.

−5 0 5

−3

−2

−1

0

1

2

3

Fig. 1. Polytopic sets U (yellow), R (red), R (green), and the zero-level set of
polynomial separator (8) of degree 3. (For interpretation of the references to colour
in this figure legend, the reader is referred to the web version of this article.)

Table 1

Likelihood of existence of a separator (8) of degree �min.

nx/nu 2/1 2/2 3/1 3/2

�min = 1 94 90 83 63
�min = 3 6 10 15 37
�min = 5 – – 1 –
⌃ 100 100 99 100

6.2. Random systems

Next, we have analyzed a large number of randomRHMPC feed-
back laws  generated by solving problem (2) for randomly se-
lected LTI systems with 2–3 states, and 1–2 inputs. Magnitudes of
the variables were constrained by |xi|  10 and |ui|  5, respec-
tively. 100 random cases were considered for each nx/nu category.
The largest investigated scenario had12651 regions. For each func-
tion  we have constructed the equivalent replacement ̃ as in (7).
Based on the 400 random scenarios, Table 1 shows for how many
cases a separator ⇠ of a given minimal degree �min was found by
solving (13). Only degrees �  5were considered to keep the com-
plexity of (13) on a tractable level.

Table 2 reports theminimal, maximal, and average values of the
complexity reduction ratio defined as� =

|Iunsat|+|Imax|+|Imin|

|Iunsat|
. This

figure represents a reduction in on-line memory and computation
achievable by employing procedures of this paper compared to
using the original explicit MPC feedback, cf. Section 5. The last
row of Table 2 shows performance of the method of Kvasnica
and Fikar (2012) on the same data set. In all cases where a linear
separator was found, performance of the current scheme was the
same as with (Kvasnica & Fikar, 2012). In the remaining cases
the procedures of this paper achieved up to 3.5-times higher
complexity reduction. Also important, from a practical point of
view, is the fact that, compared to (Kvasnica & Fikar, 2012), the
proposed approaches are up to 1000 times faster in terms of off-
line pre-processing. In particular, in all successful cases the vertex
enumeration time did not exceed 10 s and runtime of LP (13) was
below 10 s as well.

7. Conclusions

Given an explicit RHMPC feedback function  , we have shown
how to construct its simpler replacement ̃ which maintains the
equivalence (x) = ̃(x) for all x 2 dom  . The approach is based
on devising a separating function ⇠ which separates the regions
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Table 2

Minimal, maximal, and average values of the complexity reduction ratio.

nx/nu 2/1 2/2 3/1 3/2

�min 2.3 1.8 2.1 1.9
�max 31.0 14.5 21.0 10.2
�avg 13.4 5.9 7.1 3.6
�avg (Kvasnica & Fikar, 2012) 13.0 5.3 6.6 2.9

over which  attains a saturated value. We have shown how to
construct the explicit form of such a separator by solving a single
linear program. Polynomial (and linear, as a special case) separa-
tors feature a low memory footprint and allow for fast evaluation
of ⇠ at x. This approach is recommended for lower-dimensional
problems for which vertex enumeration can be performed in a
numerically reliable manner. For higher-dimensional cases, where
off-line pre-processing would be prohibitive and/or unreliable, we
have shown a procedure which implicitly defines a value of the
separator at a given point. Such an implicit separator avoids off-
line pre-processing steps at the expense of more involved on-line
computation. Regardless of the type of separator, the replacement
function ̃ requires only the storage of the unsaturated regions of
 , along with representation of ⇠ . By means of a large case study
we have demonstrated that a significant reduction of complexity
can be achieved in general.
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Abstract

Piecewise affine (PWA) systems are powerful models for describing both non-linear and hybrid systems. One of the key problems in
controlling these systems is the inherent computational complexity of controller synthesis and analysis, especially if constraints on states
and inputs are present. In addition, few results are available which address the issue of computing stabilizing controllers for PWA systems
without placing constraints on the location of the origin.
This paper first introduces a method to obtain stability guarantees for receding horizon control of discrete-time PWA systems. Based

on this result, two algorithms which provide low complexity state feedback controllers are introduced. Specifically, we demonstrate how
multi-parametric programming can be used to obtain minimum-time controllers, i.e., controllers which drive the state into a pre-specified
target set in minimum time. In a second segment, we show how controllers of even lower complexity can be obtained by separately
dealing with constraint satisfaction and stability properties. To this end, we introduce a method to compute PWA Lyapunov functions
for discrete-time PWA systems via linear programming. Finally, we report results of an extensive case study which justify our claims of
complexity reduction.
" 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Optimal control of piecewise affine (PWA) systems has
garnered increasing interest in the research community,
since this system type represents a powerful tool for approx-
imating non-linear systems and because of their equivalence
to many classes of hybrid systems (Heemels, de Schutter,
& Bemporad, 2001; Sontag, 1981). The optimal control
inputs for discrete-time PWA systems may be obtained
by solving mixed-integer optimization problems on-line
(Bemporad & Morari, 1999; Mayne & Raković, 2003), or as
was shown in Baotić, Christophersen, and Morari (2003a),
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Borrelli, Baotić, Bemporad, and Morari (2003), Kerrigan
and Mayne (2002) and Borrelli (2003), by solving off-line a
number of multi-parametric programs. By multi-parametric
programming, a linear (mpLP) or quadratic (mpQP) opti-
mization problem is solved off-line for a range of parame-
ters.
In their pioneering work (Bemporad, Morari, Dua, &

Pistikopoulos, 2002), the authors show how to formulate
an optimal control problem for constrained linear discrete-
time systems as a multi-parametric program (by treating
the state vector as a parameter) and how to solve such a
program. Basic ideas from Bemporad et al. (2002) for lin-
ear systems were extended to PWA systems in Baotić et al.
(2003a), Borrelli et al. (2003), Kerrigan and Mayne (2002)
and Borrelli (2003). The associated solution (optimal con-
trol inputs) takes the form of a PWA state feedback law. In
particular, the state space is partitioned into polyhedral sets
and for each of these sets the optimal control law is given as
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an affine function of the state. In the on-line implementation
of such controllers, input computation reduces to a simple
set-membership test. Even though the approaches in Baotić
et al. (2003a), Borrelli et al. (2003), Kerrigan and Mayne
(2002), and Borrelli (2003) rely on off-line computation of a
feedback law, the computation quickly becomes prohibitive
for larger problems. This is not only due to the high com-
plexity of the multi-parametric programs involved (Grieder
& Morari, 2003), but mainly because of the large number of
multi-parametric programs which need to be solved when a
controller is computed in a dynamic programming fashion
(Borrelli et al., 2003; Kerrigan & Mayne, 2002).
In addition, there are few results in the literature which

explicitly address the issue of computing feedback con-
trollers for PWA systems which provide stability guarantees.
The few publications that address this issue (e.g., Mayne &
Raković, 2003) assume that the origin is contained in the
interior of one system dynamic. The only exception is the
infinite horizon solution proposed in Baotić, Christophersen,
and Morari (2003b), which is computationally intractable
for larger problems.
This paper addresses the clear need for low complexity

controllers for PWA systems that provide stability guaran-
tees even if the origin is located on the boundary of several
different system dynamics. Two algorithms are presented in
this paper which achieve this goal.
First, a general scheme for obtaining stability guarantees

for generic PWA systems subject to receding horizon control
will be presented. This scheme can be used in connection
with other controller computation methods (e.g., Mayne &
Raković, 2003; Baotić et al., 2003a; Borrelli et al., 2003;
Kerrigan & Mayne, 2002) to obtain stability guarantees.
Subsequently, the computation of a minimum-time feed-

back controller is presented. As the final section will show,
the resulting controller is of such low complexity compared
to what one can obtain with traditional methods (Baotić et
al., 2003a; Borrelli et al., 2003) that a whole new class of
problems becomes tractable.
In a second segment, we show how controllers of even

lower complexity can be obtained by separately dealing with
the issue of constraint satisfaction and asymptotic stability.
To this end, we introduce a method to compute a PWA
Lyapunov function for discrete-time PWA systems via linear
programming. The computation is guaranteed to find a PWA
Lyapunov function for a given partition, if it exists.

2. Problem description and properties

This section covers some of the fundamentals of multi-
parametric programming for linear systems before restating
recent results for PWA systems. Consider a discrete-time
linear time-invariant system

x(k + 1) = Ax(k) + Bu(k), (1)

with A ∈ Rn×n and B ∈ Rn×m. Let x(k) denote the mea-
sured state at time k and xk (uk) the predicted state (input) at
time k, given x(0). Assume now that the states and the inputs
of the system in (1) are subject to the following constraints:

x(k) ∈ X ⊆ Rn, u(k) ∈ U ⊆ Rm ∀k!0, (2)

where X and U are polytopic sets containing the origin in
their interior.

Remark 1. For ease of notation, we restrict ourselves to
separate constraints on state and input in (2). It is straightfor-
ward to modify all algorithms in this paper to deal with sys-
tems subject to mixed state-input-constraints, i.e., Cxx(k)+
Cuu(k)"Cc, ∀k!0.

Consider the constrained finite-time optimal control prob-
lem with a linear objective

J ∗
N(x(0)) = min

u0,...,uN−1

N−1
∑

k=0
(‖Ruk‖1,∞ + ‖Qxk‖1,∞)

+ ‖Qf xN‖1,∞, (3a)

subj. to xk ∈ X, uk−1 ∈ U ∀k ∈ {1, . . . , N}, (3b)

xN ∈ Tset, (3c)

xk+1 = f (xk, uk), x0 = x(0), (3d)

where (3c) is a user defined set-constraint on the final state
and ‖ · ‖1,∞ denotes the 1- or ∞-norm of a vector, respec-
tively.

Definition 2.1. We define the N-step feasible setFN ⊆ Rn

as the set of initial states x(0) for which the optimal control
problem (3) is feasible, i.e.,

FN = {x(0) ∈ Rn | ∃UN ∈ RNm, uk−1 ∈ U,
xk ∈ X, xN ∈ Tset, ∀k ∈ {1, . . . , N}},

where UN = [u′
0, . . . , u

′
N−1]′ is the optimization vector.

Assume now that the state update function is linear, i.e.,
f (xk, uk) = Axk + Buk in (3d). By considering x(0) as
a parameter, problem (3) can then be stated as an mpLP
(Bemporad, Borrelli, & Morari, 2000) which can be solved
to obtain a feedback solution with the following properties
(derived from Borrelli, 2003; Gal, 1995):

Theorem 2.1. Consider the finite time constrained regula-
tion problem (3), with a linear objective in (3a) and a linear
state update function f (xk, uk) = Axk + Buk in (3d). Then,
the set of feasible parametersFN is convex, there exists an
optimizer U∗

N : FN → RNm which is continuous and PWA
over polyhedra, i.e.,

U∗
N(x(0)) = Frx(0) + Gr if x(0) ∈ Pr

Pr = {x ∈ Rn |Hrx"Kr}, r = 1, . . . , R

and the value function J ∗
N : FN → R is continuous, convex

and PWA.
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According to Theorem 2.1, the feasible state space
FN is partitioned into R polytopic regions, i.e., FN =
⋃

r=1,...,R Pr . The results in Bemporad et al. (2000) were
extended in Borrelli et al. (2003) to compute the optimal
explicit feedback controller for PWA systems of the form

x(k + 1) = Aix(k) + Biu(k) + fi (4a)

if x(k) ∈ Di , i ∈ I (4b)

subject to the constraints (2). Here, the dynamic set Di is
polyhedral and the set I is defined as I#{1, 2, . . . , D},
where D denotes the number of different dynamics. We
will henceforth assume that the different dynamic regions
Di are non-overlapping and abbreviate (4a) and (4b) with
x(k+1)=fPWA(x(k), u(k)). The optimization problem con-
sidered in this paper is thus given by assuming a PWA
state update equation, i.e., f (xk, uk)=fPWA(xk, uk) in (3d).
In Baotić et al. (2003a), multi-parametric linear programs
(mpLP) were solved in a dynamic programming fashion to
obtain the feedback solution to (3) for PWA systems. In
Borrelli et al. (2003), the feedback solution to (3) for PWA
systems and quadratic objective in (3a) was computed by
solving a sequence of multi-parametric quadratic programs
(mpQP) in a dynamic programming fashion. Methods to
obtain feedback solutions to linear or quadratic optimiza-
tion problems for PWA systems are also given in Borrelli
(2003), Mayne and Raković (2003), Baotić et al. (2003b)
and Kerrigan and Mayne (2002). Note that we do not re-
quire fPWA : Rm × Rn → Rn to be continuous. However, if
fPWA is discontinuous, computing the solution to (3),if one
exists, becomes rather cumbersome since special care has to
be taken of the open and closed boundaries of Di .

3. Computation of stabilizing controllers for PWA
systems

A large part of the literature has focussed on end-point
constraints to guarantee asymptotic stability of the closed-
loop PWA system (e.g., Bemporad & Morari, 1999; Bor-
relli, 2003). This type of constraint generally requires the
use of large prediction horizons for the controller to cover
the entire controllable state space, such that the computa-
tional complexity quickly becomes prohibitive. Other meth-
ods (e.g., Mayne & Raković, 2003) only provide stability
guarantees if the origin is contained in the interior of one of
the dynamics Di .
In this section, a method is presented for obtaining stabi-

lizing controllers for generic PWA systems.1 For any dy-
namical system, stability is guaranteed if an invariant set is
imposed as a terminal state constraint (see (3c)) and the ter-
minal cost in (3) corresponds to a Lyapunov function for that

1 Note that results virtually identical to what is presented in this
section were simultaneously obtained by others (Lazar, Heemels, Weiland,
& Bemporad, 2004).

set Mayne, Rawlings, Rao, and Scokaert (2000). In addition,
the decay rate of the ‘terminal Lyapunov function’ must be
greater than the stage cost. We here show how to obtain the
invariant maximum admissible set OPWA∞ with the associ-
ated feedback law and Lyapunov function. In a first step, we
select all dynamics i ∈ I0, which contain the origin, i.e.,

I0# {i ∈ I | 0 ∈ Di}.
We are assuming that the origin is an equilibrium state of
the PWA system and hence the closed-loop dynamics fi =0,
∀i ∈ I0 (see (4)). If this assumption is not satisfied, the
approach proposed here will fail since the system is unstable.
The search for stabilizing piecewise linear feedback con-

trollersFi and an associated Lyapunov function V (x)=x′Px

can now be posed as

x′Px!0 ∀x ∈ X,

x′(Ai + BiFi)
′P(Ai + BiFi)x − x′Px

" − x′Qx − x′F ′
i RF ix ∀x ∈ Di ∀i ∈ I0.

If we make this condition less restrictive by setting Di =
Rn, ∀i ∈ I0, the problem can be rewritten as an SDP by
using Schur complements and introducing the new variables
Yi = FiZ and Z = (1/!)P −1 (see Kothare, Balakrishnan,
& Morari, 1996; Mignone, Ferrari-Trecate, & Morari, 2000
for details),

min
Yi ,Z,!

!, subj. to (5a)

Z , 0, (5b)






Z ∗ ∗ ∗
(AiZ + BiYi)

′ Z ∗ ∗
(Q0.5Z) 0 !I ∗
(R0.5Yi) 0 0 !I






- 0 ∀i ∈ I0, (5c)

where the scalar ! is introduced to optimize for the worst
case performance, whereby the ‘worst case’ corresponds to
an arbitrary switching sequence. Note that it may not be
possible for the worst case switching sequence considered in
(5) to occur in practice, since not all dynamics i are defined
over the entire state space.

Remark 2. If (5) is posed for an LTI system (i.e.,I0={1}),
the optimal LQR state feedback solution K and the solution
to the Algebraic Riccati Equation P are recovered.

Alternatively, one can solve a max-det problem to obtain
the largest invariant ellipsoidal target set (Boyd, El Ghaoui,
Feron, & Balakrishnan, 1994). Large target sets generally
make the subsequent controller computations (see Section 4)
simpler. Note, however, that the feedback laws associated to
the maximal volume invariant ellipsoidal set may not yield
the maximal volume invariant polytopic set.
In a second step, the maximal admissible set OPWA∞

of the PWA system subject to the feedback controllers
Fi = YiZ

−1 can be computed with the algorithm in
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Raković, Grieder, Kvasnica, Mayne, and Morari (2004),
which is guaranteed to terminate in finite time for the prob-
lem at hand, since the closed-loop system is asymptotically
stable. The proposed computation scheme is summarized in
the following algorithm:

Algorithm 3.1. Computation of maximal admissible set
OPWA∞

(1) Identify all dynamics i which contain the origin, i.e.,
I0#{i ∈ I | 0 ∈ Di}.

(2) Solve (5) for all i ∈ I0, to obtain Fi and P. If (5) is
infeasible, abort the algorithm.

(3) Compute the maximal output admissible set OPWA∞
corresponding to the closed-loop system xk+1 = (Ai +
BiFi)xk , if xk ∈ Di and constraints (2) with the method
in Raković et al. (2004).

(4) Return the target set OPWA∞ , the feedback laws Fi and
the associated matrix P.

Theorem 3.1. Assume the optimization problem (3) is given
with a quadratic objective (3a),

J ∗
N(x(0)) = min

u0,...,uN−1

N−1
∑

k=0
(u′

kRuk + x′
kQxk) + x′

NQf xN ,

a terminal set Tset = OPWA∞ and a terminal cost Qf = P

(obtained with Algorithm 3.1). If this problem is solved at
each time step for the PWA system (4) and only the first input
is applied (receding horizon control), then the closed-loop
system is asymptotically stable.

Proof. The result ofAlgorithm 3.1 trivially satisfies the con-
ditions for asymptotic stability in Mayne et al. (2000, Sec-
tion 3.3). $

Note that we only need to consider a single convex termi-
nal set for linear systems (Gilbert & Tan, 1991), whereas for
PWA systems, the terminal set OPWA∞ is given as a union
of several convex sets OPWA∞ = ⋃

Oi . If the union
⋃

Oi

is convex, the regions can be merged with the method in
Bemporad, Fukuda, and Torrisi (2001). This is a desirable
property since simpler target setsTset generally lead to re-
duced algorithm run-time and solution complexity for the
type of optimization problem given in (3).

Remark 3. The procedure described in this section is
merely sufficient for asymptotic stability. We cannot guar-
antee that the Lyapunov function and the associated state
feedback laws will be found in the suggested manner. How-
ever, we have observed in an extensive case study that the
approach works very well in practice. Short of the computa-
tionally very demanding construction of the infinite horizon
solution proposed in Baotić et al. (2003b), there is currently
no alternative method for guaranteeing closed-loop stabil-

ity for control of generic PWA systems. Furthermore, the
method we propose here can easily be combined with most
other controller computation (e.g., Borrelli et al., 2003;
Mayne & Raković, 2003; Kerrigan & Mayne, 2002; Baotić
et al., 2003a).

4. Computation of low complexity controllers for PWA
systems

The goal in this section is the design of explicit state feed-
back controllers, which ensure that the system constraints
(2) are satisfied for all time and provide asymptotic stability
guarantees. Without loss of generality, we restrict ourselves
to the regulation problem, i.e., how the state x(k) can be
steered to the origin without violating any of the system con-
straints along the closed-loop trajectory. General tracking
problems can easily be formulated as regulation problems
by augmenting the state space appropriately (Pannocchia &
Kerrigan, 2003).
One of the key problems in the control of PWA systems

is the lack of convexity of the controlled sets, which pro-
duces a significant computational overhead. Furthermore,
the complexity of the cost-to-go function in the dynamic
programming approach in Borrelli et al. (2003); Kerrigan
and Mayne (2002) makes it necessary to explore an expo-
nentially growing number of possible target sets during the
iterations. The algorithms presented here avoid these issues
to some extent by considering ‘simpler’ control objectives
(e.g., minimum time control). Note that all controllers pre-
sented here guarantee constraint satisfaction for all time as
well as asymptotic stability.

4.1. Computation of a minimum time controller

The minimum time controller considered here aims at
driving the system state x(k) into a pre-specified target set
OPWA∞ in minimum time. Unlike the approaches in Borrelli
et al. (2003) and Kerrigan and Mayne (2002), the cost-to-
go for the minimum-time controller assumes only integer
values. Because, of the ‘simple’ cost-to-go, the target sets
which need to be considered at each iteration step are larger
and fewer in number than those which would be obtained
if an optimal controller with a different cost objective were
to be computed (Borrelli et al., 2003; Kerrigan & Mayne,
2002; Baotić et al., 2003b). Thus, both the complexity of
the feedback law as well as the computation time are greatly
reduced, in general.
When the proposed algorithm terminates, the associated

feedback controller will cover the N-step stabilizable set
KPWA

N (OPWA∞ ).

Definition 4.1. The setKPWA
N (OPWA∞ ) denotes the N-step

stabilizable set for a PWA system (4), i.e., it contains all
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states which can be steered into OPWA∞ in N steps. Specifi-
cally,

KPWA
N (OPWA∞ ) = {x(0) ∈ Rn | ∃u(k) ∈ U, s.t.

x(N) ∈ OPWA∞ , x(k) ∈ X,
x(k + 1) = fPWA(x(k), u(k)), ∀k ∈ {0, . . . , N}}.

Accordingly, the set KPWA
∞ (OPWA∞ ) denotes the maximal

stabilizable set for N → ∞.

Note that the N-step stabilizable setKPWA
N (OPWA∞ ) is a

control invariant set.

4.1.1. Minimum-time controller: off-line computation
Before presenting the algorithm, some preliminaries

will be introduced. Assume a possibly non-convex union
X0 of L0 polytopes X0

l , i.e., X
0 = ⋃

l∈L0 X0
l , where

L0#{1, 2, . . . , L0}. In the following, the set X without
subscript will be used to denote unions of polytopes while
the subscript is used to denote polytopes. All states which
can be driven into the set X0 for the PWA system (4) are
defined by

Pre(X0) = {x ∈ X | ∃u ∈ U, fPWA(x, u) ∈ X0}
=

⋃

i∈I

⋃

l∈L0

{x ∈ Di |∃u ∈ U,

Aix + Biu + fi ∈ X0
l }.

=
⋃

j∈J0

F1,j

For a fixed i and l, the target set X0
l is convex and the

dynamics affine, such that it is possible to apply standard
multi-parametric programming techniques to compute the
set of states which can be driven into X0

l (Bemporad et al.,
2002). Therefore, the set Pre(X0) is a union of polytopes and
can be computed by solving J 0 = D · L0 multi-parametric
programs, where D denotes the number of dynamics and L0

is the number of polytopes which define X0. Each of these
multi-parametric programs will yield a controller partition
{P0

j,r}Rr=1 consisting of R controller regions whose union
covers the feasible setF1,j =⋃

r=1,...,R P0
j,r (see Definition

2.1). Since the set Pre(X0) is computed via multi-parametric
programming, we also obtain an associated feedback law
u(x) which provides feasible inputs as a function of the
state (see Theorem 2.1). Note that the various controller
partitions may overlap, but that each controller will drive
the state intoX0 in one time step, i.e., fPWA(x, u(x)) ∈ X0.
Henceforth, we will use the notationXiter+1=Pre(Xiter )=
⋃

j∈Jiter+1 Xiter+1
j .

In the following, the algorithm for computing the
minimum-time controller for PWA systems will be intro-
duced. In principle, the algorithm is a discrete version of the
viability kernel algorithm (Aubin, Lygeros, Quincampoix,
Sastry, & Seube, 2002). However, since multi-parametric

programming techniques are applied, the algorithm pro-
posed here will yield a control law and the associated
controllable set.

Algorithm 4.1. Minimum-time controller computation

(1) Compute the invariant set OPWA∞ around the origin
(see Fig. 1(a)) as well as the associated Lyapunov func-
tion V (x) = x′Px and feedback laws Fi as described
by Algorithm 3.1.

(2) Initialize the set list X0 = OPWA∞ and initialize the
iteration counter iter = 0.

(3) Compute Xiter+1 = Pre(Xiter ) = ⋃

j∈Jiter+1 Xiter+1
j ,

by solving a sequence of multi-parametric programs
(see Fig. 1(b)). Thus, a feedback controller partition
{Piter+1

j,r }Rr=1 is associated with each obtained set
Xiter+1

j . Obviously, the number of regions R of each
partition is a function of iter and j.

(4) For all j∗ ∈ Jiter+1: If Xiter+1
j∗ ⊆ {⋃j∈Jiter+1\{j∗}

Xiter+1
j }∪{⋃i∈{1,...,iter} X

i},then discardXiter+1
j∗ from

Xiter+1 and setJiter+1=Jiter+1\{j∗} (see Figs. 1(c)
and (d)).

(5) If Xiter+1 /= !, set iter = iter + 1 and go to step 3.
(6) For all k ∈ {1, . . . , iter − 1} and r ∈ N+ dis-

card all controller regions Pk+1
j,r for which Pk+1

j,r ⊆
⋃

i∈{1,...,k} X
i since the associated control laws are not

time-optimal and will never be
applied.

The index iter corresponds to the number of steps in which
a state trajectory will enter the terminal set OPWA∞ if a re-
ceding horizon control policy is applied. If the algorithm
terminates in finite time, then the union of all controlled sets
Xiter is the maximum controllable set KPWA

∞ (OPWA∞ ) as
given in Definition 4.1.

Remark 4. Note that Algorithm 4.1 may not terminate in
finite time, even if the feasible state space is bounded. This
is a problem inherent property and not a result of the com-
putation scheme (see Kerrigan, 2000 for further details). It
is therefore advisable to specify a maximum step distance
N which can be used as a termination criterion in step 5
of Algorithm 4.1. The resulting controller computation will
then terminate in finite time and the feedback controller will
coverKPWA

N (OPWA∞ ).

Remark 5. The implementation of Algorithm 4.1 requires
a function that can detect if a convex polyhedron P0 is cov-
ered by a finite set of non-empty convex polyhedra {Pr}Rr=1,
i.e., if P0 ⊆ ⋃

r∈{1,...,R} Pr . For instance, this operation is
needed to check if two unions of polyhedra cover the same
non-convex set (Raković et al., 2004) (e.g., Step 5 of Al-
gorithm 4.1). Due to space constraints, we refer the reader
to Baotić and Torrisi (2003), where an efficient algorithm is
given to perform this task.



1688 P. Grieder et al. / Automatica 41 (2005) 1683–1694

Fig. 1. Description of Algorithm 4.1. (a) Invariant target set OPWA∞ . (b) Set of states X1 which enter X0 in one time step. (c) The transition partition
does not expand the controlled set of states. (d) The transition controller expands the controllable set of states.

4.1.2. Minimum-time controller: on-line application
In the minimum-time algorithm presented in this paper,

we can take advantage of some of the algorithm features
to speed up the on-line region identification procedure. We
propose a three-tiered search tree structure which serves to
significantly speed up the region identification. Unlike the
search tree proposed in TZndel, Johansen, and Bemporad
(2003), the tree structure proposed here is computed auto-
matically by Algorithm 4.1, i.e., no post-processing is nec-
essary. The three levels of the search tree are as follows:

Algorithm 4.2. On-line application of minimum-time con-
troller

(1) Identify the active dynamics i, such that x ∈ Di , i ∈ I
(see Fig. 2(a)).

(2) Identify controller set Xiter
j associated with dy-

namic i which is ‘closest’ to the target set X0, i.e.,
miniter,j iter , s.t. x ∈ Xiter

j , j ∈ Jiter (see Fig. 2(b)).
(3) Extract the controller partition {Piter

j,r }Rr=1 with the cor-
responding feedback laws Fr, Gr and identify the re-
gion r which contains the state x ∈ Piter

j,r (see Fig.
2(c)).

(4) Apply the control input u = Frx + Gr . Go to 1.

Note that the association of controller partitions Xiter
j to

active dynamics in step 2 is trivially implemented by build-
ing an appropriate lookup-table during the off-line compu-
tation in Algorithm 4.1.

Theorem 4.1. The controller obtained with Algorithm 4.1
and applied to a PWA system (4) in a receding horizon con-
trol fashion according to Algorithm 4.2, guarantees asymp-
totic stability and feasibility of the closed-loop system, pro-
vided x(0) ∈ KPWA

N (OPWA∞ ).

Proof. Assume the initial state x(0) is contained in the set
Xiter with a step distance to OPWA∞ of iter. The control
law at step 4 of Algorithm 4.2 will drive the state into a
set Xiter−1 in one time step (see step 3 of Algorithm 4.1).
Therefore, the state will enter OPWA∞ in iter steps. Once the
state enters OPWA∞ the feedback controllers associated with
the common quadratic Lyapunov ensure stability. $

4.2. One-step controller

In the previous section, stability was guaranteed by im-
posing an appropriate terminal set constraint. In order to
cover large parts of the state space, this type of constraint
generally entails the use of large prediction horizons which
results in controllers with a large number of regions.
In this section, instead of enforcing asymptotic stability

with an appropriate terminal set (and the associated cost),
we propose to enforce constraint satisfaction only. This can
be easily achieved by imposing a set constraint on the first
predicted state in the MPC formulation. Hence, the terminal-
set constraint xN ∈ Tset becomes superfluous and we do
not need to rely on large prediction horizons. Asymptotic
stability is analyzed in a second step. This scheme is inspired
by promising complexity reduction results for LTI systems in
Grieder, Parillo, and Morari (2003) and Grieder and Morari
(2003).

4.2.1. Constraint satisfaction
If (3) is solved via multi-parametric programming

for any prediction horizon N ′ with set constraints x1 ∈
KPWA

N (OPWA∞ ) and xN ′ ∈ Tset = Rn, the resulting MPC
controller will guarantee that the state will remain within
KPWA

N (OPWA∞ ) for all time. The set OPWA∞ is computed
as described by Algorithm 3.1 and KPWA

N (OPWA∞ ) is ob-
tained by applying Algorithm 4.1. The set constraint on the
first step guarantees that the resulting controller partition
will be positive invariant, which directly implies feasibility
for all time (Blanchini, 1999; Kerrigan, 2000). Note that
this allows us to control large volume setsKPWA

N (OPWA∞ )

with short prediction horizons N ′, i.e., N ′>N . We will
henceforth assume N ′ = 1, N → ∞ and refer to the pro-
posed controller as one-step controller. Note that in the
examples provided in Section 5.1, the set KPWA

∞ (OPWA∞ )

was always finitely determined. This is not always the case
such that in practice it is advisable to limit N to be a large
but finite value.
Since the target setKPWA

∞ (OPWA∞ )=⋃

c∈{1,...,C}K
c
∞ is

non-convex in general (i.e., a union of C polytopesKc
∞) a

controller partition can be obtained by solving a sequence of
C ·D multi-parametric programs (3), whereD corresponds to
the total number of different dynamics. Specifically, the one-
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Fig. 2. Illustration of Algorithm 4.2. (a) Identify dynamics Di containing the state. (b) Identify feasible controller set Xiter
j containing the state that has

the smallest value for iter. (c) Extract controller partition {Piter
j,r }Rr=1 associated to feasible set Xiter

j and identify region Piter
j,r containing the state.

step controller can be obtained by solving C · D problems
(3) for N ′ = 1 with x1 ∈ Tset = Kc

∞ in (3c) (C different
sets) and for D different dynamics in (3d).

4.2.2. Stability analysis
The controller partition obtained in Section 4.2.1 will gen-

erally contain overlaps such that the closed-loop dynamics
associated with a given state x(0) may not be unique. It
is therefore not possible to perform a non-conservative sta-
bility analysis of the closed-loop system. However, by us-
ing the PWA value function J ∗

N(x) in (3a) as a selection
criterion, it is possible to obtain a non-overlapping parti-
tion (Grieder, Kvasnica, Baotić, & Morari, 2003 or Borrelli,
2003, pp. 158–160) by solving a number of LPs, i.e., only
the cost optimal controller is stored.
The resulting controller partition is invariant and a unique

controller region r (x ∈ Pr , u = Frx + Gr ) and unique
dynamics l (x ∈ Dl) is associated with each state x, i.e.,
the closed-loop system corresponds to an autonomous PWA
system

xk+1 = (Al + BlFr)xk + BlGr + fl, xk ∈ Pr ∩ Dl (6a)

=Ãrxk + f̃r , xk ∈ Pr . (6b)

Since every controller region Pr is only contained in one
unique dynamic Dl , the update matrix Ãr and vector f̃r are
uniquely defined. In the following, it can now be shown how
to formulate the search for a PWA Lyapunov function for
autonomous PWA systems as a linear program (LP).
It was shown how to use semi-definite programming

(SDP) to compute piecewise quadratic (PWQ) Lyapunov
functions for continuous-time PWA systems in Johansson
and Rantzer (1998) and for discrete-time PWA systems in
Ferrari-Trecate, Cuzzola, Mignone, and Morari (2002) and
Grieder, Lüthi, Parillo, and Morari (2003). The search for
a PWQ Lyapunov function is conservative, since the SDP
formulation is based on the S-procedure, which is not loss-
less for the cases considered (Boyd et al., 1994). Therefore,
instead of searching for a PWQ Lyapunov function via SDP,
we here show how to compute a PWA Lyapunov function
via LP. The proposed scheme is based on results for con-

tinuous time systems which were published in Johansson
(2001).
The computation scheme for the PWA Lyapunov function

is non-conservative (i.e., if a PWA Lyapunov function exists
for the given partition, it will be found) such that it may suc-
ceed when no PWQ Lyapunov function can be found with
the schemes in Ferrari-Trecate et al. (2002) and Grieder et
al. (2003). However, the converse is also true (see survey
Biswas, Grieder, Löfberg, & Morari, 2005 for details). Fur-
thermore, the value function associated with a mpLP con-
troller partition is PWA, such that this function type is a nat-
ural candidate in the search for a Lyapunov function. The
following theorem is based on Vidyasagar (1993, p. 267)
and Ferrari-Trecate et al. (2002):

Theorem 4.2 (Asymptotic stability). The origin x = 0 is
asymptotically stable on the set X if there exists a function
V (x) and scalar coefficients "> 0, #> 0, $> 0 such that:
#‖xk‖!V (xk)!"‖xk‖ and V (xk+1) − V (xk)" − $‖xk‖,
∀xk ∈ X and V (x) = ∞, ∀x /∈X. The successor state xk+1
is defined in (6b), ‖ ·‖ denotes a vector norm andX denotes
the state space of interest.

In order to pose the problem of finding a PWA Lyapunov
function without introducing conservative relaxations, a re-
gion transition map is created. Specifically, a transition map
S is created according to

S(i, j) =
{

1 if ∃xk ∈ int(Pi ), s.t. xk+1 ∈ Pj ,

0 otherwise,

where xk+1 is defined by (4) and Theorem 2.1 and int(·)
denotes the strict interior of a set.

Remark 6. In principle, one LP needs to be solved for each
element of the transition map S, i.e., a total of R2 LPs,
where R denotes the total number of system dynamics. How-
ever, instead of solving LPs directly, it is advisable to first
compute bounding boxes (hyper-rectangles) for each region
Pr (r ∈ R). In addition, a bounding box of the affine map
of the region P+

r = {Ãrx + f̃r ∈ Rn|x ∈ Pr} needs to be
computed. The number of LPs which need to be solved in
order to compute the bounding boxes is linear in the number



1690 P. Grieder et al. / Automatica 41 (2005) 1683–1694

of regions R and state space dimension n. This computation
is tractable even for very complex partitions. The bounding
boxes can be efficiently checked for intersections, such that
certain transitions i → j can be ruled out. In our experi-
ence, the bounding box implementation is the most effective
way to computeT for complex region partitions.

In a second step, the polytopic transition sets Pij

for system (6b) are explicitly computed ∀i, j ∈ {i, j ∈
{1, . . . , R}|S(i, j) = 1} according to:
Pij = {xk ∈ Rn|xk ∈ Pi , xk+1 ∈ Pj }.
IfS(i, j)=0, we can directly setPij =∅. Subsequently, the
vertices of the transition sets (vert(Pij )) and the controller
sets (vert(Pi )) are computed. The problem of finding a PWA
Lyapunov function,

PWAi (x) = Lix + Ci if x ∈ Pi , i = 1, . . . , R,

for the autonomous PWA system (6b) such that the condi-
tions in Theorem 4.2 are satisfied can now be stated as

#‖x‖1!PWAi (x)!"‖x‖1, ",#> 0, (7a)

PWAj (xk+1) − PWAi (xk)"$‖xk‖1, $< 0, (7b)

∀x ∈ vert(Pi ) ∀xk ∈ vert(Pij ) ∀i, j ∈ {1, . . . , R}. (7c)

Since the vertices of all sets Pi and Pij are known, the re-
sulting problem is linear in Li, Ci, ",#,$ and can therefore
be solved as an LP.

Theorem 4.3. If the LP (7) associated with the autonomous
PWA system (6b) is feasible, then this system is asymptoti-
cally stable.

Proof. Since the function PWAi (x) is PWA, it follows that
satisfaction of (7a) for all vertices of Pi implies that the
inequalities in (7a) will also hold ∀x ∈ Pi . Furthermore, if
(7b) holds for all vertices ofPij , it follows from linearity of
the system dynamics (6b) that the inequality will hold for all
states x ∈ Pij . Since the partitionFN is invariant, it follows
thatFN = ⋃

i∈{1,...,R}Pi = ⋃

i,j∈{1,...,R}Pij . Therefore, the
inequalities in (7a) and (7b) hold ∀x ∈ FN such that the
conditions in Theorem 4.2 are satisfied, i.e., feasibility of (7)
implies asymptotic stability of the autonomous PWA system
(6b). $

It should be noted that the required computation time may
become large because of the extensive reachability analysis,
vertex enumeration and size of the final LP. Specifically,
the LP (7) introduces one constraint for each vertex of each
region Pr , ∀r ∈ {1, . . . , R} (see (7a)) and one constraint
for each vertex of each Pij , ∀i, j ∈ {1, . . . , R} (see (7b)).
The number of variables is (n + 1)R, where R denotes the
number of regions and n the state space dimension.
However, in the authors experience (Biswas et al., 2005),

stability analysis problems for a couple of hundred regions

in a state space dimension of less than five are tractable
and the necessary computation effort is comparable to the
approaches in Ferrari-Trecate et al. (2002) and Grieder et al.
(2003).

4.2.3. One-step controller computation
The one-step control scheme utilizes tools from invariant

set computation and stability analysis in order to compute
controllers with small prediction horizons which guarantee
constraint satisfaction as well as asymptotic stability. The ba-
sic procedure consists of two main stages. In the first stage,
a one-step optimal controller is computed which guarantees
constraint satisfaction for all time (Section 4.2.1). Since con-
straint satisfaction does not imply asymptotic stability, it is
necessary to analyze the stability properties of the closed-
loop system in a second stage (Section 4.2.2). Specifically,
the algorithm works as follows.

Algorithm 4.3. Computation: one-step controller

(1) Compute the invariant set OPWA∞ around the origin
and an associated Lyapunov function as described by
Algorithm 3.1.

(2) Compute the set KPWA
N (OPWA∞ ) = ⋃

c∈{1,...,C} K
c
N

(N → ∞) by applying Algorithm 4.1.
(3) Solve a sequence of C · D mpLPs (3) for prediction

horizon N ′ = 1 with Tset = Kc
N , ∀c ∈ {1, . . . , C} in

(3c) and affine dynamics d ∈ {1, . . . , D} in (3d).
(4) Remove the region overlaps by using the PWA value

function as a selection criterion (see Baotić & Torrisi,
2003; Borrelli, 2003 for details).

(5) Attempt to find a PWA Lyapunov function by solving
the LP (7) or attempt to find a PWQ Lyapunov function
as described in Grieder et al. (2003).

There is no guarantee that step 2 of Algorithm 4.3 will
terminate in finite time or that a Lyapunov function can be
found in step 5. The finite time termination conditions are
discussed in Remark 4. If no Lyapunov function is found,
the resulting controller is still guaranteed to satisfy the sys-
tem constraints for all time, but no proof of asymptotic sta-
bility can be given. Note that this does not imply that the
closed-loop system is unstable, it merely shows that no PWA
Lyapunov function exists for the given partition.

Theorem 4.4. If the stability analysis in Step 5 of Algorithm
4.3 is successful and the feedback law obtained in Step 4 is
applied to system (4) in a RHC fashion, then the closed-loop
system is exponentially stable on KPWA

N (OPWA∞ ) and the
system constraints are satisfied for all time.

Proof. The partition computed in Step 4 is invariant by con-
struction, hence constraint satisfaction is guaranteed. Expo-
nential stability follows trivially from the successful stability
analysis in Step 5. $
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Table 1
Off-line CPU-time t and number of controller regions #R for different algorithms

Algorithm 4.1 Algorithm 4.3 Algorithm [3]

t #R t #R t #R

Example 1 1153 s 1519 286 s 522 ! !

The ! denotes that the computations were not completed after 7 days. The computation was run on a 2.8GHz Pentium IV CPU running the Windows
version of MATLAB 6.5 along with the NAG foundation LP solver.

Remark 7. If the stability analysis in Step 5 of Algorithm
4.3 fails, it is advisable to recompute the controller in Step 3
using different weights R, Q, Qf and/or a different predic-
tion horizon N ′ in (3). Slight modifications in these param-
eters may make the subsequent stability analysis in Step 5
feasible. We have observed that large weights on the states
(i.e., Q, Qf large) and a larger prediction horizon N ′ have
a positive effect on the likelihood of success.

5. Numerical examples

5.1. Controller computation

As was shown in Grieder and Morari (2003) and Grieder
et al. (2003) and will also be illustrated in this section, algo-
rithms of type 4.1 and 4.3 generally yield controllers of sig-
nificantly lower complexity than those which are obtained
if a linear norm-objective is minimized as in (3) (Baotić et
al., 2003a,b).

Example 1. Consider the three-dimensional PWA system
introduced in Mayne and Raković (2003), with x(k + 1) =
f 1(x(k)) if x2(k)"1 and x(k + 1) = f 2(x(k)) otherwise:

f 1(x) =
[1 0.5 0.3
0 1 1
0 0 1

]

x(k) +
[0
0
1

]

u(k),

f 2(x) =
[1 0.2 0.3
0 0.5 1
0 0 1

]

x(k) +
[0
0
1

]

u(k) +
[0.3
0.5
0

]

.

Subject to constraints −10"x1(k)"10, −5"x2(k)"5,
−10"x3(k)"10, and −1"u(k)"1. The weights in the
cost function are Q = I , R = 0.1.

Once the set OPWA∞ is computed, Algorithms 4.1 and 4.3
are applied to Example 1. A runtime comparison of the com-
putation procedures as well as complexity of the resulting
solutions are reported in Table 1. Even though the proposed
computation schemes are significantly more efficient than
existing approaches, it is easy to come up with examples
where the associated computation time is prohibitive.
In order to compare low complexity control strategies

discussed in this paper with the cost-optimal approach of
Baotić et al. (2003b), we generated 10 random PWA sys-
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Fig. 3. Complexity and runtime for 10 random PWA systems. (a) Number
of regions generated by different algorithms. (b) Runtime for different
algorithms.

tems with two states, one input and four PWA dynamics.
All elements in the state space matrices were assigned ran-
dom values between [−2, 2] (i.e., stable and unstable sys-
tems were considered). Each of the random PWA systems
consists of four different affine dynamics which are defined
over non-overlapping random sets whose union covers the
squareX=[−5, 5]×[−5, 5]. The origin was chosen to be on
the boundary of multiple dynamics. All simulation runs as
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Fig. 4. Complexity and runtime versus size of exploration space (aver-
age over 10 random PWA systems). (a) Number of regions vs. size of
exploration space. (b) Runtime vs. size of exploration space.

well as the random system generation was performed with
the MPT toolbox (Kvasnica, Grieder, & Baotić, 2004).
Algorithms 4.1 and 4.3, as well as the cost-optimal strat-

egy of Baotić et al. (2003b) were applied to these systems.
Complexity of the resulting solution and run time of each
algorithm are depicted graphically in Figs. 3(a) and (b).
To further investigate the behavior of different control

strategies, another test on a set of 10 random PWA systems
was performed to show how the complexity of Algorithms
4.1 and 4.3 scales with increasing volume of the explo-
ration space. A comparison with the approach in Baotić et
al. (2003b) is depicted in Figs. 4(a) and (b). For the random
systems considered here, the necessary runtime is reduced
by two orders of magnitude and the solution complexity is
reduced by one order of magnitude, on average. In addition,
these differences become larger with increasing size of the
state constraints. Although we have not come across any ex-
amples where the proposed schemes are inferior to the ap-

proaches in Borrelli et al. (2003) and Kerrigan and Mayne
(2002), we are not able to prove that no such cases exist.
Due to space constraints, we refer the reader to Grieder

(2004) for a more comprehensive comparison between the
algorithms.

6. Conclusion

A scheme to compute terminal sets (along with the asso-
ciated ‘cost-to-go’) for generic PWA systems was presented,
which may be used in the context of receding horizon control
to obtain asymptotic stability guarantees for the closed-loop
system. These sets are subsequently used to derive two novel
algorithms to compute low complexity feedback controllers
for constrained PWA systems. Both controllers guarantee
constraint satisfaction for all time as well as asymptotic sta-
bility. The computation scheme iteratively solves a series of
multi-parametric programs such that a feedback controller is
obtained which drives the state into a target set in minimum
time. As a side product, a search tree for efficient on-line
identification of the optimal feedback law is automatically
constructed. A second computation scheme (referred to as
one-step control) is also presented, which separately deals
with the requirement of constraint satisfaction and asymp-
totic stability. In the one-step scheme, stability is not en-
forced but merely verified a posteriori. While the resulting
controller is of even lower complexity than the minimum-
time controller, there is no a priori guarantee that the closed-
loop system will be asymptotically stable. In order to ana-
lyze stability, the paper introduces a method of computing
PWA Lyapunov functions for a given autonomous PWA sys-
tem. The proposed method is based on linear programming
and is guaranteed to find a PWA Lyapunov function for a
given partition, if it exists.
In an extensive case study, it is observed that both al-

gorithms reduce complexity versus optimal controllers
(Borrelli et al., 2003; Kerrigan & Mayne, 2002) by sev-
eral orders of magnitude. The proposed procedures make
problems tractable that were previously too complex to be
tackled by the methods in Borrelli et al. (2003) and Kerrigan
and Mayne (2002). Although we have not come across any
examples where the proposed schemes are inferior to the
approaches in Borrelli et al. (2003) and Kerrigan and Mayne
(2002), we are not able to prove that no such cases exist.
The presented algorithms are contained in the MPT tool-

box (Kvasnica et al., 2004) http://control.ee.ethz.ch/∼mpt.
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a b s t r a c t

This paper presents a solution method for parametric linear complementarity problems (PLCP) that
relies on an enumeration technique to discover all feasible bases. The enumeration procedure is based
on evaluating all possible combinations of active constraints and testing for feasibility. Although the
enumeration approach is known to grow exponentially in the number of constraints, the formulation
of the PLCP allows incorporation of cheap rank tests to quickly prune the infeasible directions in
the exploration. The motivation for the development of the enumeration based PLCP solver is that it
represents a direct method to solve parametric linear and quadratic optimization problems as well as
their mixed-integer counterparts. These types of problems often arise in the field of model predictive
control for linear and hybrid systems. The enumeration based PLCP solver offers another alternative to
compute explicit solutions in the field of hybrid model predictive control that can be extremely effective
in some important cases.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Hybrid model predictive control (MPC) represents a successful
approach to tackle constrained control problems that involve
logical decisions (Bemporad &Morari, 1999). The leading idea here
is to employ optimization tools that provide effective solutions
to control problems involving binary variables. For special classes
of hybrid control problems it has been shown in Borrelli (2003)
that the resulting optimization problems can be solved explicitly
by employing parametric programming techniques. In particular,
these problems are referred to as parametric mixed-integer
linear programs (PMILP) and parametric mixed-integer quadratic
programs (PMIQP).
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Agency of the Slovak Republic under the grant 1/0403/15, and the financial support
of the Slovak Research and Development Agency under the project APVV 0551-
11. The material in this paper was not presented at any conference. This paper
was recommended for publication in revised form by Associate Editor Martin Guay
under the direction of Editor Ian R. Petersen.

E-mail addresses: herceg@control.ee.ethz.ch (M. Herceg), colin.jones@epfl.ch
(C.N. Jones), michal.kvasnica@stuba.sk (M. Kvasnica), morari@control.ee.ethz.ch
(M. Morari).

In the literature Borrelli, Bemporad, and Morari (2014, Ch. 18),
there are two main approaches that solve mixed-integer paramet-
ric problems. In the batch approach, the idea is to employ a branch
and bound strategy to decompose the problem into sequences
of simpler parametric linear problems (Acevedo & Pistikopou-
los, 1997; Dua, Bozinis, & Pistikopoulos, 2002; Dua & Pistikopou-
los, 2000). In the recursive approach, the optimization problem is
solved recursively in a dynamic programming fashion. For a de-
tailed overview of methods to parametric programming problems,
the reader is referred to the survey (Pistikopoulos, Dominguez,
Panos, Kouramas, & Chinchuluun, 2012).

The majority of developed strategies for solving parametric
optimization problems directly avoids the complete enumeration
approach because in the worst case it may require exploring all
possible combinations of active constraints. Despite this fact, there
have been research efforts that explore enumerative approaches
in recent years. In particular, Gupta, Bhartiya, and Nataraj (2011)
present the enumerative approach to solve parametric quadratic
problems (PQP), which features pruning of combinations in
infeasible directions. The enumerative PQP algorithm has been
improved in Feller, Johansen, and Olaru (2013) by employing
symmetry properties of MPC formulations. Furthermore, in Feller
and Johansen (2013) it has been shown on a case study with 82
parameters that this approach can be a viable method to solve
simple input–output constrained MPC problems explicitly.

http://dx.doi.org/10.1016/j.automatica.2015.09.019
0005-1098/© 2015 Elsevier Ltd. All rights reserved.
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The motivation in this work is to extend the enumerative
algorithm of Gupta et al. (2011) to the linear complementarity
problem (LCP) framework because it represents a superclass for
parametric linear and quadratic problems (Murty, 1997) and
includes their mixed-integer forms. While in the literature there
can be found methods to tackle general LCPs without restrictive
assumptions on the structure (Al-Khayyal, 1987; De Schutter & De
Moor, 1995; Júdice, 2012; Moort, Vandenberghe, & Vandewalle,
1992; Pardalos & Rosen, 1988; Sherali, Krishnamurthy, & Al-
Khayyal, 1998) there is a lack of approaches to solve general PLCPs.
The lexicographic extension of Lemke’s method for convex PLCPs
has been studied by Columbano, Fukuda, and Jones (2009) and
Jones and Morari (2006) and the latest implementation of the
algorithm is available in the Multi-Parametric Toolbox (Herceg,
Kvasnica, Jones, & Morari, 2013). The extension to general PLCPs
has been proposed in Li and Ierapetritou (2010)where the problem
is transformed into a parametric mixed-integer optimization
problem and solved using multiparametric techniques.

The interest here is to present an enumeration based PLCP
solver that can handle general PLCPs and test its applicability to a
hybridMPC problem. In particular, it will be shown that the hybrid
MPC problem can be formulated as PLCP and solved explicitly.
The algorithm has been implemented in MPT3 and the readers are
welcome to download the toolbox and to experiment with some of
the hybrid MPC examples.

The first part of the paper presents the PLCP problem and
its relationship with PMILP/PMIQP is highlighted. The second
part presents the main algorithm and analyzes its properties.
Subsequently, the example section shows the performance of
the algorithm on two MPC examples. Based on these results,
concluding remarks are given in the final section of the paper.

2. Notation and definitions

For a finite set I , |I| denotes its cardinality. For a real matrix C 2
Rm⇥n and the index set I ✓ {1, . . . ,m}, we denote by CI,⇤ 2 R|I|⇥n

thematrix formed by rows of C indexed by I . If J ✓ {1, . . . , n}, then
CI,J 2 R|I|⇥|J| denotes the submatrix of C formed by rows indexed
by I and columns indexed by J . Similarly, the matrix C⇤,J 2 Rm⇥|J|

is formed from C taking all rows and columns indexed by the set J .
If c 2 Rn is a vector, then cJ is the vector formed by the elements
of c in J . The identity matrix with dimension n is denoted as In.

A polyhedron P = {✓ 2 Rd | L✓  l} is a convex set given
as the intersection of a finite number of closed halfspaces and a
polytope is a bounded polyhedron. The polyhedron is called full-
dimensional if there exists a d-dimensional ball with a positive
radius contained inP andno (d+1)-dimensional ballwith positive
radius contained in P .

3. Problem formulation

3.1. Parametric linear complementarity problem

Consider the following PLCP

8✓ 2 ⇥ find w, z (1a)
s.t.: w �Mz = q + Q ✓ , (1b)

wT z = 0, (1c)
w, z � 0, (1d)

where the problem data is given by a real matrix M 2 Rn⇥n, real
vector q 2 Rn, and real matrix Q 2 Rn⇥d. The w 2 Rn and z 2 Rn

are the decision variables and ✓ 2 Rd is the vector of parameters
that is restricted to lie in a full-dimensional polytope ⇥ (1a). The
relation (1c) corresponds to a linear complementarity constraint

where for each pair of variables wi and zi, one must be zero for the
condition to hold.

Using the substitution A = [In,�M], x = [wT , zT ]T , the
problem (1) can be rewritten in a more compact form

8✓ 2 ⇥ find x (2a)
s.t.: A⇤,BxB = q + Q ✓ , (2b)

xN = 0, (2c)
xB � 0 (2d)

where the index set B ⇢ {1, . . . , 2n} is given such that |B| = n
and rank(A⇤,B) = n. The set B is referred to as a basis, and its
complement isN = {1, . . . , 2n}\B. The variables xB corresponding
to the basis B are denoted as basic, and to xN as non-basic. The basis
B is called complementary if the complementarity condition (1c)
holds, that is for any index i 2 {1, . . . , 2n}, i is in the basis B if and
only if its complement ī = (i + n)mod 2n is not. The importance
of the formulation (2) is that the complementarity condition (1c)
is no longer present in (2) but it has been encoded with respect to
the complementary basis B.

If the solution of linear equations (2b) in the basic variables, i.e.

xB = A�1⇤,B(q + Q ✓), (3)

is nonnegative for some ✓ , then the complementary basis B is called
feasible. The set of parameters for which xB � 0 then forms the
critical region PB

PB = {✓ 2 ⇥ | �A�1⇤,BQ ✓  A�1⇤,Bq}, (4)

in which the affine solution map ✓ 2 Rd 7! x 2 R2n is given by
✓
xB
xN

◆
=

✓
A�1⇤,BQ

0

◆
✓ +

✓
A�1⇤,Bq
0

◆
if ✓ 2 PB. (5)

Every feasible basis leads to a critical region (4) in the parameter
space⇥ . The union of all critical regions forms the explicit solution
to the problem (2). For practical reasons, only the non-empty and
full-dimensional regions are considered as a part of the solution.

In the next section we provide an algorithm to solve (1) for the
following four types of optimization problems that often arise in
the formulation of linear and hybrid model predictive control:

• Parametric linear program (PLP)
• Parametric quadratic program (PQP)
• Parametric mixed-integer linear program (PMILP)
• Parametric mixed-integer quadratic program (PMIQP).

In this work it is assumed that the matrix M in (1) encodes
above optimization problems and the recentmethods developed in
Columbano et al. (2009), Herceg et al. (2013) and Jones and Morari
(2006) do not apply in this general setting. The objective of the
next section is to derive the PLCP representation (1) for all four
aforementioned optimization programs.

3.2. Relation to mixed-integer linear/quadratic program

The common representation of PLP/PQP/PMILP/PMIQP prob-
lems can be put in the form

min
u

1
2
uTHu + (F✓ + f )T u (6a)

s.t.: Gu  g + D✓ , (6b)
u � 0, (6c)
uIb 2 {0, 1}nb (6d)

where the problem data is given by H ⌫ 0, H 2 Rnu⇥nu , F 2 Rnu⇥d,
f 2 Rnu in the objective function (6a) and G 2 Rm⇥nu , g 2 Rnu ,
D 2 Rm⇥d in the constraints (6b). The decision variables u 2 Rnu
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are restricted to be nonnegative by (6c) and some of the variables,
indexed by the set Ib, can belong to a binary set (6d) with the
cardinality nb. The problem is parameterized in the parameters
✓ 2 Rd which are restricted to a bounded polytope ⇥ .

The formulation (6) corresponds to a PMIQP. If there is no binary
set Ib present, the problem represents a convex PQP becauseH ⌫ 0.
One can easily check that if the matrix H = 0, the formulation
reduces to a PMILP. In case there are no binary variables andH = 0,
the problem formulation (6) results in a PLP.

Define by Ir the index set of variables that correspond to
continuous elements of the vector u with the cardinality nr = |Ir |.
Furthermore, by v 2 Rnu and s 2 Rm we denote the additional
slack variables that help to formulate the PLCP.

It has been shown in Audet, Hansen, Jaumard, and Savard
(1997), De Schutter, Heemels, and Bemporad (2002), Judice and
Mitra (1988) and Pardalos (1994) that the binary variables (6d) can
be encoded as the linear complementarity constraint (1c) with the
help of slack variables vIb as follows:

vIb + uIb = 1, (7a)

vT
IbuIb = 0, (7b)

vIb , uIb � 0. (7c)

Practically, the constraint set (7) describes an LCP that captures
all possible combinations of binary variables uIb and therefore is
of combinatorial nature. For example, in the case of five elements
in the binary set |Ib| = 5, the feasible set comprises of 25 = 32
different combinations where the values of uIb are fixed.

The specificity of the problem (6) is that for a fixed value of
binary variables uIb , the structure results in a convex program for
which one can derive the optimality conditions

s =� G⇤,IbuIb � G⇤,Ir uIr + g + D✓ � 0 (8a)

vIr =1
2
(HT

Ib,Ir + HT
Ir ,Ib)uIb + HIr ,Ir uIr + · · ·

+ (FIr ,⇤✓ + fIr ) + GT
Ir ,⇤� � 0 (8b)

0 =vT
Ir uIr + sT� (8c)

where � 2 Rm denotes Lagrange multipliers for the inequality
constraints. Although the conditions (8) characterize the solution
of the convex subproblem, the inclusion of the complementarity
constraints (7) defines the feasible set of the original, non-convex
problem (6) for all possible combinations of the binary variables.
Putting all relations (8) and (7) to a matrix form gives

 
vIb
vIr
s

!

| {z }
w

�

0

B@

�Inb 0 0
1
2
(HT

Ib,Ir + HT
Ir ,Ib) HIr ,Ir GT

Ir ,⇤
�G⇤,Ib �G⇤,Ir 0

1

CA

| {z }
M

 uIb
uIr
�

!

| {z }
z

=
 1
fIr
g

!

| {z }
q

+
 0
FIr ,⇤
D

!

| {z }
Q

✓ , (9a)

vT
IbuIb + vT

Ir uIr + sT� = 0, (9b)

vIb , vIr , uIb , uIr , s, � � 0, (9c)
✓ 2 ⇥, (9d)

which corresponds to the PLCP formulation (1) with new variables
w 2 Rnu+m and z 2 Rnu+m. Note that the non-convexity of
the original problem (6) has been transformed to the indefinite
matrixM in (9a) with nb negative eigenvalues because of negative
identity matrix that resides on the diagonal ofM . Hence, the single
PLCP formulation (9) encompasses all four PLP/PQP/PMILP/PMIQP

optimization problems (6). In the case of PMILP/PMIQP, the
feasible set is built from all admissible combinations of binary
variables that give the objective function (6a) different values. The
optimal solution to the problem (6) corresponds to a particular
combination of decision variables (9) with the minimum cost
function (6a).

Remark 1. Problem formulations with equality constraints can be
transformed to (6) with the help of auxiliary variables, see for
instance Boyd and Vandenberghe (2004) for reference.

4. Enumeration-based solution approach

In this section we show how to synthesize the explicit solution
to (1), i.e., to find all full-dimensional critical regions (4) alongwith
the associated affine solution maps (5). The proposed approach
is based on enumerating feasible complementary bases, coupled
with pruning of infeasible combinations. The first part of this
section presents sequential generation of all possible combinations
of bases. In the second part the main algorithm will be introduced
that identifies the feasible bases. Finally, the third part investigates
the complexity properties of the algorithm.

4.1. Generation of bases

Every complementary basis B in the PLCP problem (2) is
characterized by a pair of basic variables xB and nonbasic variables
xN such that the complementarity constraint (1c) is satisfied.While
the basic variables are restricted to be nonnegative, the nonbasic
variables are fixed to zero, i.e., xN = 0. The formulation (2)
represents the PLP and it is essentially a subproblem of (1)
for a fixed basis B. Hence, the implicit enumeration strategy of
Gupta et al. (2011) can be applied here to generate sequences of
complementary bases. The main idea in the enumeration strategy
is to consecutively test each row of (2b) constraint to check which
column index forms a feasible (3) or infeasible basis.

Denote by i 2 {1, . . . , n} the ith constraint row of (2b).
From a complementarity condition (1c) it follows that for a single
constraint either the column index i belongs to the basis, or its
complement ī = i + n. In this manner one can generate partial
complementary bases B0 starting from the index 1 as follows

i S 0 = {B0, . . .}
{1} {{1}, {n + 1}}

{1, 2} {{1, 2}, {1, n + 2}, {n + 1, 2}, {n + 1, n + 2}}
. . . . . .

Define the logical function that operates over the partial comple-
mentary bases B0

F (B0) =

8
><

>:

1 if 9x � 0, ✓ 2 ⇥ s.t.
Ax = q + Q ✓
xB0 � 0, xN 0 = 0

0 otherwise

(10)

where N 0 denotes the set of complementary indices to B0. The
function (10) evaluates to F (B0) = 1 if and only if the partial
complementary basis B0 is feasible. The evaluation of (10) requires
solving a feasibility LP with x and ✓ as decision variables.

The objective of the enumeration strategy is to organize the
feasibility checks in a tree such that not all partial complementary
bases B0 will be tested, and therefore avoiding the exploration of 2n

combinations. The pruning part is covered by the following lemma
which is introduced without the proof because it is an obvious
consequence of Theorem by Gupta et al. (2011).

Lemma 2. If F (B0) = 0, then F (B0 [ i) = 0 and F (B0 [ i + n) =
08i 2 ({1, . . . , n} \ B0).
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Fig. 1. Generation of basis candidates starting from the constraint index i = 1. If
the set B0 results in an infeasible basis, then all its children are discarded from the
tree.

Generation of partial complementary bases and applying the
Lemma 2 lead to a tree structure. An example of such a tree with
the starting index i = 1 to n is depicted in Fig. 1. The details of the
proposed enumeration algorithm are revealed next.

4.2. The enumerative algorithm

The main contribution of this paper is summarized by the
following theorem:

Theorem 3. Consider the PLCP (1) with the problem data M, q, Q ,
and a full-dimensional polytope ⇥ . The Algorithm 1 finds all feasible
bases that define the solution given by (5).

Proof. The algorithm proceeds consecutively from the first row
of (2) to the last row and generates all possible combinations of
partial complementary bases B0 as shown graphically in Fig. 1. If
the partial complementary basis B0 evaluates (10) to 0, i.e.F (B0) =
0, then a superset of partial complementary bases containing B0
remains infeasible and according to Lemma 2 can be pruned.
Thus, only the set of partial feasible bases T = {B0, . . .} is then
carried over to a next iteration and therefore only feasible bases
are returned by the algorithm. ⇤

Algorithm 1 Enumeration based algorithm to solve PLCP (1).
Input: PLCP input dataM , q, Q , and ⇥
Output: Feasible bases S = {B1, B2, . . .}

1: S = ;
2: for i = {1, . . . , n} do
3: T = ;
4: for each B 2 S do
5: S 0 =

�
{B, i}, {B, i + n}

 

6: for each B0 2 S 0 do
7: if rank(A⇤,B0) = i then
8: if F (B0) = 1 then
9: T  {T , B0}

10: end if
11: end if
12: end for
13: end for
14: S = T
15: end for

The enumeration-based PLCP algorithm is shown in Algo-
rithm 1. The inputs are given by the problem data M , q, Q , and ⇥
of PLCP (1). The algorithm loops sequentially through each equality
constraint in (2b) which is evident at the line 2. The partial com-
plementary bases B0 are generated at the line 5 to form the set S 0.
After the bases generation, each of the new partial complementary
basis B0 is added to a list T = {T , B0} only if F (B0) = 1 is feasible
by (10), which is the pruning part located at lines 6–12.

An important part of the Algorithm 1 is the pruning condition
located at the line 7. It is derived from (10) and it corresponds to
an invertibility requirement for the related linear system (3). This

condition is crucial in the enumeration approach because the rank
test is computationally simpler and can be executed faster than
solving the feasibility problem in (10).

The output from the Algorithm 1 represents a set S of feasible
bases for which there exist a critical region (4) and solution (5).
For simplicity, the construction of the critical regions (4) and the
associated solution maps (5) is not the part of Algorithm 1. The
explicit solution but can be efficiently constructed, analyzed, and
evaluated given the problem dataM , q,Q ,⇥ , and the set of feasible
bases S inside, for example, the Multi-Parametric Toolbox (Herceg
et al., 2013).

4.3. Properties of the enumerative PLCP algorithm

The finite termination of Algorithm 1 follows from the finite
number of combinations to explore. Given the dimension n, there
exist 2n possible combinations to explore which gives worst-case
exponential complexity. Even if some of the possible combinations
will be pruned, it still does not change the fact that the algorithm
has a worst-case exponential complexity. It should be noted that
the worst case complexity relates to the number of equality
constraints n in (2b) and not the dimension of the parameters
d. Therefore, the approach suits problems with high number of
parameters but rather small number of constraints.

Moreover, Algorithm 1 guarantees discovery of all feasible
bases because it evaluates all possible combinations and leaves no
space for unexplored regions. However, in practice it is desirable
to only keep critical regions which exhibit certain numerical
robustness, such as full dimensionality.

Algorithm 1 could be potentially improved in efficiency when
implementing the main pruning parts at the lines 7 and 8. It
is recommended to perform rank tests at the line 7 with high
precision and to employ an active set method to obtain reliable
infeasibility certificates at the line 8 for (10). The feasibility test can
be formulated in a way to determine if the constraints are strictly
or weakly active, as suggested by Gupta et al. (2011). An active set
method is also recommended in other enumerative approach of
Feller et al. (2013).

The innermost part of the algorithm (at the line 9) that carries
the partial feasible bases over iterations is critical for memory
footprint. It could be therefore of interest from an implementation
point of view to encode approaches with efficient basis storage.

5. Examples

We demonstrate the functionality of Algorithm 1 on two sets of
examples.

5.1. Hybrid MPC

The first example of Necoara et al. (2004) considers a regulation
problem of a PWA system that is comprised of four local models.
The MPC problem is given by

min
u0,...,uN�1

N�1X

k=0

(kQxkk22 + kRukk22) (11a)

s.t.: xk+1 =

8
><

>:

A1xk + Buk if E1xk � 0
A2xk + Buk if E2xk � 0
A3xk + Buk if E3xk � 0
A4xk + Buk if E4xk � 0

(11b)

xk 2 [�5, 5]⇥ [�5, 5], (11c)
uk 2 [�2, 2], (11d)
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Table 1
Explicit solution to the regulation problem (11) with varying horizon N .

N # binaries dim. of PLCP # LPs # of regions

1 4 42 1335 20
2 8 80 67575 222
3 12 118 4893984 1136

where Q = 10�4I2, R = 10�3 and the matrices of the system
dynamics are

A1 =
✓
0.5 0.61
0.9 1.345

◆
, A2 =

✓
�0.92 0.644
0.758 �0.71

◆
,

A3 = A1, A4 = A2,

E1 =
✓
�1 1
�1 �1

◆
, E2 =

✓
�1 1
1 1

◆
,

E3 = �E1, E4 = �E2.
The prediction horizon N 2 {1, 2, 3, 4} is varying in order
to construct PMIQPs of different size. The explicit solution for
each horizon has been computed using the enumerative PLCP
scheme of Section 4.2 and the results are reported in Table 1. The
combinatorial nature of the approach can be seen in the increasing
number of LPs to be checked, as indicated by the data in Table 1.

5.2. Comparison with alternative approaches

In this section we show how Algorithm 1 compares to other
methods for computing explicit solutions. We are specifically in-
terested in those methods that employ enumeration techniques,
such as the enumeration PQP approach of Gupta et al. (2011), and
geometric techniques, i.e. Baoti¢ (2002). By this comparison we
want to show a trend how this approach scales with the increasing
dimension of parameters for the two research directions in mul-
tiparametric solvers. We remark that both alternative techniques
can only be applied to solve PLPs/PQPs that arise as subproblems
of PMILPs/PMIQPs for a fixed value of binary variables, whereas Al-
gorithm 1 is applicable to PLCP/PMILP/PMIQP directly. From this
reason only convex PQPs are compared in the sequel.

The tests were performed by considering a PQP problem
constructed from the typical MPC setup of the form

min
u0,...,uN�1

xTNPxN +
N�1X

k=0

xTkQxk + uT
k Ruk (12a)

s.t.:xk+1 = Axk + Buk (12b)

xk 2 X, uk 2 U, (12c)

with x 2 Rnx , u 2 R, P = Q = Inx , R = 1, X = {x | �10 
xi  10, i = 1, . . . , nx}, and U = {u | �1  u  1}. The
prediction model in (12b) was obtained as a discrete-time version
(with sampling time of 1 s) of

G(s) = 1
(s + 1)nx

, (13)

with nx 2 {4, 6, 8, 10} and N 2 {2, 3}. The rationale behind such
a choice is to assess the performance of various parametric solvers
for varying dimensions of the parametric space and of the decision
space in (6). The runtime comparison was performed on an Intel
Core i7 1.7 GHz CPU running Matlab R2013a. All algorithms were
implemented using the Multi-Parametric Toolbox (Herceg et al.,
2013).

The obtained results are summarized in Table 2. Two main
conclusions can be drawn from the reported results. First, the

Table 2
Runtime in seconds of individual parametric solvers for a varying dimensionality of
the PQP problem (6).

N nx Runtime
(Baoti¢, 2002)

Runtime
(Gupta et al., 2011)

Runtime
Algorithm 1

2

4 0.8 0.7 0.6
6 2.1 1.7 1.0
8 14.3a 11.0 5.0

10 24.6a 18.3 8.0

3

4 1.1 1.2 1.1
6 4.9a 5.4 5.4
8 64.2a 81.4 40.1

10 181.8a 126.5 91.7
a Denotes an incomplete solution being generated by the corresponding solver

due to numerical problems.

parametric solver of Baoti¢ (2002), which uses a geometric-based
approach to exploration of active constraints, performs poorly
in cases where the dimension of the parametric space is large.
Specifically, once nx > 6, the solver always returned an incomplete
solution. This was due to the fact that high-dimensional geometric
problems (such as computing the centers of lower-dimensional
facets) could not be solved reliably even with state-of-the-art
solvers (GUROBI in this case). Moreover, the discussed parametric
solver was also the slowest one. The second main conclusion
is that the presented enumeration-based PLCP algorithm is, on
average, twice as fast as the enumeration method of Gupta et al.
(2011) for N = 2 and about 1.5 times faster for N = 3. The
reduced computational time can be attributed to a structure of
the LP in (10) that contains reduced system of inequalities due to
a transformation step from MPQP to PLCP. This also emphasizes
the fact that PLCP formulation can be more efficient than
tackling directly MPQP, specially if the transformation procedure
returns problem defined over reduced number of constraints. Both
Algorithm1aswell as themethodofGupta et al. (2011) scale rather
equally with increasing dimensionality of the parametric space.

6. Conclusions

In this paper an enumerative PLCP approach has been presented
to tackle optimization problems arising in hybrid MPC. The ad-
vantage of the underlying PLCP formulation is that a single algo-
rithm can be used to tackle four types of optimization problems:
PLP/PQP/PMILP/PMIQP. The enumeration-based algorithm is gen-
eral as it does not assume any specific properties of the structure of
the problem. Despite the combinatorial worst-case behavior in the
number of equality constraints of PLCP, the approach scales well
with increasing number of parameters in practice, as was docu-
mented by the case studies. The enumerative algorithm has been
implemented in the Multi-Parametric Toolbox and is thus avail-
able to the community. Any future extensions of the method could
focus on efficient strategies for pruning and basis generation that
involve large number of parameters.
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1. Introduction

Originated in the seminal work (Lyapunov, 1907), Lyapunov
stability stands as a fundamental concept in control theory (Loría &
Panteley, 2006). In stability analysis, a Lyapunov function is usually
of use to prove closed-loop stability, see Kalman and Bertram
(1960), Brayton and Tong (1979) and Molchanov and Pyatnitskiy
(1989). On the other hand, in control design, control Lyapunov
functions are usually employed to design stabilizing/robust
controllers, see among others (Khalil, 2002; Zubov & Boron, 1964).
Accordingly, whenever such control Lyapunov functions are used
in optimization based strategies, these should be chosen such
that the recursive feasibility and closed-loop stability are all
fulfilled. Different classes of control Lyapunov functions have been
proposed in control theory (Michel, Nam, & Vittal, 1984; Polanski,
1995). In the context of linear quadratic control, infinite/finite
quadratic cost functions usually serve as control Lyapunov
functions, as shown in Anderson and Moore (2007), Chmielewski

I The material in this paper was partially presented at the 8th IFAC Symposium
on Robust Control Design, July 8–11, 2015, Bratislava, Slovakia. This paper was
recommended for publication in revised form by Associate Editor Akira Kojima
under the direction of Editor Ian R. Petersen.

E-mail addresses: Ngocanh.Nguyen.rs@gmail.com (N.A. Nguyen),
Sorin.Olaru@centralesupelec.fr (S. Olaru), Pedro.Rodriguez@centralesupelec.fr
(P. Rodríguez-Ayerbe), michal.kvasnica@stuba.sk (M. Kvasnica).
1 Fax: +43 732 2468 6213.

and Manousiouthakis (1996) and Sznaier and Damborg (1987). In
particular, in linear model predictive control (MPC), such a control
Lyapunov function has been used to design robust controllers
to cope with polytopic uncertainties, leading to a linear matrix
inequality problem, see Kothare, Balakrishnan, and Morari (1996).
Polyhedral control Lyapunov functions have also been exploited in
several studies, e.g., Bitsoris (1988b), Bitsoris and Vassilaki (1995),
Blanchini (1994, 1995), Gutman and Cwikel (1987), Lazar (2010)
andVassilaki, Hennet, and Bitsoris (1988), since they lead to simple
design procedures, i.e., composed of linear constraints. Convex
piecewise affine control Lyapunov function for piecewise affine
systems has also been considered in Baotic, Christophersen, and
Morari (2006) and solved using dynamic programming, whichmay
be impractical if disturbances and uncertainties are considered.

It is worth emphasizing that the robust control design proposed
in Kothare et al. (1996) requires at each sampling time solving
a linear matrix inequality (LMI) problem, the online evaluation
thus becomes computationally demanding. Some improvements
of this method are presented in Cuzzola, Geromel, and Morari
(2002) and Wan and Kothare (2003). An effort to simplify this
complexity has been proposed in Kouvaritakis, Rossiter, and
Schuurmans (2000). However, this method can only guarantee
the positive invariance of the initially ellipsoidal feasible set
instead of asymptotic stability of the origin. Also, although the
number of LMIs is decreased, however, solving online an LMI
problem is still expensive in comparison to strict real-time
requirements. Some extensions of the latter method have been
proposed to reduce complexity, e.g., Khan and Rossiter (2012).

http://dx.doi.org/10.1016/j.automatica.2016.11.031
0005-1098/© 2016 Elsevier Ltd. All rights reserved.
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Note however that making use of degree of freedom nc is nothing
other than solving a finite horizon MPC problem. Also, in the
context of MPC, the optimal cost function usually serves as a
Lyapunov function, therefore minimizing a nominal cost function
as in this reference is meaningless, and robust stability is thus
guaranteed by the constraint set. Further, the pre-imposition on
the structure of controllers leads to conservativeness and possible
loss of recursive feasibility. An alternative robust MPC scheme
has been presented in Mayne, Seron, and Rakovi¢ (2005) to take
bounded additive disturbances into account. However, polytopic
uncertainties considerably increase its computational complexity
with respect to the prediction horizon. As an extension of this
method, parameterized tube MPC has recently been proposed in
Rakovic, Kouvaritakis, Cannon, Panos, and Findeisen (2012) to cope
with bounded additive disturbances. Although implicit controller
is computed based on its decomposed elements, the number of
decision variables is of order O(qN), with q to be the number of
vertices of the given disturbance set and N to be the prediction
horizon. As a consequence, accounting for polytopic uncertainty
makes the online computation much more demanding, as the
number of decision is of order O(qNpN), with p to be the number
of vertices of the given polytopic uncertainty set. Further, dealing
with tube cost function in this case becomes more complicated.

This paper proposes amethodwhich only requires resolution of
a linear programming problemat each sampling instant.Moreover,
unlike the method in Blanchini (1994), which guarantees robust
stability in the sense of Lyapunov (input-to-state stability),
this paper proves a more flexible result by guaranteeing that
the state converges to a given robust positively invariant set
(minimal/maximal robust positively invariant set) as time tends
to infinity. Note that such a constructed convex lifting is not a
control Lyapunov function, which represents a relaxation and a
supplementary degree of freedom with respect to the method in
Blanchini (1994). Finally, to our best knowledge, convex liftings
have never been used in control design and can be a valuable tool,
offering additional flexibility for the existing constrained control
methods.

2. Notation and definitions

Throughout this paper, N, N>0, R, R+ denote the set of
nonnegative integers, the set of positive integers, the set of real
numbers and the set of nonnegative numbers, respectively. For
ease of presentation, with a given N 2 N>0, by IN , we denote the
index set: IN := {i 2 N>0 : i  N}. Also, we use I

2
N
to denote the

set defined as: I
2
N

= IN ⇥ IN .
A polyhedron is the intersection of finitely many closed

halfspaces. A polytope is a bounded polyhedron. If P is an arbitrary
polytope, then by V(P), we denote the set of its vertices. If S is an
arbitrary set, then conv(S) denotes the convex hull of S. Also, we
use dim(S) to denote the dimension of its affine hull. Moreover, if
S is a full-dimensional set, thenwe use int(S) to denote the interior
of S. Given a set S ⇢ Rd and a matrix A 2 Rd⇥d, then AS is defined
as follows: AS := {As : s 2 S}. Also, for any vector x 2 Rd, ⇢S(x) is
defined as follows: ⇢S(x) := miny2S

p
(y� x)T (y� x). Given two

sets S1, S2 ⇢ Rd, their Minkowski sum is denoted by S1 � S2 and
is defined by: S1 � S2 :=

�
y1 + y2 2 Rd : y1 2 S1, y2 2 S2

 
. Also,

S1 \ S2 is defined as follows: S1 \ S2 :=
�
x 2 Rd : x 2 S1, x 62 S2

 
.

3. Problem settings

In this paper, we consider a discrete-time linear system:

xk+1 = A(k)xk + B(k)uk + wk, (1)

where xk, uk, wk denote the state, control variable and additive
disturbance at time k. The state-space matrices [A(k) B(k)] are

time-varying and assumed to belong to an uncertainty matrix

polytope denoted by  and defined below:
[A(k) B(k)] 2  := conv {[A1 B1] , . . . , [AL BL]} . (2)
The state, control variables and disturbances are subject to
constraints:

xk 2 X ⇢ Rdx , uk 2 U ⇢ Rdu , wk 2 W ⇢ Rdx , (3)
where dx, du 2 N>0, and X, U, W are polytopes containing the
origin in their interior.

The objective is to find robust control lawswhich can copewith
bounded additive disturbances and polytopic model uncertainties
such that the closed loop is robustly stable. It is clear that if wk

is unknown, one cannot expect to guarantee asymptotic stability
of the origin. In this case, asymptotic stability is replaced with an
ultimate boundedness concept (Khalil, 2002; Kofman, Haimovich,
& Seron, 2007) or input to state stability (Jiang & Wang, 2001).

4. Robust control design based on convex liftings

4.1. Robust positively invariant sets

Positively invariant sets have been studied over several
decades. Due to their relevance in control theory, they turn out to
be useful in many control related studies, e.g., Bitsoris (1988a,b),
Bitsoris and Vassilaki (1995), Blanchini and Miani (2007) and
Kerrigan (2001). The definition of a robust positively invariant set
for system (1) is recalled below.

Definition 4.1. Given an admissible control law uk = Kxk 2 U, a
set⌦ ✓ X is called robust positively invariant with respect to (1) if

(A(k) + B(k)K)⌦ �W ✓ ⌦, 8 [A(k) B(k)] 2  ,

where  is defined in (2).

To compute such a robust positively invariant set⌦ , it is important
to choose an appropriate unconstrained control law to cope with
given bounded additive disturbances and polytopic uncertainties.
More clearly, this control law should satisfy that there exists a
Lyapunov function V (x) : Rdx ! R+ such that
V ((A(k) + B(k)K)xk)� V (xk) < 0, 8 [A(k) B(k)] 2  .

The computation of such a gain K was studied in, e.g., Daafouz and
Bernussou (2001) and Kothare et al. (1996). A simpler formulation
is presented below:
min
Z,Y
�logdet(Z)

subject to
Z = Z

T > 0
Z (AiZ + BiY )T

AiZ + BiY Z

�
> 0, 8 i 2 IL.

Then, gain K is determined by K = YZ
�1. It is already known that

the above formulation is an LMI problem and is solvable by using
semidefinite programming. The interested reader can find details
in Boyd, El Ghaoui, Feron, and Balakrishnan (1994).

With respect to the state feedback uk = Kxk, the computation
of a robust positively invariant set ⌦ for system (1) has been
put forward in Nguyen (2014), as a simple extension of the idea
presented in Gilbert and Tan (1991). Note also that prominent
studies on the computation of themaximal andminimal positively
invariant sets for a linear, discrete-time invariant system affected
by bounded additive disturbances can be found in Kolmanovsky
and Gilbert (1998) and Rakovic, Kerrigan, Kouramas, and Mayne
(2005). Still, in the case system (1) is not affected by additive
disturbances, then the minimal robust positively invariant set
coincides with the origin due to its asymptotic stability, i.e., ⌦ =
{0}. Without loss of generality, we are hereafter interested in the
case⌦ ✓ X ⇢ Rdx represents a full-dimensional set.
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4.2. Domain of attraction

Given a robust positively invariant set ⌦ associated with an
admissible state feedback u = Kx 2 U for all x 2 ⌦ , the domain of
attraction is defined as the set of all points inXwhich can be driven
to ⌦ , see Khalil (2002). More precisely, the domain of attraction
contains all points x0 2 X such that there always exists control
law satisfying constraints (3) which is able to steer the state to ⌦
as k ! 1, i.e., lim

k!1
⇢⌦(xk) = 0. Computing exactly the domain

of attraction is difficult. Instead, approximation of the domain of
attraction is usually of use. For simplicity, in this paper, we restrict
our attention to a contractive set. The definition of a contractive set
for system (1) is recalled in the sequel.

Definition 4.2. Consider system (1) subject to model uncertainty
(2) and constraints (3). A set X ✓ X is called �-contractive for a
given 0  � < 1 if there exists a control law uk = (xk) 2 U such
that

(A(k)xk + B(k)(xk))�W ✓ �X,

8xk 2 X, 8 [A(k) B(k)] 2  .

The maximal �-contractive set, denoted as P�, is defined as the set
containing all the �-contractive sets in X. An algorithm for the
computation of the maximal �-contractive set is put forward in
Blanchini (1994). For completeness, this algorithm is recalled in
Appendix A. Hereafter, we will use the maximal �-contractive set
as an estimation of the domain of attraction for a given 0  � < 1,
i.e., X = P� ✓ X. Without loss of generality, we assume that
⌦ ⇢ P�.

4.3. Convex liftings construction

In control theory, convex liftings have been used to facilitate
implementation of piecewise affine control laws (Gulan, Nguyen,
Olaru, Rodríguez-Ayerbe, & Rohal’-Ilkiv, 2015; Nguyen, 2015;
Nguyen, Gulan, Olaru, & Rodríguez-Ayerbe, 2016). Recently, they
have been exploited to solve inverse parametric linear/quadratic
programming problem (Nguyen, Olaru, & Rodríguez-Ayerbe,
2015a,b; Nguyen, Olaru, Rodríguez-Ayerbe, Hovd, &Necoara, 2014,
2016). In this paper, we will show that such convex liftings are
also useful in robust control design, based on preliminary results
in Nguyen, Olaru, and Rodríguez-Ayerbe (2015c). Before recalling
the definition of a convex lifting, additional definitions need to be
recalled.

Definition 4.3. A collection of N full-dimensional polyhedra Xi ⇢
Rd, denoted by {Xi}i2IN , is called a polyhedral partition of a

polyhedron X ✓ Rd if the following conditions hold:

• S
i2IN Xi = X,

• int(Xi) \ int(Xj) = ;, 8(i, j) 2 I
2
N
, i 6= j.

Two regions Xi, Xj are called neighboring or adjacent if i 6=
j, (i, j) 2 I

2
N
, dim(Xi \ Xj) = d � 1. Further, if X is a polytope,

then {Xi}i2IN is called a polytopic partition.

Definition 4.4. Given a polyhedral partition {Xi}i2IN of a polyhe-
dron X ✓ Rd, a piecewise affine lifting is described by a function
z : X! R with:

z(x) := a
T

i
x + bi for any x 2 Xi, (4)

and ai 2 Rd, bi 2 R, 8i 2 IN .

Definition 4.5. Given a polyhedral partition {Xi}i2IN of a polyhe-
dron X ✓ Rd, a piecewise affine lifting z(x) = a

T

i
x + bi for x 2 Xi,

is called a convex piecewise affine lifting if the following conditions
hold true:

• z(x) is continuous over X,
• for each i 2 IN , z(x) > a

T

j
x + bj for all x 2 Xi \ Xj and all

j 6= i, j 2 IN .

Note that the second condition in Definition 4.5 implies that any
pair of neighboring regions are lifted onto two distinct hyper-
planes. Also, it implies the convexity of this piecewise affine lift-
ing. For ease of presentation, a slight abuse of notation is hereafter
used: a convex lifting is understood as a convex piecewise affine
lifting.

We now present an algorithm to construct a class of convex lift-
ings which will be of use later in the proposed robust control de-
sign. Let `(x) denote this convex lifting defined over an estimation
of the domain of attraction X. As discussed in Section 4.2, we re-
strict our attention to the maximal �-contractive set P� for a given
0  � < 1, i.e., X = P�.

Algorithm 1 Construct a suitable convex lifting
Input: A given robust positively invariant set ⌦ ⇢ Rdx , an
estimation of the domain of attraction X = P� ⇢ Rdx with a given
0  � < 1 and a scalar constant c > 0.
Output: A convex lifting `(x) such that `(x) = 0 for all x 2 ⌦ .

1: V1 := V(⌦),bV1 :=
n⇥

x
T 0

⇤T : x 2 V1

o
⇢ Rdx+1.

2: V2 := V(X),bV2 :=
n⇥

x
T

c
⇤T : x 2 V2

o
⇢ Rdx+1.

3: ⇧ := conv(bV1
SbV2).

4: Solve the parametric linear programming problem:

`(x) := min
z

z s.t.
⇥
x
T
z
⇤T 2 ⇧ . (5)

Steps 1-2 in Algorithm 1 aim to lift the vertices of ⌦ and X

to Rdx+1 with appropriate heights. Namely, the vertices of ⌦ are
lifted with heights equal to 0, whereas the vertices of X are lifted
with heights equal to the given constant c > 0. Note that (5) is
a parametric linear programming problem, its optimal solution is
thus a piecewise affine function defined over a polytopic partition
denoted as follows: `(x) = a

T

i
x + bi for x 2 Xi. Note also that

by construction, there exists a region in the partition associated
with `(x)which coincides with⌦ , since the vertices of⌦ are lifted
onto a lower facet of ⇧ . The following observation describes the
properties of such an `(x), generated from Algorithm 1.

Lemma 4.6. The function `(x) over X, generated from Algorithm 1,
is continuous, convex, piecewise affine function.

Lemma 4.7. The function `(x) over X, generated from Algorithm 1,
is a convex lifting over the associated partition {Xi}i2IN .

Lemma 4.8. The function `(x) over X, generated from Algorithm 1,
satisfies `(x) = 0 for any x 2 ⌦ and `(x) > 0 for all x 2 X \⌦ .

Lemma 4.9. For any x 2 X and 0  �  1, `(�x)  �`(x).

For reading ease, the proof of the above lemmas is provided in the
Appendix.
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Algorithm 2 Robust control design procedure based on convex
liftings
Input: A robust positively invariant set ⌦ associated with a
stabilizing control law u = Kx over⌦ and a convex lifting `(x) =
a
T

i
x + bi for x 2 Xi, i 2 IN as in Algorithm 1.

Output: Control law u
⇤(xk) at each sampling time.

1: Compute `(xk).
2: If xk 2 ⌦ then u

⇤(xk) := Kxk, jump to Step 6.
3: Else Solve the following linear programming problem:

⇥
↵⇤ (u⇤

k
)T
⇤T := argmin

↵, uk
↵

s.t. aT
i
(Ajxk + Bjuk + w) + bi  ↵`(xk)

↵ � 0, uk 2 U, 8i 2 IN ,8w 2 V(W),

8
⇥
Aj Bj

⇤
2 V( ).

(6)

4: Apply u
⇤(xk) := u

⇤
k

5: End

6: k k + 1, return to Step 1.

4.4. Robust control design procedure

This subsection introduces the procedure for designing robust
control laws based on convex liftings. This procedure can
guarantee robust stability of the closed loop by showing that
lim
k!1

⇢⌦(xk) = 0. Our design procedure based on a convex lifting,
computed from Algorithm 1, is summarized in Algorithm 2.

Natural questions arise herewhether or not the linear program-
ming problem (6) is feasible and whether closed-loop stability is
guaranteed by the proposed procedure. These questions are an-
swered via the following theorem. Accordingly, it will be shown
that convex lifting constructed in Algorithm 1 is strictly decreas-
ing to 0 along the state evolution outside⌦ .

Theorem 4.10. Given a robust positively invariant set ⌦ associated

with a robust control law gain K and an estimation of the domain of

attraction X = P� for a given 0  � < 1, if the initial condition

xk 2 X, then the linear programming problem (6) is recursively

feasible. Furthermore, the closed loop is robustly stable.

Proof. For the feasibility of (6), one can easily see that 0  `(x)
 c by the construction in Algorithm 1. Therefore, due to the
contractivity of X, for any xk 2 X there always exists u(xk) 2 U
such that:

A(k)xk + B(k)u(xk) + wk 2 �X ⇢ X

for all wk 2 W and for all [A(k) B(k)] 2  . Therefore, if u⇤(xk)
denotes an optimal solution to (6), then one has:

0  `(A(k)xk + B(k)u⇤(xk) + wk)

 `(A(k)xk + B(k)u(xk) + wk)

 c, 8wk 2 W, 8 [A(k) B(k)] 2  .

Due to this boundedness, the recursive feasibility of the linear
programming problem (6) is ensured for a finite, large enough
scalar ↵ at each sampling time.

As for robust stability, we prove that for any xk 2 X \⌦:

`(A(k)xk + B(k)u⇤(xk) + wk) < `(xk),

8wk 2 W, 8 [A(k) B(k)] 2  .

Indeed, due to the contractivity of X, for any v 2 V(X) \ ⌦ ,
there exists a control law, denoted by u(v) 2 U such that A(k)v +
B(k)u(v) + wk 2 �X despite any disturbances wk 2 W and for all
[A(k) B(k)] 2  . For eachwk 2 W and each [A(k) B(k)] 2  , there

exists y(k, wk) 2 X such that A(k)v + B(k)u(v) + wk = �y(k, wk).
Due to Lemma 4.9, this inclusion leads to

`(A(k)v + B(k)u(v) + wk) = `(�y(k, wk))

 �`(y(k, wk)). (7)

By the construction of `(x) in Algorithm 1, we obtain:

`(y(k, wk))  c. (8)

Also, according to Algorithm 1 and v 2 V(X) \⌦ ,

`(v) = c. (9)

From (7), (8), (9), one can deduce that

`(A(k)v + B(k)u(v) + wk)  �`(v). (10)

Recall that (10) holds for all wk 2 W and for all [A(k) B(k)] 2  .
Now, consider a point xk 2 Xi in the polytopic partition

{Xi}i2IN ofX overwhich `(x) is defined.Without loss of generality,
suppose Xi 6= ⌦ , then xk can be described via a convex
combination of the vertices of Xi, i.e.,

xk =
X

v2V(Xi)

↵(v)v, where ↵(v) � 0,
X

v2V(Xi)

↵(v) = 1.

Recall that due to the definition of convex lifting, `(x) over Xi is an
affine function, then `(xk) can be written in the following form:

`(xk) =
X

v2V(Xi)

↵(v)`(v). (11)

If v 2 V(Xi) belongs to⌦ , then due to the robust positive invari-
ance of⌦ with respect to a linear feedback u(x) = Kx, it satisfies

`(v) = 0 = `((A(k) + B(k)K)v + wk),

8wk 2 W, 8 [A(k) B(k)] 2  . (12)

Otherwise, if v 2 V(Xi) is a vertex ofX and v 62 ⌦ , then it satisfies
(10). Therefore, due to the convexity of `(x) proved in Lemma 4.6
and (10), (11), (12), the following is obtained:

�`(xk) =
X

v2V(Xi)

↵(v)(�`(v))

�
X

v2V(Xi)

↵(v)`(A(k)v + B(k)u(v) + wk)

� `(A(k)
X

v2V(Xi)

↵(v)v + B(k)
X

v2V(Xi)

↵(v)u(v) + wk)

= `(A(k)xk + B(k)
X

v2V(Xi)

↵(v)u(v) + wk). (13)

Recall that u(v) 2 U, 8v 2 V(Xi) \⌦ and u(v) = Kv 2 U, 8v 2
V(Xi) \⌦ , then it follows that
X

v2V(Xi)

↵(v)u(v) 2 U. (14)

Therefore, (14) leads to:

`(A(k)xk + B(k)
X

v2V(Xi)

↵(v)u(v) + wk)

� `(A(k)xk + B(k)u⇤(xk) + wk). (15)

From (13) and (15), the following inclusion is obtained:

�`(xk) � `(A(k)xk + B(k)u⇤(xk) + wk),

8wk 2 W, 8 [A(k) B(k)] 2  . (16)

Recall that 0  � < 1, therefore any xk 2 X \⌦ satisfies

`(xk) > `(A(k)xk + B(k)u⇤(xk) + wk),

8wk 2 W, 8 [A(k) B(k)] 2  , (17)
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meaning {`(xk)}1k=0 is a strictly decreasing sequence outside⌦ and
bounded in the interval [0, c]. Thus, this sequence is convergent to
0. In other words, xk tends to⌦ as time tends to infinity. ⇤

Remark 4.11. Note that by construction, the partition associated
with a convex lifting in Algorithm 1, may not be a Delaunay
decomposition as in Scibilia, Olaru, and Hovd (2009). This method
does not rely on such a decomposition, but relies on a convex
lifting defined over this partition. This approach is simple and only
requires solving a linear programming problem at each sampling
instant. However, the associated control law is not continuous at
the moment the state switches into ⌦ (see step 2 of Algorithm 2;
this idea is similar to the one presented in Nguyen, Olaru, & Hovd,
2012). Note also that checkingwhether the current state belongs to
⌦ can be relaxed. Accordingly, one can continue solving problem
(6)while trajectories still stay inside⌦ . Indeed, if xk 2 ⌦ , then due
to the construction `(xk) = 0. Consider the next state, one can see
that Kxk 2 U, then it leads to:

0  `(A(k)xk + B(k)u⇤(xk) + wk)

 `(A(k)xk + B(k)Kxk + wk) = 0 = `(xk).

This inclusion implies that optimal control law u
⇤(xk) 2 U to

problem (6) also keeps the trajectories inside⌦ , if xk 2 ⌦ .

Remark 4.12. We also remark that if the set ⌅ := {x : `(x)  c}
and P� are not identical, then the constraints Ajxk + Bjuk + w 2 P�

for all
⇥
Aj Bj

⇤
2 V( ), w 2 V(W), should be included in problem

(6) to guarantee that `(x) is exclusively restricted to P�.

Remark 4.13. An open problem is to guarantee robust stability
of the proposed method for another estimation of the domain of
attraction as the N-step robust controllable set denoted by KN(⌦),
c.f., Kerrigan (2001). Note that in this case, proving the strict
decrease of `(x) becomes more difficult. Also, this strict decrease
may not be successive, since KN(⌦) is not usually contractive.

Remark 4.14. Note that the explicit robust controller of (6) can be
obtained by replacing ↵`(xk) with a variable, denoted by, e.g., z.
Accordingly, the optimization problem (6) becomes a parametric
linear programming problem with the decision argument

⇥
z u

T

k

⇤T
and the parameter as the current state xk.

Remark 4.15. Recall that the constructed convex lifting is equal
to 0 over the given robust positively invariant set ⌦ , whereas
optimal quadratic cost function usually deployed in MPC is strictly
positive except at the origin. On the other hand, as shown in
Algorithm 1, a scalar c > 0 is freely chosen, therefore one can
always choose a small enough value such that `(x) is smaller than
the aforementioned quadratic cost function, leading to a smaller
control performance of the proposed method relative to a given
quadratic one in MPC.

5. Numerical example

To illustrate the proposed procedure, consider Example 1 in
Kothare et al. (1996) where an angular antenna positioning system
is modeled by the following equation:

xk+1 =

1 0.1
0 1� 0.1↵k

�
xk +


0

0.1

�
uk,

where  = 0.787 and the uncertain parameter ↵k ranges in
interval [0.1 10]. The state and control variables are subject to the
following constraints: kxkk1  1, kukk1  2. Unconstrained
controller is chosen as follows: u =

⇥�3.9922 �6.5135⇤ x.
Accordingly, themaximal robust positively invariant set associated

Fig. 1. Themaximal robust positively invariant set⌦ , an estimation of the domain
of attraction X = P0.999 and the closed-loop trajectories.

Fig. 2. A convex lifting `(x) constructed by Algorithm 1 with c = 10 and its strict
decrease over X \⌦ along the state.

with the above controller, i.e., ⌦ is shown in Fig. 1. Also, the
maximal 0.999-contractive set P0.999 is presented therein. This set
is computed fromprocedure (18). A convex lifting `(x) is visualized
in Fig. 2 according to Algorithm 1 with c = 10. The closed-loop
trajectories are shown in Fig. 1 to be convergent to the origin,
since the unconstrained control law can cope with the given set of
polytopic uncertainties over⌦ . Finally, the strict decrease of `(xk)
over X \⌦ , is illustrated in Fig. 2.

To clarify the benefit of the proposed method in comparison
to the methods in Kothare et al. (1996) and Kouvaritakis et al.
(2000), we will consider their online computational time. To this
end, we consider again the above angular antenna positioning
system. As aforementioned, these twomethods require resolutions
of LMI problems at each sampling time, therefore their online
computation is expensive. Whereas, the proposed method only
needs to solve a linear programmingproblem. To clarify this aspect,
we present in Fig. 3 the online computational time along the
simulation of these three approaches at the same initial condition.
Clearly, the online computation of the proposed approach is much
cheaper than the other ones.Wealso compare the feasible region of
the proposedmethod and the one by Kothare et al. (1996). This end
is visualized in Fig. 4, the feasible region by the proposed method
is clearly bigger than the one by Kothare et al. (1996).

Recall that robust MPC schemes, e.g., Mayne et al. (2005) and
Pluymers, Rossiter, Suykens, and De Moor (2005), minimize cost
functions of finite prediction horizons; thus terminal constraints
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Fig. 3. The online computational time of the methods in Kothare et al. (1996) and
Kouvaritakis et al. (2000) and the proposed one.

are usually imposed to guarantee closed-loop stability. Note
also that the bigger the prediction horizon is, the larger the
feasible region becomes. However, these methods suffer from
considering polytopic uncertainties, since they lead to complicated
formulations. Moreover, solving a linear programming problem is
in general cheaper than solving a quadratic one; accordingly, the
methods inMayne et al. (2005) and Pluymers et al. (2005) aremore
computationally demanding than the proposed method.

To compare the proposed method with the robust MPC design
in Bemporad, Borrelli, and Morari (2003), it is reasonable to
compare their number of constraints in their design formulations,
even if the latter method synthesizes explicit robust controllers.
To illustrate this point, we again consider the angular antenna
positioning system. Accordingly, an 1-norm cost function is
chosen with weighting matrices P,Q 2 R2⇥2, R 2 R. Also, we
choose the terminal constraints as ⌦ which is described by 10
halfspaces. The numbers of constraints by themethod in Bemporad
et al. (2003) via different prediction horizonsN and of the proposed
approach are summarized in Table 1. It can be seen that the
number of constraints via the approach in Bemporad et al. (2003)
increases exponentially with the prediction horizon, thus this
method becomes much more expensive than the proposed one as
the prediction horizon increases.

Finally, to compare the proposed method with the MPC design
in Khan and Rossiter (2012), we both compare the feasible region
and online computation. Their feasible regions are also included
in Fig. 4, where the generalized parameterization MPC (RGMPC)
in Khan and Rossiter (2012) is configured with a = 0.65, b =
0.67, c = 0.64. Note that the brown and blue regions represent
the feasible regions obtained from themethod in Khan andRossiter
(2012) with respectively nc = 3 and nc = 2. In these cases, the
feasible regions obtained by this method are smaller than the one
of the proposed method. One can argue that increasing nc can en-
large the feasible region, however, also lead to more demanding
online evaluation since the number of constraints scales exponen-
tially with nc . The numbers of constraints corresponding to this ex-
ample are listed in Table 1. Recall that thismethod requires solving
a quadratic cost function at each sampling time, thus more expen-
sive online computation in comparison to the proposed one.

The numerical examples of this paper have been performed by
means of MPT in Herceg, Kvasnica, Jones, and Morari (2013) and
YALMIP in Löfberg (2004).

Fig. 4. Comparison of feasible regions via different approaches.

Table 1

Comparison of number of constraints via different approaches.

N/nc # constraints
1 2 3

Bemporad et al. (2003) 32 81 167
Khan and Rossiter (2012) 66 138
The proposed approach 61

6. Conclusions

This paper presented a new method to design robust control
law for constrained linear systems affected by bounded additive
disturbances and polytopic uncertainties. This method was based
on convex liftings. It was shown to guarantee the recursive
feasibility and robust stability as well. The benefit of the proposed
methodwas also shownvia a numerical example relative to several
MPC methods.
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Appendix

A.1. Algorithm to compute the maximal �-contractive set

S1 := X,

Si+1 :=
⇢
x 2 Si : 9u(x) 2 U s.t.(Ajx + Bju(x))�W ✓ �Si,

8j 2 IL

�
,

P� := S1.

(18)
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A.2. Proof of Lemma 4.6

`(x) is a piecewise affine function since it is induced from
a parametric linear programming problem. The continuity and
convexity of `(x) can easily be derived from Theorems IV-3 and
IV-4 in Gal (1995). ⇤

A.3. Proof of Lemma 4.7

To prove that `(x) is a convex lifting for {Xi}i2IN , we need to
prove that for any pair of (Xi, Xj) the associated optimal solutions
are different, i.e., (ai, bi) 6= (aj, bj). Suppose the converse situation
happens,more precisely, there exist two regions (Xi, Xj) such that
(ai, bi) = (aj, bj).

First, it can easily be seen that the optimal solution to the
parametric linear programming problem (5) is unique. In fact,
suppose there exist two different optimal solutions to (5), i.e., z⇤1 (x)
and z

⇤
2 (x). Consider a region Xi in the associated partition over

which z
⇤
1 (x), z

⇤
2 (x) are defined, i.e., z

⇤
1 (x) := (a

(1)
i

)T x+b
(1)
i

, z⇤2 (x) :=
(a

(2)
i

)T x + b
(2)
i

. Since z is the cost function of (5), therefore, we
obtain:

(a
(1)
i

)T x + b
(1)
i

= (a
(2)
i

)T x + b
(2)
i

for all x 2 Xi. (19)

Note that the set of all x satisfying (19) describes a set of dimension
lower than dx, whereas (19) also holds true for all x 2 Xi as a
full-dimensional polyhedron. This case only holds if (a

(1)
i

, b
(1)
i

) =
(a

(2)
i

, b
(2)
i

). This leads to the uniqueness of the optimal solution to
(5).

Consider now two regions (Xi, Xj) such that (ai, bi) = (aj, bj).
Let the optimization problem (5) be written in the following form:

min
z

z s.t. Gz  W + Ex. (20)

Without loss of generality, the constraint set of (20) is assumed to
be in minimal representation. Also, suppose the constraints active
at

⇥
x
T
a
T

j
x + bj

⇤T are as follows:

G
(j)
z = W

(j) + E
(j)
x.

Due to the uniqueness of the optimal solution to (20),G(j) 2 R\{0}.
Consider x 2 Xi, it can be seen that

⇥
x
T
a
T

i
x + bi

⇤T satisfies the set
of constraints in (20). However, sinceXi 6= Xj,

⇥
x
T
a
T

i
x + bi

⇤T does
not make constraint G(j)

z  W
(j) + E

(j)
x active; more precisely

G
(j)(aT

i
x + bi) < W

(j) + E
(j)
x. (21)

As assumed (ai, bi) = (aj, bj),G
(j)
z  W

(j) + E
(j)
x thus becomes

active at
⇥
x
T
a
T

i
x + bi

⇤T for x 2 Xj, namely,

G
(j)(aT

i
x + bi) = W

(j) + E
(j)
x. (22)

Since Xj is a full-dimensional polyhedron, then inclusion (22)
yields

G
(j)
a
T

i
= E

(j), G
(j)
bi = W

(j). (23)

Inclusions (21) and (23) are clearly contradictory. In other words,
for any pair of different regions (Xi, Xj), the optimal solution to
(5), i.e., `(x) satisfies (ai, bi) 6= (aj, bj).

In addition, Lemma 4.6 shows that `(x) is a continuous, convex,
piecewise affine function. Therefore, `(x) is a convex lifting for
{Xi}i2IN according to Definition 4.5. ⇤

A.4. Proof of Lemma 4.8

Indeed, consider x 2 ⌦ , then x can be written as a convex
combination of the vertices of ⌦ , i.e., x = P

v2V(⌦) ↵(v)v with
↵(v) � 0 and

P
v2V(⌦) ↵(v) = 1. It is known that `(x) over ⌦ is

an affine function, then `(x) = a
T

i
x+ bi leads to `(x) = 0 for every

x 2 ⌦ .
To complete the proof, it is necessary to show that `(x) > 0 for

x 2 X \⌦ . Indeed, as shown above, `(x) = a
T

i
x + bi = 0 for every

x 2 ⌦ , then since⌦ is of full dimension, it follows ai = 0, bi = 0.
Consider a regionXj 6= ⌦ = Xi of the polytopic partition {Xi}i2IN
associated with `(x), `(x) = a

T

j
x + bj for x 2 Xj. According to

Lemma 4.7, `(x) satisfies the convexity and continuity conditions
of a convex lifting:

a
T

j
x + bj > a

T

i
x + bi = 0, for all x 2 Xj \ Xi,

a
T

j
x + bj = a

T

i
x + bi = 0, for all x 2 Xj \Xi.

The same inclusion for the other affine functions of `(x), leads to
the nonnegativity of `(x). Moreover, `(x) > 0 for any x 2 X \ ⌦ .
The proof is complete. ⇤

A.5. Proof of Lemma 4.9

Due to the convexity of `(x) over X as proved in Lemma 4.6, it
leads to

`(�x + (1� �)0)  �`(x) + (1� �)`(0).

Due to the assumption that 0 2 int(W), then 0 2 int(⌦), meaning
that `(0) = 0 according to Lemma4.8. This inclusion and the above
one imply that `(�x)  �`(x). ⇤
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Clipping-Based Complexity Reduction in Explicit MPC

Michal Kvasnica and Miroslav Fikar

Abstract—The idea of explicit model predictive control (MPC) is to char-
acterize optimal control inputs as an explicit piecewise affine (PWA) func-
tion of the initial conditions. The function, however, is often too complex
and either requires too much processing power to evaluate on-line, or con-
sumes a prohibitive amount of memory. The paper focuses on the memory
issue and proposes a novel method of replacing a generic continuous PWA
function by a different function of significantly lower complexity in such a
way that the simple function guarantees the same properties as the original.
The idea is based on eliminating regions of the PWA function over which
the function attains a saturated value. An extensive case study is presented
which confirms that a significant reduction of complexity is achieved in gen-
eral.

Index Terms—Computational complexity, piecewise linear techniques,
predictive control.

I. INTRODUCTION

As shown in [5], the effort of implementing model predictive con-
trol (MPC) in the Receding Horizon fashion (RHMPC) can be sub-
stantially reduced by pre-computing the feedback law , for all
feasible initial conditions, as a piecewise affine (PWA) function .
Such a function is defined over polyhedral regions with associated
affine feedback laws. The problem being that on-line evaluation speed,
as well as the associated memory storage, are proportional to . There-
fore, it is of imminent importance to keep complexity of as low
as possible.

The problem is usually attacked by approximating the optimal feed-
back or the optimal value function in such a way that a less complex, al-
beit suboptimal, feedback function is obtained, see e.g., [4], [16].
Suboptimal approximations can be also obtained by replacing the
regions of by simpler objects, e.g., by hypercubes [7] or by sim-
plices [14]. Another line is focused on deriving a simpler representation
of the PWA function with no implications on optimality of the
feedback. Here, one can either characterize in terms of its lattice
representation [17], or exploit convexity of the optimal value function
[3]. In [9] the optimal region merging (ORM) method was proposed.
It is based on merging together regions of whose union is convex
and which share the same affine expression for . The result is a
new PWA function , which is an equivalent replacement of
in the sense that for all feasible initial conditions . The
downside being that merging regions optimally is an NP-hard problem.

In this paper, we present a different way of computing an equivalent
replacement function . The main benefit, compared to the ORM
method [9], is that the construction of the replacement scales signif-
icantly better with growing complexity of the original function .
The approach is based on the premise that the RHMPC controller oper-
ates at the limits of the admissible control freedom for some . Simply
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put, the idea is to remove the regions in which attains a saturated
value and subsequently cover the “holes” by expanding the regions in
which the value of is unsaturated. The replacement function
is then passed through a so-called clipping filter such that the
equivalence is established for all feasible initial con-
ditions . A similar approach was proposed in [13] for cases with linear
feedbacks of the form .

We illustrate that complexity of , measured by the number
of regions over which is defined, fulfills . Moreover, we
provide an extensive case study which shows that, typically, is equal
to the number of unsaturated regions of the original function

. In addition, we show that for a vast majority of prac-
tical MPC setups. By decreasing the number of regions, two goals are
achieved simultaneously: the memory footprint of explicit RHMPC is
decreased by a factor of and the on-line implementation speed is
increased accordingly. Moreover, the proposed method can be further
combined either with ORM, or with more advanced evaluation strate-
gies such as extrapolating the solution from closest regions [6], or omit-
ting rarely visited regions [1]. In addition to our previous work [11],
in this paper we propose a modified algorithm with improved prop-
erties, show how to process feedback laws for systems with multiple
inputs, analyze complexity of the approach and provide a large case
study which justifies that it scales well with problem size.

II. NOTATION AND DEFINITIONS

For a matrix or a vector , represents all rows of except
of those belonging to some index set . A finite set of elements

will be denoted as and its cardinality
by . A polyhedron is the convex intersection of closed affine
half-spaces, i.e., . We call the collection
of polyhedra the partition of polyhedron if ,
and for all . Each polyhedron will
be referred to as a region of the partition. Regions and of a
partition are adjacent if is an ( )-dimensional facet
of both and , . For each facet of region of the par-
tition we denote by the index set of regions adjacent to

along the -th facet. Vector-valued function
is called Piecewise Affine (PWA) over polyhedra if

, . PWA function is continuous
if holds , .

III. EXPLICIT MODEL PREDICTIVE CONTROL

We consider the class of discrete-time, stabilizable linear time-in-
variant systems , which are subject to polytopic
constraints and . Assume the following
constrained finite-time optimal control problem:

(1a)

(1b)

where and denote, respectively, state and input predictions over
a finite horizon , given the initial condition .
It is assumed that , in (1a), i.e.,
that (1) is a strictly convex QP. The receding horizon MPC feedback
then becomes , where the optimal vector

can be found by solving (1) as a QP for a
given value of the initial condition . For problems of modest size, it
is also possible to characterize the optimal feedback explicitly

0018-9286/$26.00 © 2011 IEEE
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Fig. 1. Illustration of a suitable augmentation. (a) 1-D PWA function with 4 saturated regions ( , , , ) and two unsaturated regions and .
(b) Extensions of unsaturated regions over their weakly adjacent saturated neighbors. (c) Suitable augmentation (solid line) and the result of clipping
at and (dashed line). (d) Unsaturated regions , , in whose extension does not fully cover a saturated region (the large shaded triangle).

as a PWA function of [5] by solving (1) as a parametric quadratic
program (pQP).

Theorem 3.1 ([5]): The RHMPC feedback for problem (1)
is given by where: (i) the set of feasible initial con-
ditions is a convex poly-
hedron; (ii) is a continuous PWA function defined
over regions , ; (iii) are polyhedra with a closure

; and (iv) is a partition of .
The advantage of such an explicit representation is obvious: ob-

taining the optimal control action for a given reduces to a mere
evaluation of the function , which is henceforth denoted as the
explicit RHMPC feedback law. The crucial limitation, however, is that
the number of regions tends to be large, often above the limits of typical
hardware implementation platforms both in respect to on-line compu-
tation as well as to memory storage.

IV. MAIN RESULTS

Theorem 3.1 gives the explicit RHMPC feedback as
a continuous PWA function defined over polyhedral regions, which
maps a vector of initial conditions onto the optimal control inputs. The
complexity reduction problem to be solved can be formally stated as
follows:

Problem 4.1: Given a continuous PWA function with re-
gions, find a simpler function with regions, and a suitable
filter , such that for all .

In the sequel, we show how to find the simpler function by
using basic tools of computational geometry. The simplification is
based on removing the regions of over which the function attains
a saturated value. Subsequently, the “holes” are covered by expanding
the unsaturated regions (cf. Definition 4.2). Therefore, in the best
case, the number of regions of is equal to , the number of
unsaturated regions of . We remark that, typically, .

The procedure is first explained assuming that is
scalar-valued, i.e., that the number of control inputs is . The
multi-dimensional case is then discussed in Section IV-C.

A. Single-Input Case

Definition 4.2 (Saturated Region): Let and denote, respectively,
the maximum and minimum values which the PWA function

attains over . Denote by ( ) the index
set of regions where is saturated at the maximum (minimum), and
let . We call a region the saturated region if it
is either saturated at the minimum or at the maximum, i.e., if .
Otherwise the region is called unsaturated. The index set of unsaturated
regions is denoted by .

Definition 4.3: Saturated region is weakly adjacent to an unsat-
urated region either if they are directly adjacent, or if is adjacent
to some other saturated region(s) weakly adjacent to .

Definition 4.4 (Suitable Augmentation): Given is a continuous PWA
function , defined over the partition . We call the PWA
function a suitable augmentation of if the
following properties hold:

P1: is defined over regions such that
, i.e., .

P2: for all .
P3: for all .
P4: for all .

Here, , , , , and are as in Definition 4.2, and
denotes the subset of regions for some index set

.
Fig. 1(a) shows an illustrative 1-D PWA function , while

Fig. 1(b) depicts its suitable augmentation. Notice that a suitable
augmentation is not, by Definition 4.4, required to be continuous,
nor does it require that for all . It merely



1880 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 57, NO. 7, JULY 2012

suggests that one can replace the affine expression in
the saturated regions by an arbitrary which satisfies P3–P4.
As will be shown in the sequel, this freedom allows to construct a sim-
pler function by enlarging the unsaturated regions such that they
completely cover the saturated ones. Once such a function is obtained,
we recover by applying a simple clipping filter such that

. A procedure for computing
is reported as Algorithm 1, which is the first main result of the paper.
We will explain the algorithm on the following example.

Algorithm 1 Construction of a suitable augmentation

INPUT: Saturated continuous PWA function defined over the
polyhedral partition with and

being a convex polyhedron.

OUTPUT: Suitable augmentation if ,
.

1: Obtain the adjacency list and index sets and
representing indices of unsaturated and saturated regions, respectively.

2: for each unsaturated region do

3: Using the adjacency list identify the subset of half-space
indices over which the neighbor of is a saturated region.

4: Form a new polyhedron by removing
from the half-spaces indexed by , i.e., and

. Let .

5: Let where is the
index set of saturated regions weakly adjacent to . Denote by
indices of regions intersecting with .

6: if then .

7: Store region(s) and matrices , .

8: end for

9: Determine the index set of saturated regions not fully covered by
, i.e., find .

10: if then and update and
accordingly.

11: if then .

Example 4.5: Consider a 1-D PWA function shown
in Fig. 1(a) with , ,

, ,
, ,

, , , ,
and . The algorithm iterates through all

unsaturated regions in an arbitrary order. Take . Then in Step
3, unsaturated region has and as saturated neighbors over
half-spaces and . Therefore, on Step 4, region
is formed by removing these two half-spaces and intersecting with ,
leading to . However, then intersects with
an another unsaturated region and with saturated regions and

not weakly adjacent to (i.e., and
), violating P2–P4 of Def. 4.4 in these regions. Therefore

per Step 6 to recover
the augmentation properties. Then the second unsaturated region
is explored in a similar fashion, i.e.,
after Step 4 and

after Steps 5 and 6 where and
(note that is weakly adjacent to via ). Finally, coverage of all
saturated regions is checked on Step 10, revealing that ,
i.e., extended regions and fully coverer all saturated regions
and hence P1 of Def. 4.4 is fulfilled. is then represented just by
two regions and , shown in Fig. 1(b). One case where Step 10
would need to be executed is depicted on a 2–D scenario in Fig. 1(d).
Here, the not fully covered saturated region needs to be included into

in order to achieve full coverage of .
Remark 4.6: The adjacency list in Step 1 is usually automatically

generated as a by-product of most pQP solvers, see e.g., [5]. Should it
not be available at hand, it can be computed a-posteriori by the MPT
Toolbox [12]. The index set of saturated regions weakly adjacent
to the -th unsaturated region can be easily obtained by running a breath
first search [8] on the graph representation of the adjacency list.

Remark 4.7: In theory [2], the set difference operation in Step 6
can produce exponentially many regions. Therefore Step 11 is formally
needed to ensure that is no more complex than the original func-
tion . We remark that we have never observed such a case, though.

Next, we provide a formal proof of correctness of Algorithm 1.
Theorem 4.8: Given a continuous PWA function , Algorithm

1 constructs its suitable augmentation which fulfills all prerequi-
sites of Definition 4.4.

Proof: First we show that , i.e., that P1
of Def. 4.4 holds. If has no saturated neighbors, then .
Otherwise by removing at least one half-space from in Step 4 we
have and therefore . Moreover,

follows directly from Step 10 where any uncovered part of
is added to . Therefore . Since each extended region

is intersected with in Step 4, we have that
and therefore . To

prove that for all it is enough to show that
, i.e., that the extended regions do not overlap with

unsaturated regions. Due to Step 6, we have
. Therefore, meets P2 of

Def. 4.4. Finally, P3 and P4 follow directly from Step 6 since is
assumed to be continuous.

Theorem 4.9: The number of regions of the augmented function
generated by Algorithm 1 is bounded by .
Proof: The lower bound comes from two facts: (i) Algorithm 1

does not modify the number of unsaturated regions; and (ii) the satu-
rated regions are replaced by “expansion” of unsaturated regions, there-
fore in the best case. However, additional regions might
be added in Steps 6 and 10 and therefore , in general. The
upper bound follows directly from Step 11, cf. Remark 4.7.

Corollary 4.10: If Steps 6 and 10 are never invoked during the run
of Algorithm 1, then is defined over regions.

Remark 4.11: Efficiency of the presented procedure, expressed as
the ratio , depends on the number of unsaturated regions. If
does not contain any saturated regions, then no simplification can be
achieved. As observed e.g., in [10], the number of unsaturated regions
depends mainly on two factors: tightness of input constraints and
selection of the input penalty in (1). The tighter the constraints
and/or the lower is, the more regions will become saturated, hence
enabling our approach to be more efficient.

Theorems 4.8 and 4.9 say that can be replaced by its suitable
augmentation of (possibly) lower complexity in terms of number
of regions. As will be documented in Section V, usually for
the case of problems considered in this paper. The augmented func-
tion , however, cannot be readily applied as an RHMPC feedback
since, in general, for . The equivalence can be
achieved by passing through a very simple clipping filter , as
noted by Theorem 4.12, which is the second main result.
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Theorem 4.12: Consider a saturated continuous PWA function
and its suitable augmentation . Let

(2)

Then the equivalence is established for all
, and therefore solves Problem 4.1.

Proof: Notice that (2) is a compact encoding of three IF-THEN
rules

if ,
if ,
otherwise.

(3)

Then we get for all by P3 of Definition 4.4,
for all by P4, and

for all by P2. Since
by Theorem 3.1, it follows that for all

.

B. Multi-Input Case

If is a vector-valued function (i.e., when ), it can be
decomposed to individual functions , ,
each defined over the original partition . Therefore one
obvious way of approaching this case is to process each subfunction

individually by Algorithm 1. This will give rise to sets of re-
gions , , and clipping filters

. Even though the total number of regions is
then , significant reduction of complexity can still be achieved
if for all .

Another option is to perform a direct simplification of as a
vector-valued function. If contains regions in which the values of
all subfunctions are jointly saturated at the same extrema (i.e.,
either holds , or , ), then Al-
gorithm 1 can be readily applied as is. The only difference being that

and in the clipping filter
are now vectors, and therefore the and operators in (2)

have to be applied element-wise. It is also possible to extend Algorithm
1 to tackle cases where the subfunctions are saturated for all ,
but not necessarily jointly at one type of extrema (e.g., ,

for ). Naturally, the joint-saturation scenario oc-
curs more frequently if the input constraints are hyper-rectangular.

C. Implementation and Complexity

The original function , composed of polyhedral regions, re-
quires memory for its storage. Evaluating for a given value
of is a two-stage process. First, the index of the region which con-
tains is identified by a suitable region traversal procedure. Subse-
quently, the -th elements and are extracted from memory and

is evaluated. Traditionally, regions are traversed
sequentially, which requires floating point operations (FLOPS).
This figure can be decreased by employing more advanced traversal
approaches. The binary search tree (BST) approach [15] can traverse
the regions in time by building a suitable search tree. The
downside being that the off-line construction of such a tree requires
solving linear programs, which easily becomes prohibitive if

is large (say, ). Other alternatives include employing
the lattice representation [17] with runtime complexity of
(where is the number of unique control laws), or suboptimal
procedures like extrapolating the solution from closest regions [6], or
omitting rarely visited regions [1].

With the proposed simplification technique, the memory footprint of
is proportional to , a direct reduction by a factor of .

TABLE I
RESULTS FOR THE F14 EXAMPLE

We remark that in the best case and in the worst
case. The extra memory required to store the filter is floating
point numbers (vectors and ), negligible compared to the memory
footprint of polyhedral regions. On-line evaluation of for a
given value of can be done as described above with an additional
step of passing the function value through the filter , which always
performs only comparisons, insignificant compared to the com-
plexity of region traversal. If sequential region traversal is used to eval-
uate , then our procedure decreases the on-line evaluation effort in
terms of FLOPS by a factor of . If the BST approach is used, re-
duction is proportional to . Our approach can also be com-
bined with the suboptimal traversal techniques described in the pre-
vious paragraph to further speed up the on-line implementation. Since

in practice (as demonstrated in the next section), the proposed
simplification technique can decrease both the evaluation time as well
as required memory storage.

V. EXAMPLES

A. F14 Fighter Jet

We consider the open-loop unstable model of an F14 fighter jet in
the lateral axis whose states represent the pitch and attack angles and
the respective angular velocities, with the flap angle as control input

(4)

States are constrained by , , and the con-
trol command is bounded by . Model (4) was discretized
using sampling time 0.01 seconds. MPC problem (1) was formulated
with and and prediction horizon . We
have investigated how tightness of input constraints (represented by

) impacts the number of unsaturated regions, which is the main
factor that determines efficiency of the proposed scheme, cf. Remark
4.11. Therefore, we have computed explicit RHMPC feedbacks for

. Each feedback was then processed by
Algorithm 1 to obtain the replacement function . Results are sum-
marized in Table I. Columns of the table report, respectively, maximal
control amplitude , complexity of the original feedback (in
terms of number of regions, worst-case evaluation effort1 in FLOPS
and memory footprint2 in floating point numbers), complexity of the
replacement function , and the complexity reduction ratio. In all
cases we got , cf. Corollary 4.10. As expected, the on-line
evaluation speed and required memory storage both improve propor-
tionally to . This fraction decreases when the input constraints
become less strict (cf. Remark 4.11).

1Number of floating point operations needed to evaluate the PWA function
using sequential search.

2Amount of floating point numbers needed to represent polyhedral regions
.
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TABLE II
RESULTS FOR RANDOM SYSTEMS WITH

TABLE III
RESULTS FOR RANDOM SYSTEMS WITH

TABLE IV
AGGREGATED RESULTS FOR 600 RANDOM PROBLEMS

B. Random Systems

To assess how Algorithm 1 scales with increasing problem size and
how it compares to the optimal region merging (ORM) method of [9],
we have analyzed random LTI systems with two to four states, and one
to two inputs, subject to constraints and

. Both open-loop stable and unstable systems were
considered. For each random system we have then solved the MPC
problem (1) parametrically with , , using
the MPT Toolbox [12]. Each resulting PWA solution
was subsequently post-processed independently by Algorithm 1 and
by ORM. A total of 600 random systems was considered, with 100 for
each combination. A representative selection of obtained results
is shown in Tables II–III. Entries marked with denote cases where
the ORM approach failed to converge within of 12 h of computation.
We remark that in all 600 investigated cases a perfect coverage of all
saturated regions was achieved, i.e., Step 10 of Alg. 1 never had to be
executed. Runtime of the coverage check in Step 9 attributes to around
75% of the total runtime reported in the tables.

The average complexity reduction ratios over the complete set
of random problems are reported in Table IV. We remind that the re-
duction ratio has two direct implications: it shows how much memory
can be saved by employing the replacement instead of the original
feedback , and how much faster can be evaluated on-line.
The table also reports likelihood of Algorithm 1 achieving the theoret-
ical lower bound of complexity with , cf. Corollary 4.10.

The presented results clearly show that the clipping-based procedure
scales significantly better with increasing problem size than the ORM
procedure. Algorithm 1 was able to devise a simpler representation of
the original PWA function even when was very complex and de-
fined over several thousands of regions. The ORM procedure, on the
other hand, is limited to situations with few hundreds of regions. In ad-
dition, the complexity reduction ratio is significantly higher for Algo-
rithm 1, which follows from the fact that saturated regions are removed
completely from the function description. The ORM approach, on the
other hand, keeps the saturated regions and merely tries to merge them
into larger convex objects.

Results for the multi-input case with shown in Table III
were obtained by the scalarization-based procedure discussed in
Section IV-C . This approach turned out to be more efficient compared
to treating as a single vector-valued function. Specifically, in
80% of the 600 investigated problems scalarization was significantly
more efficient than the vector case, leading to, on average, 3.5 times
less regions compared to the vector approach. In the remaining 20%,
scalarization performed only slightly worse than the vector method. In
particular, the only case from Table III where scalarization has done
worse than the vector approach was the first instance, where scalar-
ization gives 42 regions, whereas vectorization leads to 39 regions.
Although the achievable complexity reduction naturally decreases
with increasing dimension of the input space, the presented procedure
still provides higher complexity reduction ratio compared to the ORM
method at significantly lower computational cost.

VI. CONCLUSIONS

In this paper we have shown how to reduce complexity of explicit
RHMPC feedback laws which contain saturated regions. Given a
RHMPC function , the procedure constructs its simpler replace-
ment using basic polyhedral operations. Regions where the
control action attains a saturated value are removed and replaced by
extensions of unsaturated regions. As a consequence, the implementa-
tion complexity of the replacement is substantially reduced compared
to employing the original explicit feedback . Specifically, the
memory footprint of and its evaluation time are improved
by a factor of , which often exceeds one order of magnitude.
Evaluation speed can be further increased by devising advanced
region traversal strategies, as discussed in Section IV-D. In addition, it
was illustrated that construction of the replacement scales well with
increasing problem size and that it is significantly faster compared to
using the ORM procedure.
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Control Design for Quantized Linear Systems
With Saturations

Sophie Tarbouriech and Frédéric Gouaisbaut

Abstract—This paper deals with systems involving input saturation and
quantized control laws, which can be of two types: input quantization case
and state quantization case. In both cases, the state feedback control design
problem is addressed. Therefore, based on some modified sector conditions
and appropriate variable changes, regional (local) uniform ultimate bound-
edness stabilization problem is tackled. Computational oriented solutions
are derived to solve suboptimal convex optimization problems able to give
a constructive solution to the design problem of the state feedback gain.

Index Terms—Quantized control law, regional uniform ultimate bound-
edness stability, saturation.

I. INTRODUCTION

Many physical control systems are subject to magnitude limitation in
the input. This type of nonlinearity may reduce the performance of the
closed-loop system or even lead to instability. Therefore the stability
analysis or stabilization problems of control systems with saturation in
the input attracted research efforts for several decades (see, e.g., [14],
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[17], [25]). Furthermore, another important feature resides in the fact
that the output of the plant can be injected to the controller through a
quantizer, which may lead to limit cycles and chaotic behavior even if
the controller is a stabilizing one [3], [12], [15]. It is one of the reasons
why quantization in control systems has recently became an active re-
search topic. Actually, quantization can arise when digital networks or
control with limited information are part of the feedback loop or when
poor capabilities sensor and actuators are involved [6], [28]. Emerging
control theory framework has been developed pointing out how lim-
ited information (as due to quantizer) can affect the performance of the
resulting closed-loop system and therefore what type of solution can
be investigated [1], [20]. Thus, some tools issued from robust control
theory can be adapted to deal with stability and performance purposes,
as performance or stability, [9], [10], [16]. In this robust frame-
work, discrete-time systems with input quantization but without satura-
tion have been considered in [23], [24]. The case of logarithmic quan-
tizer has been addressed in a global context by using absolute stability
in [29], or in a regional context in [9] by using quadratic Lyapunov
arguments. Results addressing systems with uncertainties and/or with
delays have been published: see, for example, [5], [8], [27] and refer-
ences therein. In [2], planar systems of a particular structure with single
input and single output are considered. Differently from the current
paper, the quantization appears on the output and a globally practically
stabilizing output feedback control is designed.

The current paper deals with control design problem for systems
involving both input saturation and quantized control law. In this setup,
the quantizer is chosen to be uniform [9], [22]. Two quantization cases
are considered: input quantization case and state quantization case.
In both cases, the state feedback control design problem is addressed
by using some modified sector conditions and appropriate variable
changes. The regional (local) uniform ultimate boundedness stabi-
lization [18] of the system is then carried out. Hence, the proposed
approach allows to characterize both an inner and an outer set such that
the closed-loop trajectories initiated in the outer set converge toward the
inner set. It is important to emphasize that the technique proposed does
not require the open-loop system to be stable. Synthesis conditions in a
quasi-linear matrix inequality (quasi-LMI) form are stated in a regional
(local) stability context. The objective of the related LMI-based opti-
mization problems is then to maximize a measure of the size of the outer
set (stability domain), whereas a measure of the inner set is minimized.
Depending on the open-loop stability, the global stability context is also
carried out. In this case, the outer set corresponds to the whole state
space and the inner one reduces to the origin.

Our work is related to the work of Liberzon [20], where such an
approach is proposed in a nonlinear context. Except the nonlinear nom-
inal system, the major difference is the way to deal with the different
nonlinearities involved. In [20], the saturation and quantizer blocks are
in fact a one and only block, the saturation being a particular effect
of the quantizer. In our setup, the two nonlinearities are disjoined, al-
lowing to characterize them precisely. Furthermore, we can also deal
with state quantization case where the control gain is in sandwich be-
tween the saturation and the quantizer. Moreover, the contribution of
the paper can be viewed also as complementary to the results developed
in [8], even if in our case the way chosen to deal with the nonlineari-
ties issued from saturation and quantizer is based on the use of modified
sector conditions and not on LDI (Linear Differential Inclusion) and as-
sociated polytopic representation tools as in [14]. This tool was chosen
preferably to LDI tools [25], [26] since the numerical complexity of
the conditions increases more slowly than that one associated to LDI
tools with respect to the dimension of the conditions. Finally, the tech-
nique developed in the paper provides constructive conditions, in the

0018-9286/$26.00 © 2011 IEEE
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Parallel MPC for Linear Systems with Input Constraints
Yuning Jiang, Juraj Oravec⇤, Boris Houska, and Michal Kvasnica

Abstract—This paper is about a real-time model predictive
control (MPC) algorithm for large-scale, structured linear sys-
tems with polytopic control constraints. The proposed controller
receives the current state measurement as an input and computes
a sub-optimal control reaction by evaluating a finite number of
piecewise affine functions that correspond to the explicit solution
maps of small-scale parametric quadratic programming (QP)
problems. We provide asymptotic stability guarantees, which
can be verified offline. The feedback controller is computing
approximations of the optimal input, because we are enforcing
real-time requirements assuming that it is not possible to solve
the given large-scale QP in the given amount of time. Here, a
key contribution of this paper is that we provide a bound on the
sub-optimality of the controller. The approach is illustrated by
benchmark case studies.

Index Terms—Model Predictive Control, Parametric Optimiza-
tion.

I. INTRODUCTION

The advances of numerical optimization methods over the
last decades [1], in particular, the development of efficient
quadratic programming problem (QP) solvers [2], have en-
abled numerous industrial applications of MPC [3]. Modern
real-time optimization and control software packages [4], [5]
achieve run-times in the milli- and microsecond range by
generating efficient and reliable C-code [6], [7]. However, as
much as these algorithms perform well on desktop computers
or other devices with comparable computation power, the
number of successful implementations of MPC on embedded
industrial hardware, such as programmable logic controllers
(PLC) and field-programmable gate arrays (FPGA), remains
limited [8]. Here, the main question is what can be done if
an embedded device has not enough computational power or
storage space to solve the exact MPC problem in real-time.

Many researchers have attempted to address this question.
For example, the development of Explicit MPC [9] aims at
reducing both the online run-time and the memory footprint
of MPC by optimizing pre-computed solution maps of multi-
parametric optimization problems. However, Explicit MPC
has the disadvantage that the number of polytopic regions
over which the piecewise affine solution map of a parametric
quadratic program is defined, grows, in the worst case, expo-
nentially with the number of constraints. Some authors [10]
have suggested addressing this issue by simplifying the MPC
problem formulation by using move-blocking [11], but the
associated control reactions can be sub-optimal by a large
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margin. Other authors [12] have worked on reducing the mem-
ory footprint of Explicit MPC—certainly making considerable
progress yet failing to meet the requirement of many practical
systems with more than just a few states. In fact, despite all
these developments in Explicit MPC, these methods are often
applicable to problems of modest size only. As soon as one
attempts to scale up to larger systems, Explicit MPC is often
outperformed by iterative online solvers such as active set [2]
or interior-point methods [5].

A recent trend in optimization-based control is to solve large
MPC problems by breaking them into smaller ones. This trend
has been initiated by research on distributed optimization [13].
For example, dual decomposition [14], ADMM [13], and
ALADIN [15] have been applied to MPC in various contexts
and by many authors [16], [17], [18], [19], [20]. Additionally,
applications of accelerated variants of ADMM to MPC can be
found in [21], [22]. However, modern distributed optimization
methods, such as ADMM or ALADIN, typically converge to
an optimal solution in the limit, if the number of iterations
tends to infinity. Thus, if real-time constraints are present,
one could at most implement a finite number of such ADMM
or ALADIN iterations returning a control input that may be
infeasible or sub-optimal by a large margin.

Therefore, this paper asks the question whether it is possible
to approximate MPC feedback laws by evaluating a constant,
finite number of pre-computed, explicit solution maps that
are associated to MPC problems of a smaller scale. Here,
a key requirement is that uniform asymptotic stability and
performance guarantees of the implemented closed-loop con-
troller have to be verifiable offline. The contribution of this
paper is the development of a controller, which meets this
requirement under the restricting assumption that the original
MPC problem is a strongly convex QP, as introduced in
Section II. The control scheme itself is presented in the form of
Algorithm 1 in Section III. This algorithm alternates between
solving explicit solution maps that are associated with small-
scale decoupled QPs and solving a linear equation system of
a larger scale. However, in contrast to ALADIN, ADMM or
other existing distributed optimization algorithms, Algorithm 1
performs a constant number of iterations per sampling time.

The stability and performance properties of Algorithm 1,
which represent the main added value compared to our pre-
liminary work [23], are summarized in Sections III-C, III-D,
and III-E, respectively. Instead of relying on existing anal-
ysis concepts from the field of distributed optimization, the
mathematical developments in this paper rely on results that
find their origin in Explicit MPC theory [24]. In particular,
the technical developments around Theorem 1 make use of
the solution properties of multi-parametric QPs in order to
derive convergence rate estimates for Algorithm 1. Moreover,
Theorem 2 establishes an asymptotic stability guarantee of
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the presented real-time closed-loop scheme. This result is
complemented by Corollary 1, which provides bounds on the
sub-optimality of the presented control scheme. Finally, Sec-
tion IV-A discusses implementation details with a particular
emphasis on computational and storage complexity exploiting
the fact that the presented scheme can be realized by using
static memory only while ensuring a constant run-time, as
illustrated by numerical case studies.

II. LINEAR-QUADRATIC MPC

This paper concerns discrete-time MPC problems,

J(x0) = min
x,u

M(xN ) +
N�1X

k=0

`(xk, uk) (1)

s.t.

8
<

:

8k 2 {0, . . . , N � 1},
xk+1 = Axk +Buk,

uk 2 U ,

with strictly convex quadratic stage and terminal cost,

`(x, u) = x
>
Qx+ u

>
Ru and M(x) = x

>
Px .

Here, xk 2 Rnx denotes the state at time k and uk 2 Rnu

the associated control input assuming that the current time
of the MPC controller is set to 0. The matrices A,P,Q 2

Rnx⇥nx , B 2 Rnx⇥nu , R 2 Rnu⇥nu are given and constant.
Notice that (1) is a parametric optimization problem with
respect to the current state measurement x0. The optimiza-
tion variable x = [x>1 , x

>
2 , . . . , x

>
N
]> includes all but the

first element of the state sequence and the control sequence
u = [u>0 , u

>
1 , . . . , u

>
N�1]

> is defined accordingly.

Assumption 1 We assume that
a) the control constraint set U ✓ Rnu is a closed and

convex polyhedron satisfying 0 2 U;
b) the matrices Q, R, and P are all symmetric and positive

definite.

Assumptions 1a) and 1b) imply strong convexity such that the
primal solution of (1) is unique whenever it exists.

A. Asymptotic stability

Notice that the stability properties of MPC controllers have
been analyzed exhaustively [25]. In this context, a standard
assumption can be formulated as follows.

Assumption 2 The terminal cost M in (1) admits a control
law µ : Rnx ! U such that for all x 2 Rnx

`(x, µ(x)) +M(Ax+Bµ(x))  M(x) .

The MPC controller (1) is asymptotically stable if Assump-
tions 1 and 2 hold [25].

III. SUBOPTIMAL REAL-TIME MPC

In this section we propose and analyze a real-time algorithm
for finding approximate solutions of (1).

A. Preliminaries
Let us introduce the vectors y0 = u0, yk =

⇥
x
>
k

u
>
k

⇤>,
yN = xN , and their associated constraint sets

Y0 = U and Yk =
�
y 2 Rnu+nx | [ 0 I ] y 2 U

 
(2)

for all k 2 {1, . . . , N � 1}. Moreover, we introduce

Fk(yk) = `(xk, uk) , FN (yN ) = M(xN ), (3)

for k 2 {1, . . . , N � 1} and matrices

H0 = B, Hk =
⇥
A B

⇤
, Gk =

⇥
I 0

⇤
, GN = I,

as well as h0 = Ax0, hk = 0 for all k 2 {1, . . . , N � 1}.
Now, (1) can be written in the form

J(x0) = min
y

NX

k=0

Fk(yk) (4)

s.t.

8
<

:

8k 2 {0, . . . , N � 1},
Gk+1yk+1 = Hkyk + hk | �k,

yk 2 Yk .

The notation “| �k” behind the affine constraints in the
above optimization problems indicates that �k denotes their
associated multipliers. It is helpful to keep in mind that both
the function F0 and the vector h0 depend on x0. In addition,
we introduce a shorthand for the objective in (4) and its convex
conjugate function,

F (y) =
NX

k=0

Fk(yk) , F
?(�) = max

y

{�F (y) + h�, yi} ,

where the shorthand notation

h�, yi = �
�
H
>
0 �0

�>
y0 +

NX

k=1

�
G
>
k
�k�1 �H

>
k
�k

�>
yk

+ �
>
N�1G

>
N
yN

is used to denote a weighted (non-symmetric) scalar product
of primal and dual variables. Notice that the functions F and
F

? are strongly convex quadratic forms with F (0) = 0 and
F

?(0) = 0 as long as Assumption 1 is satisfied. The optimal
primal and dual solutions of (4) are denoted by x

? and �
?,

respectively. It is well-known that x? and �
? are continuous

and piecewise affine functions of x0, see [26].

B. Algorithm
The main idea for solving (4) approximately and in real

time is to consider the auxiliary optimization problem

J(x0) = min
y

NX

k=0

Fk(yk � y
ref
k
)

s.t.

(
8k 2 {0, . . . , N � 1},

Gk+1yk+1 = Hkyk + hk | �k ,

(5)

with reference trajectory y
ref. If y

ref = y
? is equal to the

minimizer of (4), then y
? is a minimizer of (5). Notice that

the main motivation for introducing the coupled QP (5) is
that this problem approximates (4) without needing inequality
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constraints. Thus, this problem can be solved by using a sparse
linear algebra solver.

Let us assume that y
m and �

m are the current approxi-
mations of the primal and dual solution of (4). Algorithm 1
constructs the next iterate y

m+1 and �
m+1 by performing

two main operations. First, we solve augmented Lagrangian
optimization problems of the form

min
⇠m2Y

F (⇠m) + h�, yi+ F (⇠m � y
m) . (6)

with Y = Y0⇥ · · ·⇥YN�1⇥Rnx . Problem (6) can be solved
in parallel, see Step 2.a) of Algorithm 1. In the following,
we set Q = 1

2r
2
F (0) such that k⇠

m
� y

m
k
2
Q = F (⇠m �

y
m) recalling that F is a centered positive-definite quadratic

form. And second, we solve QP (5) for the reference point
y

ref = 2⇠m � y
m without considering the input constraints.

These two main steps correspond to Step 2a) and Step 2b)
in Algorithm 1.

Algorithm 1 Parallel real-time MPC
Initialization:

• Choose y
1 = [y1>

0 , . . . , y
1>
N ]>, �1 = [�1>

0 , . . . ,�
1>
N�1]

>, a constant
� > 0, and a maximum number m of iterations per sampling time.

Online:
1) Wait for the state measurement x0 and compute the constant

f
1 = F (y1) + F

?(�1) .

If f1 � �
2
x
>
0 Qx0, rescale

y
1  y

1

s
�2kx0k2Q

f1
and �

1  �
1

s
�2kx0k2Q

f1
,

where kx0k2Q , x
>
0 Qx0.

2) For m = 1! m

a) solve the small-scale decoupled QPs in parallel

min
⇠m0 2Y0

F0(⇠
m
0 )� (H>

0 �
m
0 )>⇠

m
0 + F0(⇠

m
0 � y

m
0 )

min
⇠m
k

2Yk
Fk(⇠

m
k ) + (G>

k �
m
k�1 �H

>
k �

m
k )>⇠

m
k + Fk(⇠

m
k � y

m
k )

min
⇠m
N

FN (⇠mN ) +
⇣
G

>
N�

m
N�1

⌘>
⇠
m
N + FN (⇠mN � y

m
N )

for all k 2 {1, . . . , N�1} and denote solutions by ⇠
m = [⇠m0 , ⇠

m
1 , . . . , ⇠

m
N ].

b) Solve the coupled QP

min
ym+1

NX

k=0

Fk(y
m+1
k � 2⇠mk + y

m
k ) (7)

s.t.
⇢ 8k 2 {0, . . . , N � 1},

Gk+1y
m+1
k+1 = Hky

m+1
k + hk | �

m
k ,

and set �m+1 = �
m + �

m.

End
3) Send u0 = ⇠

m
0 to the real process.

4) Set y1 = [ym>
1 , . . . , y

m>
N , 0]>, �1 = [�m>

1 , . . . ,�
m>
N�1, 0]

>, go to Step 1.

Algorithm 1 is initialized with guesses,

y
1 = [y1>0 , . . . , y

1>
N

]> and �
1 = [�1>

0 , . . . ,�
1>
N

]> ,

for the primal and dual solution of (4) offline. Notice that
Algorithm 1 receives a state measurement x0 in every iteration
(Step 1) and returns a control input to the real process (Step 3).
Similar to the classical real-time MPC scheme [6], or related
warm-start techniques [27] , Step 4) shifts primal and dual
variables y

1 and �
1, which are, however, rescaled in Step 1),

based on a tuning parameter � > 0.

Assumption 3 The constant � in Algorithm 1 is such that

F (y?) + F
?(�?)  �

2
x
>
0 Qx0 .

Notice that such a bound � exists and can be computed offline,
because y

? and �
? are Lipschitz continuous and piecewise

affine functions of x0 [26]. Notice that the choice � = 1

would mean that the variables are never rescaled. In this
case, Algorithm 1 is unstable in general. In order to see this,
consider the scenario that a user initializes the algorithm with
an arbitrary (y1,�1) 6= 0. Now, if the first measurement
happens to be at x0 = 0, the optimal control input is at
u
? = 0. But, if we run Algorithm 1 with m < 1, it returns

an approximation u0 ⇡ u
? = 0, which will introduce an

excitation as we have u0 6= 0 in general. Thus, if we would
not rescale the initialization in Step 1), it would be impossible
to establish stability.

C. Convergence properties of Algorithm 1

This section provides a concise overview of the theoretical
convergence properties of Algorithm 1. Here, we initially
focus on establishing conditions for convergence of the iterates
of this algorithm (Lemma 1), which are then, in a second
step, used to establish a linear convergence rate estimate
(Theorem 1).

Lemma 1 Let Assumption 1 be satisfied and let (4) be feasi-
ble, such that a unique minimizer y

? and an associated dual
solution �

? exist. Then the iterates of Algorithm 1 satisfy

mX

m=m̂

F (⇠m � y
?) 

F (ym̂ � y
?) + F

?(�m̂
� �

?)

4

for all m � m̂ and all m̂ � 2.

Notice that the statement of Lemma 1 is useful in the sense
that an immediate consequence of this statement is that the
iterates of Algorithm 1 would converge to the exact solution
of (4), if we would set m = 1, i.e.,

lim
m!1

⇠
m = y

? and lim
m!1

�
m = �

?
.

The proof of the above lemma is technical but important for
the developments in this paper:

Proof. Let us introduce the auxiliary functions

F0(�0) = F0(�0)�
⇣
H

>
0 �

m
0

⌘>
�
m
0 +rF0(⇠

m
0 � y

m
0 )>�0 ,

Fk(�k) = Fk(�k) +
⇣
G

>
k �

m
k�1 �H

>
k �

m
k

⌘>
�
m
k

+rFk(⇠
m
k � y

m
k )>�k ,

FN (�N ) = FN (�N ) +G
>
N�

m
N�1�

m
N +rFN (⇠mN � y

m
N )>�N .

Because ⇠
m
k is a minimizer of the k-th decoupled QP in Step 2a) of

Algorithm 1, it must also be a minimizer of Fk on Yk. Thus, because
Fk is strongly convex with Hessian r2

Fk, we must have

NX

k=0

Fk(⇠
m
k ) +

NX

k=0

Fk(⇠
m
k � y

?
k) 

NX

k=0

Fk(y
?
k) .
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On the other hand, due to duality, we have
NX

k=0

Fk(y
?
k) + h�?

, y
?i+

NX

k=0

Fk(⇠
m
k � y

?
k)


NX

k=0

Fk(⇠
m
k ) + h�?

, ⇠
mi.

Adding both inequalities and collecting terms yields

0 �
NX

k=0

rFk(⇠
m
k � y

m
k )>(⇠mk � y

?
k) + 2

NX

k=0

Fk(⇠
m
k � y

?
k)

+ h�m � �
?
, ⇠

m � y
?i

= (⇠m � y
m)>Q(⇠m � y

?) + 2
NX

k=0

Fk(⇠
m
k � y

?
k) (8)

+ (�m � �
?)> A (⇠m � y

?)

with A = r�,xh�, xi. Similarly, the stationarity condition QP (7)
can be written as

Q(ym+1 � 2⇠m + y
m) +A>

�
m = 0 .

Because Q is positive definite, we solve this equation with respect
to ⇠

m finding

⇠
m =

1
2
Q�1A>(�m+1 � �

m) +
y
m + y

m+1

2
. (9)

Here, we have additionally substituted the relation

�
m = �

m+1 � �
m

.

Notice that we have Ay
m = Ay

m+1 = Ay
? for all m � 2, because

the solutions of the QP (7) must satisfy the equality constraints in (4).
If we substitute this equation and the expression for ⇠

m in (8), we
find that

� 2F (⇠m � y
?)

� (⇠m � y
m)>Q(⇠m � y

?) + (�m � �
?)> A (⇠m � y

?)

=
1
4
(�m+1 � �

m)>AQ�1A>(�m+1 � �
m)

+
1
4
(ym+1 � y

m)Q(ym � 2y? + y
m+1) (10)

+
1
2
(�m � �

?)>AQ�1A>(�m+1 � �
m)

=
1
2

�
F (ym+1 � y

?)� F (ym � y
?)
�

+
1
2

�
F

?(�m+1 � �
?)� F

?(�m � �
?)
�

for all m � 2. Now, the statement of Lemma 1 follows by summing
up the above inequalities for m = m̂ to m = m and using that the
last element in the telescoping sum on the right hand,

F (ym+1 � y
?) + F

?(�m+1 � �
?)

2
� 0

is non-negative. ⌅
The following theorem uses the above result in order to

derive a convergence rate estimate of Algorithm 1.

Theorem 1 Let Assumption 1 be satisfied and let (4) be
feasible, such that a unique minimizer y

? and an associated
dual solution �

? exist. Then there exists a positive constant
 < 1 such that

F (ym+1
� y

?) + F
?(�m+1

� �
?)

  (F (ym � y
?) + F

?(�m
� �

?))
(11)

for all m � 2.

Proof. Let Ŷk denote the intersection of all active supporting
hyperplanes at the solutions of the small scale QPs of Step 2a) in
Algorithm 1 for k 2 {0, . . . , N � 1}. We construct the auxiliary
optimization problem

min
ŷ

NX

k=0

Fk(ŷk)

s.t.

8
>><

>>:

8k 2 {0, . . . , N � 1},
Gk+1ŷk+1 = Hkŷk + hk | �̂k ,

0 = HN ŷN | �̂N ,

ŷk 2 Ŷk

(12)

and denote optimal primal and dual solutions of this problem by ŷ
?

and �̂
?. Next, we also construct the auxiliary QPs

min
⇠m0 2Ŷ0

F0(⇠
m
0 )�

⇣
H

>
0 �

m
0

⌘>
⇠
m
0 + F0(⇠

m
0 � y

m
0 ) ,

min
⇠mk 2Ŷk

Fk(⇠
m
k ) +

⇣
G

>
k �

m
k�1 �H

>
k �

m
k

⌘>
⇠
m
k + Fk(⇠

m
k � y

m
k ) ,

min
⇠mN

FN (⇠mN ) + (G>
N�

m
N�1)

>
⇠
m
N + FN (⇠mN � y

m
N ) .

Because these QPs have equality constraints only, their parametric
solutions must be affine. Thus, there exists a matrix T1 such that

⇠
m � ŷ

? = T1

✓
y
m � ŷ

?

�
m � �̂

?

◆
.

Similarly, the coupled QP (7) has equality constraints only; that is,
there exists a matrix T2 such that

✓
y
m+1 � ŷ

?

�
m

◆
= T2

✓
⇠
m � ŷ

?

y
m � ŷ

?

◆
.

Now, we use the equation �
m+1 ��

? = �
m ��

? + � and substitute
the above equations finding that

✓
y
m+1 � ŷ

?

�
m+1 � �̂

?

◆
= T

✓
y
m � ŷ

?

�
m � �̂

?

◆
(13)

with
T =

✓
T2

✓
T1�

I 0
�
◆
+

�
0 I

�◆
.

Next, we know from Lemma 1 that if we would apply Algorithm 1 to
the auxiliary problem (12), the corresponding primal and dual iterates
would converge to ŷ

? and �̂
?. In particular, inequality (10) yields

�
y
m+1 � ŷ

?
�> Q

�
y
m+1 � ŷ

?
�

+
⇣
�
m+1 � �̂

?
⌘>

Q�1A>
⇣
�
m+1 � �̂

?
⌘

< (ym � ŷ
?)> Q (ym � ŷ

?)

+
⇣
�
m � �̂

?
⌘>

AQ
�1A>

⇣
�
m � �̂

?
⌘

,

(14)

whenever
✓
y
m � ŷ

?

�
m � �̂

?

◆
6= 0. By substituting the linear equation (13),

we find that this is only possible if

T
>
✓
Q 0
0 AQ

�1A>

◆
T � AI (15)

for a constant A < 1. Now, one remaining difficulty is that the
constant A (as well as the matrix T ) depends on the particular set A
of active supporting hyperplanes in the small-scale QPs. Nevertheless,
because there exists only a finite number of possible active sets, the
maximum  = maxA A must exist and satisfy  < 1. Now, the
equation ✓

y
m+1 � y

?

�
m+1 � �

?

◆
= T

✓
y
m � y

?

�
m � �

?

◆
(16)
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holds only for our fixed m and the associated matrix T for a particular
active set, but the associated decent condition

�
y
m+1 � y

?
�> Q

�
y
m+1 � y

?
�

+
�
�
m+1 � �

?
�> AQ

�1A> �
�
m+1 � �

?
�

 

h
(ym � y

?)> Q (ym � y
?)

+ (�m � �
?)> AQ

�1A> (�m � �
?)
i
,

(17)

holds independently of the active set of the QPs in the m-th iteration
and is indeed valid for all m. A resubstitution of F and F

? yields
the statement of the theorem. ⌅

D. Asymptotic stability of Algorithm 1
The goal of this section is to establish asymptotic sta-

bility of Algorithm 1. Because we send the control input
u0 = ⇠

m

0 to the real process, the next measurement will be
at x

+
0 = Ax0 +B⇠

m

0 . Notice that, in general, we may have
x
+
0 6= x

?

1 = Ax0 +By
?

0 , since we run Algorithm 1 with a
finite m < 1.

Theorem 2 Let Assumptions 1, 2 and 3 be satisfied. Let the
constant � > 0 be such that the semi-definite inequality
B
>
QB � �R holds and let the constants ⌘, ⌧ > 0 be such

that

|J(x+
0 )� J(x?

1)|  ⌘kx
+
0 � x

?

1kQ +
⌧

2
kx

+
0 � x

?

1k
2
Q

(18)

If the constant m 2 N satisfies

m >

2 log

✓
2⌘�

q
�(1+)


+ 2⌧��2 1+



◆

log(1/)
, (19)

then the controller in Algorithm 1 is asymptotically stable.

Proof. Because we have x
+
0 �x

?
1 = B(⇠m0 �y

?
0) = P

�
⇠
m � y

?
�

with P = [B, 0, . . . , 0], we can substitute (9) to find

x
+
0 � x

?

1

= P


Q
�1

A
>(�m+1

� �
m)

2
+

y
m+1 + y

m

2
� y

?

�

=
1

2
PQ

�1
A
>(�m+1

� �
?) +

1

2
PQ

�1
A
>(�?

� �
m)

+
1

2
P(ym+1

� y
?) +

1

2
P(ym � y

?) .

The particular definition of � implies P
>
QP � �Q and

4
�
x
+
0 � x

?

1

�>
Q
�
x
+
0 � x

?

1

�

 4(�m+1
� �

?)>AQ
�1

P
>
QPQ

�1
A
>(�m+1

� �
?)

+ 4(�m
� �

?)>AQ
�1

P
>
QPQ

�1
A
>(�m

� �
?)

+ 4(ym+1
� y

?)>P>QP(ym+1
� y

?)

+ 4(ym � y
?)>P>QP(ym � y

?)

 4�(F (ym+1
� y

?) + F
?(�m+1

� �
?))

+ 4�(F (ym � y
?) + F

?(�m
� �

?))

 4�(1 + )m�1 �
F (y1 � y

?) + F
?(�1

� �
?)
�

 16�(1 + )m�1
�
2
F0(y

?

0) .

The last inequality holds based on the inequalities

F (y?) + F
?(�?)  �

2
x
>
0 Qx0  �

2
F0(y

?

0) ,

F (y1) + F
?(�1)  �

2
x
>
0 Qx0  �

2
F0(y

?

0) ,

which hold due to Assumption 3 and the particular construc-
tion in Step 1 of Algorithm 1. Now, a division by 4 yields

��x+
0 � x

?

1

��2
Q
 4��2

✓
1 + 



◆

m
F0(y

?

0) . (20)

By combining this inequality with (18) we find
��J(x+

0 )� J(x?

1)
�� (21)

 2

"
⌘�

r
�(1 + )


+ ⌧��

2 1 + 



#


m
2 F0(y

?

0) .

Thus, if we set

↵ = 1� 2

"
⌘�

r
�(1 + )


+ ⌧��

2 1 + 



#


m
2 > 0 ,

we have

J(x+
0 )  J(x0)�

�
F0(y

?

0)� J(x+
0 ) + J(x?

1)
�

 J(x0)� ↵F0(y
?

0) , (22)

which is sufficient to establish asymptotic stability [28]. ⌅

E. Performance of Algorithm 1
The result of Theorem 2 can be extended in order to derive

an upper bound on the sub-optimality of Algorithm 1.

Corollary 1 Let the assumption of Theorem 2 hold with

↵ = 1� 2

"
⌘�

r
�(1 + )


+ ⌧��

2 1 + 



#


m
2 .

If ycl
i
=
�
x

cl
i
, u

cl
i

�
denotes the sequence of closed-loop states

and controls that are generated by the controller in Algo-
rithm 1, an a-priori bound on the associated infinite-horizon
closed-loop performance is given by

1X

i=0

`(xcl
i
, u

cl
i
) 

J(x0)

↵
.

Proof. Because (22) holds, we have

J(xcl
i+1)  J(xcl

i )� ↵F0(y
cl
i ) ,

which yields the inequality
1X

i=0

F0(y
cl
i ) 

1
↵

1X

i=0

⇣
J(xcl

i )� J(xcl
i+1)

⌘
.

The statement of the corollary follows after simplifying the tele-
scoping sum on the right and substituting the equation F0(y

cl
i ) =

`(xcl
i , u

cl
i ). ⌅

Remark 1 (MPC with state constraints) Notice that (1)
admits control constraints only. A complete discussion of how
to extend the presented algorithm and analysis for MPC
problems with state constraint would go beyond the scope
of this paper. However, one method for taking such state
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constraints into account can be obtained by adding L1-penalty
functions to the stage cost `. Our stability and convergence
proofs can be extended for this case because adding L1-
penalties does not change the fact that the cost-to-go function
J is piecewise quadratic.

IV. IMPLEMENTATION DETAILS AND CASE STUDIES

This section applies Algorithm 1 to benchmark case studies.

A. Implementation on hardware with limited memory
Algorithm 1 has two main steps, Step 2a) and Step 2b).

In Step 2a) decoupled QPs have to be solved on-line. We
solve these QPs off-line using multi-parametric programming
by pre-computing the solution maps

⇠
?

0(✓0, x0) = arg min
⇠02Y0

2F0(⇠0) + ✓
>
0 ⇠0,

⇠
?

1(✓1) = arg min
⇠12Y1

2F1(⇠1) + ✓
>
1 ⇠1,

⇠
?

N
(✓N ) = arg min

⇠N

2FN (⇠N ) + ✓
>
N
⇠N

(23)

with parameters ✓0 2 Rnu+nz , ✓1 2 Rnx+nu , and ✓N 2 Rnx .
Here, ⇠

?

0 depends on x0 recalling that this dependency had
been hidden in our definition of F0 and Y0. We use MPT [29]
to pre-compute and store the maps ⇠

?

0 , ⇠
?

1 and ⇠
?

N
. Conse-

quently, Step 2a) in Algorithm 1 can be replaced by:

• Step 2a’) Compute the parameters

✓
m
0 = �H

>
0 �

m
0 � 2⌃0y

m
0 , (24a)

✓
m
k = G

>
k �

m
k�1 �H

>
k �

m
k � 2⌃ky

m
k , (24b)

✓
m
N = G

>
N�

m
N�1 � 2⌃Ny

m
N (24c)

with ⌃0 = R, ⌃k = blkdiag{Q,R}, k 2 {1, . . . , N � 1}, ⌃N = P

and set

⇠
m
0 = ⇠

?
0(✓

m
0 , x0) , ⇠

m
k = ⇠

?
1(✓

m
k )

for all k 2 {1, . . . , N} by evaluating the respective explicit solution
maps (23). In this paper, we use the enumeration-based multi-parametric
QP algorithm from [30] for generating these maps.

Notice that the complexity of pre-processing the small-scale
QPs (23) depends on the number NR = max{NR,0, NR,1} of
critical regions over which the PWA optimizers ⇠

?

0 , ⇠
?

1 and
⇠
?

N
are defined [31], but NR is independent of the prediction

horizon N as summarized in the first row in Table I. For a
derivation of the associated run-time and memory complexity
results we refer to [23], [32], [33].

TABLE I
COMPLEXITY OF STEPS 2A’) AND 2B) OF ALGORITHM 1.

Step Offline Online Memory

CPU time CPU time Requirement

2a’) O(N2
R) O(N log2(NR)) O(NR)

2b) O(Nn
3
x) O(Nn

2
x) O(Nn

2
x)

In Step 2b) coupled QP (7) must be solved. Because this QP
has equality constraints only, (7) is equivalent to a large but
sparse system of equations. Moreover, all matrices in (7) are
given and constant during the online iterations. This means

that all linear algebra decompositions can be pre-computed
offline. If one uses standard Riccati recursions for exploiting
the band-structure of (7), the computational complexity for
all offline computations is at most of order O(Nn

3
x), while

the online implementation has complexity O(Nn
2
x) [34] as

summarized in the second row in Table I.

B. Parallel MPC with Long Horizons
The first benchmark considers a linear dynamic system with

A =

2

664

0.9993 �3.0083 �0.1131 �1.6081
0 0.9862 0.0478 0
0 2.0833 1.0089 0
0 0.0526 0.0498 1

3

775 ,

and B =


�0.0804 �0.0291 �0.8679 �0.0216
�0.6347 �0.0143 �0.0917 �0.0022

�>
.

The states of this system can be interpreted as the yaw, pitch,
roll and the attack angles of an aircraft while the controls are
given by the elevator and the flaperon angles [35]. The state
constraint and control constraint are given by

X =

⇢
x 2 R4

����


�0.5
�100

�



0 1 0 0
0 0 0 1

�
x 


0.5
100

��
,

U = [�25, 25]⇥ [�25, 25] ,

the stage cost weights are set to

Q = diag(0.1, 100, 0.1, 100) , R = diag(10, 10) ,

and the initial state is given by x0 = [ 20 0 20 20 ]. The matrix
P is computed by solving an algebraic Riccati equation such
that the terminal cost is locally equal to the unconstrained
infinite horizon cost [25]. Moreover, the parameter � = 10 is
fixed in our implementations.

Fig. 1. CPU time comparison: Algorithm 1 vs Traditional MPC (Condensing
+ qpOASES) both run in Matlab R2018a interfacing C/C++ code.

Figure 1 shows a CPU time comparison of Algorithm 1 (with
m = 3 and m = 10) and traditional MPC in dependence on the
prediction horizon. The implementations of Algorithm 1 uses
Matlab R2018a with YALMIP [36] and MPT 3.1.5 [29]
but the comparison is based on qpOASES [2]. Algorithm 1
is faster for large N , but this speed-up comes along with a
loss of control performance (see Figure 2). For m = 10 the
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sub-optimal closed-loop state trajectory is, however, almost
indistinguishably close to the optimal trajectory.

Fig. 2. Closed-loop state and control trajectories: m 2 {3, 10,1}, N = 40.

Our implementation of Algorithm 1 requires 81 kB memory
corresponding to 92 regions (independent of N ). These num-
bers can be compared with the following results for a standard
Explicit MPC implementation using the geometric parametric
LCP solver of MPT 3.1.5 [29]:

N # of regions memory [kB] CPU time [µs]

3 427 233 23

5 3 649 2 566 89

10 64 556 70 609 304

For N > 10 our implementation of Explicit MPC ran out of
memory.

C. Spring-Vehicle-Damper System
Our second case study considers a spring-vehicle-damper

system with Ī vehicles with mass mv = 1kg, as visualized
below.

Fig. 3. Sketch of a spring-vehicle-damper system.

The non-zero blocks of the system matrices are given by

Ai,i = I+ Ts

✓
0 1

�2 kv
mv

�2 dv
mv

◆
, Bi =

✓
0
0

◆
,

AĪ,Ī = I+ Ts

✓
0 1

�
kv
mv

�
dv
mv

◆
, BĪ =

✓
0
Ts
mv

◆
,

Ai�1,i = Ai,i+1 = Ts

✓
0 0
kv
mv

dv
mv

◆
,

for i 2 {1, . . . , Ī � 1}. Here, kv = 3N/m denotes the spring
constant, dv = 3Ns/m a damping coefficient, and Ts = 0.1 s

the step-size of an Euler discretization. The state and control
constraints are set to

X = X1 ⇥ . . .⇥ XĪ , U = [�2, 0.5] ,

where X1 = . . . = XĪ = [�0.5, 1.5]⇥ [�0.5, 1] .

The weighting matrices of the stage cost are set to Q = 10 I
and R = I .

In this example, an implementation of Algorithm 1 requires
287 kB corresponding to 432 critical regions. This memory
requirement is independent of the number of vehicles Ī and
the prediction horizon N . In contrast to this, the number of
regions for standard Explicit MPC depends on both Ī and N :

(Ī, N) # of regions memory [kB]

(1, 10) 58 14

(1, 50) 144 169

(2, 10) 2 244 877

(3, 10) 4 247 2 324

0 5 10 15 20 25 30 35 40
0

10

20

30

40

50

Fig. 4. The total number of active constraints of all distributed QP solvers
during the MPC iterations for different choices of m.
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-3

-2

-1

0

Fig. 5. Closed-loop performance degradation (log scale) with respect to the
optimal objective function J1 as a function of m.

Figure 4 shows the total number of active constraints of all
distributed QP solvers for different choices of m. Here, the
number of active constraints of optimal MPC (corresponding
to m = 1) are shown in the form of red crosses in
Figure 4. If we compare these optimal red crosses with the
blue diamonds (m = 1), we can see that the choice m = 1
still leads to many wrongly chosen active sets. However, for
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m � 10 a reasonably accurate approximation of the optimal
number of active constraints is maintained during all iterations.
Finally, Figure 5 shows the sub-optimality of Algorithm 1 in
dependence on m for a representative case study with Ī = 3
and N = 30.

V. CONCLUSIONS

This paper has introduced a parallelizable and real-time
verifiable MPC scheme, presented in the form of Algorithm 1.
This control algorithm evaluates at every sampling time a finite
number of pre-computed, explicit piecewise affine solution
maps that are associated with parametric small-scale QPs.
Theorem 2 and Corollary 1 provide both asymptotic stability
guarantees as well as bounds on sub-optimality. The presented
explicit MPC approach can be used to reduce the storage and
run-time of explicit MPC by orders of magnitude.
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Explicit MPC-Based RBF Neural Network
Controller Design With Discrete-Time

Actual Kalman Filter for
Semiactive Suspension

Lehel Huba Csekő, Michal Kvasnica, and Béla Lantos

Abstract— Many applications require fast control action and
efficient constraint handling, such as in aircraft or vehicle
control, where instead of the slow online computation of the
model predictive control (MPC) the explicit MPC can be an
alternative solution. Explicit MPC controllers consist of several
affine feedback gains, each of them valid over a polyhedral
region of the state space. The exponential blow-up of the number
of regions with increasing the prediction horizon increases the
searching time among the regions extremely which together
with the requirement of the full state measurement decreases
its applicability for real systems. First, discrete-time actual
Kalman filter is designed for the semiactive suspension and
applied to explicit MPC controller that requires only measure-
ment of the suspension deflection. Second, this paper presents
a systematic way to design Gaussian radial basis function-
based neural network (NN) approximation of the explicit MPC
controller and shows that a well-tuned NN with some neurons
can replace the explicit MPC controller. This nonlinear state-
feedback controller can ensure the fast control action but price
of the approximation is some deterioration of the performance
value. The complete novel nonlinear control system with Kalman
filter is analyzed in detail. The derived controllers are evaluated
through simulations, where shock tests and white noise velocity
disturbances are applied to a real quarter car vertical model.

Index Terms— Approximation methods, Kalman filters,
limiting energy dissipation, optimal control, predictive control,
radial basis function (RBF) networks, vehicle suspensions.

I. INTRODUCTION

THE automotive suspension supports the vehicle body on
the axles and provides good ride quality against the road

disturbances, while keeping good road traction. In the newest
luxury cars, intelligent suspension is part of a vehicle dynamic
control system and one may change the vehicle characteristic
by pushing a button. The drive feeling can be set to a comfort
mode as in a limousine, to a sporty mode, or to automatic.
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The system influences the characteristic of gear change,
steering, engine, and suspension.

On the basis of the analogy between the electrical and
mechanical circuits, a new mechanical circuit element, the
inerter, has been developed and applied to vehicle suspension
with success. Control design of suspension with inerter is
based on the determination of the positive real admittance,
which meets with the specified performance measures [1], [2].
The first deployment of the inerter-based suspension under the
name J-damper happened in the McLaren Formula One Racing
team, leading to significant performance gains in handling
and grip [3].

The quarter car suspension model is adequate to analyze
the car response to irregular road surface and design an
approximately optimal suspension controller to increase the
good drive feeling. The performance of the suspension in the
time domain can be expressed by !2 norm. The suspension
can be classified into three groups according to operation:
1) passive; 2) semiactive; and 3) active. Passive suspension
consists only of spring, dampers, and inverters. The semiactive
setup utilizes variable damper and in the active suspension
hydraulic, air, or electric actuator forces are applied. The
semiactive suspension has a simpler mechanical structure than
the active one, requires power only to change the dissipative
force characteristic, and it cannot become unstable because it
is a passive system. Due to its many advantageous properties,
the automotive industry builds the semiactive suspension often
into top vehicles. The controller design challenge in semiactive
suspension is due to its nonlinearity with dissipativity and
saturation constraints. If these constraints are not considered
by the controller and only the clipped strategy is applied
instead, then performance may be lost. In addition to the
automotive industry, the semiactive dampers can also be used
in buildings to compensate for oscillations during earthquakes
and anywhere where the vibration is undesirable. Examples
mentioned previously show that the research area of the
controlled dampers is very active and can take advantage from
new damper technology and new control methods.

Although lots of modern control methods exist, only few can
treat constraints in efficient way. The main objective of optimal
control is to determine the solution of the infinite-horizon
linear quadratic regulator problem with constraints (CLQR)
that was studied by many researchers in [4]–[10]. The solution

1063-6536 © 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
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can be approximated by repeatedly solving constrained
finite-horizon optimal control problems in a receding horizon
fashion, which is also called model predictive control (MPC)
and accepted mainly in the process industry. Unfortunately, the
time-consuming repetitive solution of quadratic program (QP)
and linear program (LP) limits the application of MPC mainly
to processes with slow dynamics.

To overcome this limitation, the method of multiparametric
programming can be applied to precalculate the solution of
the finite-horizon CLQR problem in the form of a piecewise
affine (PWA) function. This technique enlarges the scope
of applicability of MPC, allows insight into the controller
structure, and enables detection of the reachable states and
fault operations in advance. A serious drawback of explicit
MPC solutions, however, lies in the exponential growth of
the number of control regions when the prediction horizon
is increasing [11]. A high number of regions causes large
online implementation time required to find the control action
and also impacts the storage requirements. New research
directions study efficient searching algorithms to choose the
feedback gains [12]–[14], and/or develop techniques to reduce
the number of regions [15], [16]. An another approach to
overcome the above mentioned limitations is to apply some
kind of approximation of the explicit MPC controller using,
for example, neural networks (NNs) or polynomials [17]–[19].
In this paper, we approximate the explicit MPC by a Gaussian
radial basis function NN (RBF NN) that provides a non-
linear state-feedback controller. The RBF NN is a two-
layer NN, where only the output layer is trained by the
least squares method. This ensures a fast and simple learning,
while providing similar approximation quality as multilayer
perception (MLP) networks [20]. Important to notice is that
the training happens offline. Once the NN is working, the
online computation of control actions boils down to a fast
evaluation of a nonlinear state-feedback controller. From a
practical viewpoint, if the approximation error was below the
conversion errors of the Digital-to-Analog conversion then, the
approximation would yield the same result as the explicit MPC
[19]. In this paper, we analyze goodness of our approximation
from different aspects.

An another limitation of MPC implemented in the
receding horizon manner is that persistent satisfaction of
constraints is not guaranteed a priori. To mitigate this
issue, one can use non-MPC type of controllers (a good
choice can be, e.g., Linear-Quadratic (LQ) controller)
in the part of the state space not covered by MPC.
Alternatively, the constraints can be softened. Then, the
feasible space will be completed with new regions. The price
of the softening is that the state trajectory started from the
earlier infeasible regions will violate the hard constraints.
Moreover, application of the soft constraints will rapidly
increase the number of regions [11]. The RBF NN approxima-
tion requires a training set and the idea is to use the previously
mentioned completion methods of the regions to cover the
whole available state space to create the training points easily.
Hence, we do not need to analyze the more dimensional shape
of the union of feasible regions for generating training set.

Finally, MPC is a state-feedback policy, and hence, requires

Fig. 1. Semiactive quarter car model.

full state measurement. These, however, are not always
available in practice. Therefore, this paper suggests to employ
a discrete-time actual Kalman filter connected to the explicit
MPC controller and the NN approximation of the explicit
MPC controller, which requires only measurement of the
suspension deflection. It is well known from the Linear-
Quadratic-Gaussian (LQG) theory that Kalman filter is the
optimal filter for LQ control but we do not analyze if it is
the optimal filter for explicit MPC or for NN controller. The
results will show that the Kalman filter can be an appropri-
ate estimator in case of presented controllers. The designed
controllers are compared with each other and the results are
presented through simulation of a real quarter car model. This
paper builds upon results of the research article [11].

The remainder of this paper is organized as follows.
Section II introduces the model of the semiactive suspension
and the passivity constraints. Furthermore, it also presents
the clipped optimal control, the discrete-time MPC, and
the Kalman filter. Section III summarizes the theoretical
background of PWA systems to deal with nonlinearities.
Explicit MPC and multiparametric programming are discussed
in Section IV. Section V is devoted to design of discrete-time
actual Kalman filter. In Section VI, the explicit MPC-based
RBF NN approximator is designed and the overall control
system with Kalman filter is analyzed. The conclusion is
drawn in Section VII.

II. QUARTER CAR MODEL OF THE SEMIACTIVE

SUSPENSION AND THE OPTIMAL

CONTROL PROBLEM

Motion equations of a 2-DOF quarter car in Fig. 1 can be
described as in [21] by

ẋ1 = x2 − w, ẋ2 = 1
Mus

[ks x3 + βs(x4 − x2) − kusx1 + F]

ẋ3 = x4 − x2, ẋ4 = 1
Ms

[−ksx3 − βs(x4 − x2) − F] (1)

where Ms and Mus are the sprung and unsprung mass, respec-
tively, ks and kus [N/m] are the spring stiffness coefficients,
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Fig. 2. Speed/effort rule of a passive semiactive (left) and active (right)
suspension system.

Fig. 3. MR damper [22].

βs [N/m/s] is the damping coefficient, x1 [m] is the tire
deflection, x2 [m/s] is the unsprung mass velocity, x3 [m] is
the suspension deflection, x4 [m/s] is sprung mass velocity,
F [N] is the adjustable force, and w [m/s] is the road velocity
disturbance.

The following normalized parameters will be introduced:
sprung-to-unsprung mass ratio ρ, sprung mass and wheel-hop
natural frequencies ωs , ωus [rad/s], and the normalized
adjustable force u [N/kg] which imply the normalized damping
coefficient ζ = βs/(2(Msks)1/2) to obtain numerically better
conditioned state equations:

ẋ2 = − kus

Mus︸︷︷︸
ω2

us

x1 − βs

Mus︸︷︷︸
2ρζωs

x2 + ks

Mus︸︷︷︸
ρω2

s

x3 + βs

Mus︸︷︷︸
2ρζωs

x4 + Ms

Mus︸︷︷︸
ρ

F
Ms︸︷︷︸
u

ẋ4 = βs

Ms︸︷︷︸
2ζωs

x2 − ks

Ms︸︷︷︸
ω2

s

x3 − βs

Ms︸︷︷︸
2ζωs

x4 − F
Ms︸︷︷︸
u

. (2)

According to Fig. 2, suspensions systems can be categorized
into three groups. Passive suspension always dissipates
energy through a fixed damping force characteristic.
Semiactive suspension can also only dissipate energy but
with varying damping force characteristic (left). Active
suspension can both dissipate (1 and 3 quarters) or generate
energy (2 and 4 quarters)using the almost total damping force
plane (right), where the actuator model (e.g., electrohydraulic
actuator) defines the exact characteristic on the plane.

Due to their simple mechanical structure, low-energy con-
sumption, fast time response, and low cost, the semiactive
suspensions are preferred over the active ones when increasing
the vehicle performance is required. The magnetorheologi-
cal (MR) (Fig. 3) damper is one of the most applied semiactive
dampers, which uses MR fluid (e.g., oil and ferro particles)
whose viscosity, i.e., damping value βsemi, can be varied by

Fig. 4. Force–velocity characteristic of the damper model.

applying magnetic field controlled by current. The magnetic
field orders the particles in such a direction as to increase the
damping value. The damping characteristic can be controlled
accurately by changing the magnetic field. An example of
a nonlinear model of the MR-damper, which can describe
the biviscous and hysteresis behaviors of the damper very
well [23], [24], is given by

F = c0 ẋ3 + k0x3 + ymr I · tanh(c1ẋ3 + k1x3) (3)

where the parameters c0, k0, ymr, c1, and k1 are defined in [24].
The physical meaning of these parameters is discussed in [23].
The input electric current applied to MR damper is denoted
by I. If the following sinusoidal suspension deflection x3 is
considered:

t = [0 . . . 2π], x3 = 0.2 sin(2π · 1.83 · t)

ẋ3 = 0.2 · 2π · 1.83 cos(2π · 1.83 · t) (4)

and the current I is changed from 0 up to 4 A, then Fig. 4
shows the nonlinear MR damper characteristic. The semiactive
suspension systems are passive systems, since the power
consumption is required only for purposes of changing
dissipative force characteristic in real time. Consequently,
they cannot become unstable. From another viewpoint, the
semiactive suspension does not actively generate energy to the
vibratory suspension system but only dissipates energy from it.

Some researchers study the semiactive suspension system as
a bilinear system, where the control input βsemi is used [25].
In this formulation, the product of the states (x4 − x2) and the
control input βsemi appears in the model: F = βsemi(x4 − x2)
[see equations in (1)]. The variable damper βsemi is con-
strained by

βmin
semi ≤ βsemi ≤ βmax

semi. (5)

According to a recently applied more practical approach, the
semiactive damper is simply modeled as a static map of the
deflection speed force, while the control input F has to satisfy
the dissipativity and the saturation constraints [Fig. 2 (left)],
see [21], [22]. The assumed semiactive quarter car model in (1)
contains a virtual input F and measured output yobs = x3.
Since the relation is linear, a linear Kalman filter can be used
to estimate the states. Notice that the real physical input I
(current of the MR-damper) can be expressed from (3) based
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on the estimated state and the designed F . The introduction
of F reduces the complexity of the problem in the
design of F (dissipativity and saturation constraints should
be satisfied), however, the estimated state remains available.
As a consequence, the controller design problem can be
considered as a dynamic optimal control problem for linear
system under nonlinear state-dependent control constraints.
This paper suggests to solve this problem by employing an
explicit MPC as a (sub) optimal controller satisfying control
constraints, approximated by a NN to reduce complexity. The
NN approach also allows to cope with more complicated
nonlinear MR-damper models, where the NN approximation
of that model could be solved to deduce the current I for the
actuator.

Since the semiactive damper ensures stability, our aim is
to achieve performance requirements. In this paper, this is
achieved by employing MPC. As its name suggests, one needs
a model to predict the future behavior of the plant and the
optimization is based on the predicted future of the plant.
The semiactive suspension system can be modeled as

ẋ = Ax + Bu + Bww, yperf = ẋ4 = Cperf x + Dperfu

yobs = x3 = Cobsx (6)

where the state-update and output matrices are

A =





0 1 0 0
−ω2

us −2ρζωs ρω2
s 2ρζωs

0 −1 0 1
0 2ζωs −ω2

s −2ζωs





B =





0
ρ
0

−1



, Bw =





−1
0
0
0



, Dperf =
[−1

]

Cperf =
[
0 2ζωs −ω2

s −2ζωs
]

Cobs = [
0 0 1 0

]
. (7)

The output yperf (sprung mass acceleration) is used to
design the MPC controller, while the suspension deflection
yobs is the only measured (observed) output. The quantity
yperf will be used as a performance measure later and it is
equivalent to ẋ4. The semiactive damper is modeled as a
static map, see Fig. 2. It determines the achievable forces and
thus represents constraints. The following dissipating power
constraints are considered:
if (ẋ3 = x4 − x2) ≥ 0

β
min
semi(x4 − x2) ≤ u ≤ β

max
semi(x4 − x2)

if (ẋ3 = x4 − x2) ≤ 0

β
max
semi(x4 − x2) ≤ u ≤ β

min
semi(x4 − x2) (8)

where β
min
semi and β

max
semi stand for the normalized damping

lower and upper slopes with Ms . The saturation constraints are

umin ≤ u ≤ umax. (9)

Note that the constraints in (8) are state dependent.
Consequently, the current control affects not only the future
states of the system but also impacts the future constraints

of the force u through (x4 − x2). The range of the achievable
control actions depends on the previous history of the control
values. The performance index J includes the yperf = ẋ4
performance measure to reduce the vehicle body acceleration,
x1 to keep good road holding, and x3 to hold the vehicle
static weight [21]

J =
∫ ∞

0

(
q1x2

1 + q3x2
3 + ẋ2

4
)
dt =

∫ ∞

0

(
x T Q0x + y2

perf
)
dt

(10)

with

Q0 =





q1 0 0 0
0 0 0 0
0 0 q3 0
0 0 0 0



. (11)

Substituting ẋ2
4 from the state equations into (10), we obtain

the performance function in the usual form

J =
∫ ∞

0
(x T Qx + 2x T NT u + uT Ru)dt (12)

where

Q =





q1 0 0 0
' (2ζωs)2 −2ζω3

s −(2ζωs)2

' ' ω4
s + q3 2ζω3

s
' ' ' (2ζωs)2



 (13)

NT =





0
−2ζωs

ω2
s

2ζωs



 = B4 AT
(4,:) ! ST

0 , [R = 1] (14)

and the stars denote symmetric components.
The linearized real quarter-car semiactive suspension

parameters are listed in Table I.
The following theorem, adopted from [26], describes the

solution of the LQ optimal control problem with constraints:
Theorem 1: Assume the full state measurement is available.

Then, the optimal control u for (6) and (7) with the passivity
and saturation constraints (8) and (9), and the performance
function defined in (12) can be obtained as

Ṗ = −P A(x, P) − AT (x, P)P + P R(x, P)P − Q(x, P)

(15)

uopt = sat[−Ksemi(P(t))x] = sat[−(BT P(t) + S0)x] (16)

J = xT
0 P(0)x0. (17)

A. Clipped Optimal Control

It is important to note that the matrix Riccati differential
equation in Theorem 1 cannot be simplified to an algebraic
Riccati equation (P(t) = P) in spite of tending of the final
time to infinity. This is due to the fact that the saturation
causes switchings of matrices A(x, P), R(x, P), and Q(x, P)
along the trajectory. Therefore, by taking constant matrix
P(t) = P and consequently Ṗ = 0 and solving an algebraic
Riccati equation, only a suboptimal solution is obtained which
is called the clipped optimal LQ solution in the literature.
The name refers to the situation when the desired semiactive
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TABLE I

LINEARIZED SEMIACTIVE SUSPENSION PARAMETERS [21], [22]

force u is clipped according to (16), whenever it exceeds its
passivity or actuator limitation constraints (8) and (9). Note
that semiactive force in (16) consists of two parts: one part is
the desirable total suspension force −BT P(t)x and the other
part u p = −S0x = −(ω2

s x3 + 2ζωs(x4 − x2)) cancels the
passive spring and damper forces.

Without the passivity constraints in (8) for u, the active
suspension is obtained. In this case, P(t) = P and the
matrix Riccati equation leads to the same algebraic Riccati
equation as in the clipped optimal control. The analysis of
the semiactive performance index relating to optimal active or
passive control leads to the clipped LQ and to the steepest
gradient method-based suboptimal control laws, but in this
paper only the first one is presented and applied [11], [26].
The following theorem considers the relation between the
performance of the optimal semiactive suspension and that
of the optimal active suspension [26].

Theorem 2: The cost of the semiactive suspension is always
greater than that of the optimal active suspension and the
relation can be quantified such as

Jsemi = x T
0 Pa x0︸ ︷︷ ︸

Jactive,LQR

+
∫ ∞

0
(ua − u)2dt (18)

subject to constraints (8) and (9), where ua = −(BTP(t)+S0)x
and Pa is the solution of the following Riccati equation:

0 = −Pa(A − BS0) − (A − BS0)
T Pa + Pa B BT Pa

− Q + ST
0 S0. (19)

Since the first term in the integral is independent of the control
signal, only the second-term (whole integral) minimization is
needed, which is not trivial. An approximate solution can be
derived by minimizing the integrand only. This approach leads
to the clipped LQ suboptimal semiactive control law

d
du

{(ua − u)2} = −2(ua − u) = 0 (20)

d2

(du)2 {(ua − u)2} = 2 > 0 −→ minimum

⇓
u = sat[ua].

B. Discrete-Time MPC and the Kalman Filter

In the real car suspension it is not possible to measure
all states. Therefore, an output-feedback controller will be
designed. Since MPC requires discrete-time modeling, and
because the suspension is a stochastic system, the discrete-
time actual Kalman filter, which requires only measurement
of the suspension deflection, seems to be an appropriate
choice to estimate the states. The state-space model with new
discrete-time A, B , and Bw matrices is given by

x(k + 1) = Ax(k) + Bu(k) + Bww(k)

yperf(k) = x4(k + 1) = Cperf x(k) + Dperf u(k)

yobs(k) = x3(k) = Cobsx(k) + ν(k) (21)

together with constraints (8) and (9) and xmin ≤ x(k) ≤ xmax.
If the pair (A, Cobs A) is observable, then a discrete-time
actual state estimator can be designed. Since the disturbance
(process noise) w(k) from the road and the measurement
noise ν(k) are stochastic signals, the Kalman filter estimator,
which is the most optimal state estimator in case of stochastic
signals, is more appropriate choice than the deterministic
observer [11]. The actual Kalman filter applies the actual
value of the measured output yobs(k) in the estimation of
the state such that better control actions are generated [27].
The white noise road velocity disturbance w is modeled as
a discrete-time Gaussian distribution with zero mean and the
following standard deviation [21]:

σ =
√

2 · π · v · Aroad

Ts

where Aroad = 4.9 · 10−6, v = 88 km/h, and Ts = 10 ms.
Consequently, the autocovariance matrix is E[wkwT

l ] = σ 2δkl .
The measurement noise is assumed to be white, zero-mean,
and with E[vkvT

l ] = 10−5δkl , which corresponds to a very
accurate sensor. Noise processes are uncorrelated, thus
E[wkvT

l ] = 0 and E[vkwT
l ] = 0. The discrete-time actual

Kalman filter is defined by the following dynamical system:
x̂(0) = [0 . . . 0]T

nx
(22)

x̂(k) = Fx̂(k − 1) + Gyobs(k) + H u(k − 1)

F = A − GCobs A, H = B − GCobs B (23)

where the innovation gain G is looked for such that it yields
optimal unbiased and minimum-mean-square-error estimate
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Fig. 5. Normalized dissipative and saturation constraints of the control signal.

x̂k of the state xk

E[x̂k] = xk ⇒ E[xe(k)] = E[x(k) − x̂(k)] = 0

E[(x(k) − x̂(k))(x(k) − x̂(k))T ] → infimum ∀k. (24)

In the above formulas, we used the same letters for the
system matrices as earlier in the continuous-time case but
from now on they represent discrete-time matrices. Design of
the discrete-time actual Kalman filter in case of time-invariant
system and constant covariance matrices can be executed
simply based on design of a dual, time-invariant, and
discrete-time LQ optimal control system [27]. Notice that the
nonlinear constraints are not considered in the Kalman filter
design.

Discrete-time implementation of the performance function
can be obtained simply by applying the rectangular
integration rule with sampling time Ts . Then, the following
state-feedback MPC formulation can be defined for the
semiactive suspension:

min x T
N QN xN +

N−1∑

k=0

x T
k Qxk + yT

k,perf yk,perf (25a)

s.t. xk+1 = Axk + Buk (25b)

yk,perf = Cperf xk + Dperfuk (25c)

(xk, uk) ∈ (P1 ∪ P2) (25d)

xmin ≤ xk ≤ xmax (25e)

x0 = x(0) (25f)

where (25a) is the objective function, (25b) represents the
prediction equation, (25c) defines predicted outputs, (25d)
describes the passivity and saturation constraints, (25e)
accounts for state constraints, and (25f) initializes the
optimization problem with the current state measurements,
or estimates thereof. Moreover, N is the (normalized) time
horizon. In (25), we distinguish the current state x(k) from
the predicted state xk . Moreover, we denote by UN the
open-loop input sequence over the horizon, and Q represents
the weighting matrix.

The constraint in (25d) is shown in Fig. 5, which shows
the normalized dissipative and saturation constraints for the
semiactive suspension. Notice that although the constraint

is nonconvex, it can be described as the union of two
polyhedral constraints.

Polyhedron P1:




0 2ζmaxωs 0 −2ζmaxωs 1
0 −2ζminωs 0 2ζminωs −1
0 0 0 0 1





︸ ︷︷ ︸
H1





x1
x2
x3
x4
u




≤




0
0

umax





︸ ︷︷ ︸
K1

(26a)

Polyhedron P2:




0 −2ζmaxωs 0 2ζmaxωs −1
0 2ζminωs 0 −2ζminωs 1
0 0 0 0 −1





︸ ︷︷ ︸
H2





x1
x2
x3
x4
u




≤




0
0

−umin





︸ ︷︷ ︸
K2

.

(26b)

In the objective function (25a), we approximate the
constrained discrete-time infinite-horizon LQ regulation
problem (CLQR) as a finite-time optimal control problem
(with a short horizon). Such a problem needs to be solved
repeatedly in a receding horizon fashion. At each time instant
an open-loop finite-time optimal control problem is solved
and only the first optimal control command is applied to
the process. At the next time step the finite-time optimal
control is again solved over a shifted horizon based on new
states. This type of the controller is called a receding horizon
controller (RHC).

If the finite-time optimal control law is calculated by solving
an online optimization at each time step, then the control
method is also referred to as online MPC. The CLQR with
quadratic or piecewise linear (1-norm, ∞-norm) performance
index implies QP or LP that can be solved online by efficient
tools based on active-set or interior-point methods.

Several researchers recognized that the constrained
finite-time optimal control (CFTOC) with the choice
QN = P∞, where P∞ is the solution of the unconstrained
infinite-horizon LQ problem, sometimes also yields the
solution of CLQR [4]–[10]. The set of initial conditions x(0)
for which the equivalence holds, depends on the length of the
horizon N .

Several algorithms exist to compute the sufficiently long
horizon N for any compact set of the initial states such that
a CFTOC solves the infinite-time CLQR problem, assuming
the constraints are inactive for k ≥ N . In such a case the
cost from N to ∞ can be calculated by x(N)QN x(N), where
QN equals the solution of the unconstrained infinite-horizon
Riccati equation (QN = P∞). These algorithms usually
yield large horizons N , which leads to complex optimization
problems.

To model the nonconvex passivity constraint (25d) in a
computationally tractable manner, we propose to employ
the concept of PWA models, which are discussed in the
subsequent section. Furthermore, the solution of the
constrained MPC optimization problem including the discrete-
time actual Kalman filter is very complicated. Therefore,
we design the controller separately from the Kalman filter.
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Specifically, we will derive an explicit MPC controller where
we assume the measurement states are available, and we
compute separately the state estimator (Kalman filter) for the
controller implementation. The idea comes from LQG control
area where the separation principle proves the optimal solution
if this technique is applied. Whether or not such a separation
principle holds for the assumed framework that employs an
NN approximation of the MPC controller is an open problem
that remains to be proved rigorously. In this paper, we assume
the principle is valid based on LQG theory.

III. PIECEWISE AFFINE SYSTEMS

PWA dynamical systems belong to the class of hybrid
systems [28]–[30], which combine continuous dynamics
with discrete logic. Simply put, PWA systems allow the
state-update equation (the continuous component) to take
different expressions in different parts of the state–input space.
The association of a particular state–input pair to a particular
region is driven by logic conditions. In particular, consider
a dynamical system with states x ∈ Rn and control inputs
u ∈ Rm . Then, the PWA representation of such a system is
given by

x+ =






A1x + B1u, if (x, u) ∈ R1
...

A px + Bpu, if (x, u) ∈ Rp

(27)

where x+ denotes the successor state, p is the number of
different realizations of the state-update equation, and Ri is
the region of the state–input space, where the i th state-update
equation is valid. For the PWA system in (27) to be well posed,
we must have that Ri ∩R j = ∅ for all i -= j . In other words,
the corresponding regions of validity must not overlap.

It is important to note that the regions of validity,
i.e., Ri , can naturally include any state and/or input constraints
which the PWA system is supposed to respect. To convert the
IF-THEN rules of (27) into a computationally tractable form,
one can proceed by defining binary selectors δi ∈ {0, 1} for
i = 1, . . . , p such that

(δi = 1) ⇔ (x, u) ∈ Ri . (28)

If the regions Ri are polytopes given by
Ri = {(x, u) | Hi(x T , uT )T ≤ hi }, (28) can be rewritten, as
suggested by [31], into

Hi

(
x
u

)
− hi ≤ M(1 − δi ), i = 1, . . . , p (29a)

p∑

i=1

δi = 1 (29b)

where M is a sufficiently large constant. Note that all
constraints in (29) are linear in the corresponding variables.
The exclusive-or condition in (29b) guarantees that only one
binary selector is active for each state–input pair. With such
a property the PWA state-update equation from (27) can be
compactly written as

x+ =
p∑

i=1

δi (Ai x + Bi u) (30)

which, however, is nonlinear due to a product between δi and
the states/inputs. Such a nonlinearity can be avoided [31] by
employing basic rules of propositional logic

x+ − (Ai x + Bi u) ≤ M(1 − δi ) (31a)

x+ − (Ai x + Bi u) ≥ −M(1 − δi ). (31b)

It is easy to verify that if δi = 1, then (31) reduces to
x+ = Ai x + Biu. On the other hand, if δi = 0, the constraints
in (31) are inactive since M is assumed to be sufficiently large.

To establish the relation between the MPC problem (25)
and the PWA modeling framework, two important properties
of the models in (27) are worth noting. First, evolution of
the PWA system is only defined for state–input pairs, which
reside in the union of corresponding regions of validity,
i.e., in ∪iRi . Second, even though each region Ri is assumed
to be a polytope (hence, a convex set), their union ∪iRi can
be nonconvex. Therefore, the nonconvex passivity constraint
in (25d) can be embedded into the PWA framework, together
with state-update and output equations (25b) and (25c) as
follows:

xk+1 =
{

Axk + Buk, if (xk, uk) ∈ P1

Axk + Buk, if (xk, uk) ∈ P2
(32a)

yk,perf =
{

Cperf xk + Dperfuk, if (xk, uk) ∈ P1

Cperf xk + Dperfuk, if (xk, uk) ∈ P2.
(32b)

Here, P1 and P2 are defined by (26). Even though identical
state-update and output equations are used in (32), the domain
of validity of such a model is restricted to the union of
P1 and P2, which, as is evident from Fig. 5, is nonconvex.

One can thus replace constraints (25b)–(25d) by (32)

min x T
N QN xN +

N−1∑

k=0

x T
k Qxk + yT

k,perf yk,perf (33a)

s.t. xk+1 =
{

Axk + Buk, if (xk, uk) ∈ P1

Axk + Buk, if (xk, uk) ∈ P2
(33b)

yk,perf =
{

Cperf xk + Dperfuk, if (xk, uk) ∈ P1

Cperf xk + Dperfuk, if (xk, uk) ∈ P2
(33c)

xmin ≤ xk ≤ xmax (33d)

x0 = x(0). (33e)

Finally, constraints (33b) and (33c) can be translated into
a set of mixed-integer inequalities by introducing binary
selectors δ1,k and δ2,k , for each step of the prediction horizon,
per (29) and (31). Then, the optimization problem (33)
becomes a mixed-integer QP (MIQP) in the decision
variables u0, . . . , uN−1 and δ1,k , δ2,k , k = 0, . . . , N − 1.

However, due to presence of binary selectors, solving MIQP
problems of the form of (33) is not trivial. In the worst
case, the solution needs to explore all feasible combinations
of binary variables. In our formulation, at each step of the
prediction horizon we have two binary selectors. Thus, the
total is 2N , which gives the worst case runtime complexity
of (33) as O(22N ). Such a complexity often prohibits practical
implementation, since the MIQP optimization problem needs
to be solved repetitively at each sampling instant. To reduce
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Fig. 6. Left: searching for the polyhedra containing x0. Right: polynomial approximation of the explicit control law.

the implementation effort, we therefore propose to obtain a
so-called explicit representation of the optimal solution to (33)
using multiparametric programming, which is discussed in the
subsequent section.

IV. EXPLICIT MPC

The idea of explicit MPC is to obtain an explicit represen-
tation of the MPC feedback law u∗

0(x0) which maps states
onto optimal control inputs. This explicit dependence can
be obtained by multiparametric programming that constructs
the analytic solution to a particular optimization problem for
the whole range of feasible initial conditions. In particular,
consider a general optimization problem of the form

min f (z, θ) (34a)

s.t g(z, θ) ≤ 0 (34b)

h(z, θ) = 0 (34c)

where z is the decision variables, θ is the parameters (the initial
conditions), f (·) is the objective function to be minimized,
and g(·) and h(·) are specify constraints. The objective is
to derive the explicit dependence of the optimizer z∗ on
the parameters θ , i.e., to obtain the analytic form of the
function z∗(θ).

Deriving the analytic form of z∗(θ) is difficult in general.
However, if the vector of decision variables z is composed
of real numbers, f (·) is a linear or a quadratic function,
and if g(·) and h(·) are linear functions, then such
an explicit solution can be obtained offline by utilizing
Karush–Kuhn–Tucker optimality conditions.

Theorem 3 [4]: Consider the parametric QP

z∗ = arg min{zT H z | Gz ≤ w + Eθ}. (35)

Then, the optimizer z∗(θ) is a PWA function

z∗(θ) =






α1θ + β1, if θ ∈ R1
...

αqθ + βq , if θ ∈ Rq

(36)

where Ri , i = 1, . . . , q are critical regions, and q denotes the
total number of critical regions.

The benefit of obtaining such an analytic solution for the
MPC optimization problem in (33) stems from the subsequent

fast online implementation. Specifically, once the optimal
control inputs are characterized as a PWA function in (36),
the value of the optimal control input can be obtained easily
just by evaluating the function. This can be done substantially
faster than solving (33) as a MIQP.

However, Theorem 3 cannot be readily used to obtain an
explicit representation of the receding horizon feedback law,
since the MPC problem (33) features binary optimization
variables. To circumvent this limitation, one can explicitly
enumerate, completely offline, all feasible combinations of
such binary variables. Then, once each binary combination is
fixed, problem (33) translates to a QP in purely real decision
variables u0, . . . , uN−1. For such a QP Theorem 3 can be
applied to obtain the optimizer u∗

0(x0) as a function of the
initial states x0, see (33e). By exploring each feasible com-
bination of the binary selector one therefore obtains a whole
set of optimizers, each defined over its set of critical regions.
We remark that the critical regions, along with the associated
affine expressions of the optimizer, can be computed, e.g., by
the Multi-Parametric-Toolbox (MPT) toolbox [32].

To identify the value of the optimal control input associated
to a particular state measurement, one then needs to
identify the critical region which contains the initial state. This
procedure is called the point-location problem. The simplest
algorithms for the point-location problem are the sequen-
tial and binary tree [12] approaches, respectively. The first
method traverses the regions in a predetermined order until
the correct region is found. The second-method constructs
and evaluates a binary tree, which allows for faster region
identification [Fig. 6 (left)].

Unfortunately, the computation of explicit MPC controllers
scales badly with increasing problem size. From a practical
perspective, the procedure is applicable for systems with
up to four state variables. Furthermore, we will see in the
simulation that another large drawback of the explicit (offline)
control law is that the number of polyhedral regions grows
dramatically with the prediction horizon and the number
of constraints which decreases the practical applicability in
embedded systems.

For this reason, a lot of efficient searching and storage
algorithms have been developed [12]–[14], [33]–[37]. In [17],
the key idea is that the optimal explicit PWA controller is
approximated by a single polynomial [Fig. 6 (right)], where
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Fig. 7. Output-feedback control system with Kalman filter for semiactive
suspension.

Fig. 8. Cutting point at the plant input.

number of the coefficients to be stored does not depend on
the number of the regions. This type of controller does not
require region storage and region identification. They prove
the stability can be guaranteed and the constraints can also be
satisfied.

The following sections will present an NN-based
approximation of the explicit MPC controller and will analyze
the whole semiactive suspension control system. To increase
practical applicability of the control system first discrete-time
actual Kalman filter is designed to the suspension model.

V. DISCRETE-TIME ACTUAL KALMAN FILTER DESIGN

The control system for the explicit MPC with Kalman filter
is given in Fig. 7. The suspension deflection y = x3 = Cobsx
is considered as the measured output of the semiactive
suspension. Estimated states are bounded by the state
constraints and, after calculation of the control signal, the
dissipative and saturation constraints are applied. Finally,
the actuator delivers the corresponding current to the MR
damper in the suspension system based on the input control
force. Modeling of the actuator and its inclusion into the
control system is not the topic of this research article. The
Kalman filter is designed for the linear suspension model
without constraints [27]. The computed innovation gain equals
to G = [−0.1275 −31.3230 0.6482 −0.0529]T. Fig. 9 shows
the Bode diagram of the suspension plant and the Bode
diagrams of the open-loop control systems in case of LQG
controller and LQ state-feedback controller according to the
cutting point in Fig. 8. Fig. 9 shows that if the same robustness
property was required for LQG controller as for the LQ state-
feedback controller, then the loop transfer recovery (LTR)
method should remove effect of the zeros. It is important

Fig. 9. Bode plot of the discrete transfer functions.

Fig. 10. State trajectories of the LQG control.

to note that robustness and the output disturbance rejection
properties of a control system have tradeoff relationship with
each other. That is, the improvement of the robustness will
decrease output disturbance rejection properties of the con-
trol system. Furthermore, the state estimate feedback can
destroy the phase margins (robustness property) but in contrary
it can improve the measurement noise performance of the
closed-loop system. Fig. 10 shows the estimated states of the
LQG control when velocity disturbance is applied described
in Section II-B. The simulation takes into consideration the
constraints but activation of the constraints depends on road
velocity disturbance. It can be observed that the estimated
states track changes of states of the suspension well. How-
ever, in case of x1 and x2 the signals change so fast that
the estimated states cannot reach the maximal amplitude of
states of the suspension. Here, and in the sequel, of. means
output feedback and of.est. means feedback of the estimated
state. Fig. 10 also shows that the Kalman filter estimates the
measured state x3 most precisely. Fig. 11 compares estimated
states of the Kalman filter and states of the full state-feedback
LQ control. LTR technique can be used to recover the original
properties (e.g., stability, states of the full state feedback) of
the suspension. However, rejection of the measurement noise
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Fig. 11. Comparison of state trajectories of the LQG and the full
state-feedback LQ control.

Fig. 12. State trajectories under MPC with Kalman filter.

is better if LTR are not used. Stability inherently follows from
the physical setup. To check if the Kalman filter is a suitable
state estimator for MPC, we depicted the state trajectories of
the MPC (N = 10) with Kalman filter in Figs. 12 and 13.
The results show that the Kalman filter is a good choice to
estimate states of the suspension.

VI. EXPLICIT MPC-BASED NEURAL NETWORK

CONTROLLER DESIGN

Csekő et al. [11] analyzed in detail, the optimal explicit
MPC approach for the quarter car semiactive suspension
model. The explicit MPC approach is a promising method
to increase the practical applicability of MPC for systems
where the time-consuming online optimization is prohibitive.
Furthermore, the optimal MPC approach does have a linear
state-feedback form. Two main disadvantages of the explicit
MPC method are the exponential blow-up of the number

Fig. 13. Control of the sprung mass velocity with output-feedback MPC.

Fig. 14. Slices x1 − x2 of the optimal solution regions in case of hard
constraints N = 5.

of regions, and the requirements of the having the full
state measurement available. In this section, we create
the RBFs-based NN approximation of the explicit
MPC controller which gives a possibility to treat the
number of regions problem. Moreover, we will also see that
the Kalman filter design provides a solution to the second
problem. In explicit MPC, the regions usually only cover a
subset of state constraints, see Fig. 14. However, when the
state observer is designed independently from the controller,
or when disturbances or modeling uncertainties appear, the
states might leave the controller regions. To treat this problem
the paper [11] suggested the soft constraints approach and to
combine MPC with clipped LQ controller. If soft constraints
are applied then the whole space of state constraints will
be filled out totally, as shown in Fig. 15. This solution
also shows that the original regions remain the same and
are completed by new regions at the corners. The price of
the soft constraints is that the state trajectory started from the
originally infeasible regions will violate the hard constraints.
Moreover, the number of regions is increased as well.
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Fig. 15. Slices x1 − x2 of the optimal solution regions in case of soft
constraints N = 5.

Fig. 16. Dissipative and saturation hard constraints cause cuts for slices
x2 − x4 in case of soft constraints N = 5.

The learning set-based approximation methods, such as
NNs, also require that the controller is defined for all feasible
states to create the appropriate training set. On the basis of
the soft-constraints method the generation of the training set
would be possible and simple. However, the dissipative and
saturation hard constraints (Fig. 5) can also complicate the
creation of the training set (Fig. 16). The problem of missing
control actions can be solved using combined controllers.
The combined explicit MPC/LQ controller was suggested
in [11] to handle this problem because the LQ controller
fits into the explicit MPC framework very well. One can see
that the number of the regions can be extremely large. This
property is inherent to the whole approach of parametric
programming where the very central idea of explicit MPC is
to enumerate all possible combinations of active constraints.
Since there can be exponentially many of them as a function
of the prediction horizon, an exponential growth in the
number of regions can be observed in the worst case.
Specifically, the upper bound on the number of regions is
2(number of binary variables in the MPC problem), where the (number
of binary variables in the MPC problem) = (prediction
horizon) × (number of binary variables in the PWA model).

Fig. 17. Structure of the RBF NN.

Fig. 18. Scheme to obtain approximated explicit MPC with RBF NN.

It can be shown that when a quadratic performance index is
considered along with binary variables, overlapping regions
may arise. In the overlapping regions, the control action
has to be chosen carefully as to minimize the value of the
performance objective. The enormous number of the regions
in the explicit MPC decreases the applicability for real systems
since the online searching among the regions can take a long
time. To mitigate this issue, we propose to use the RBF
type NN to approximate the explicit MPC controller. The
RBF NNs have similar properties as the MLP networks but
they have simpler structure and the back-propagation learning
is not required [20]. Fig. 17 shows the structure of the RBF
NN which we will use to approximate the explicit MPC.
The input–output training set consists of the state vector
samples and the corresponding control actions. The RBF NN
approximation of explicit MPC is shown in Fig. 18. Our NN
applies Gaussian basis functions with the center (c j ) and
a width (σ ) parameters. The same σ will be used for all
neurons since, usually, the approximation is not particularly
sensitive to the values of σ . The basis functions are defined by
g j (x̄i ) = exp[−(‖x̄i − c̄ j‖2/2σ 2)]. We tune only the weights
in the output layer and so the weights can be calculated simply
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Fig. 19. NN control system with Kalman filter for the semiactive suspension.

using the Moore–Penrose pseudoinverse offline




w1
w2
...

wM




=





g1(x̄1) . . . gM (x̄1)
g1(x̄2) . . . gM (x̄2)

...
. . .

...
g1(x̄Ntr ) . . . gM(x̄Ntr )





−1 



u1
u2
...

uNtr




. (37)

After training of the NN the approximated control action can
be represented in a nonlinear state-feedback form

uk = e− ‖x̄k−c̄1‖2

2σ2 w1+e− ‖x̄k−c̄2‖2

2σ2 w2+ · · · +e− ‖x̄k−c̄M ‖2

2σ2 wM (38)

which can be compared with the polynomial nonlinear
state-feedback controller mentioned at the end of Section IV

uk = a0 + aT
1 xk + aT

2 x2
k + · · · + aT

n xn
k (39)

where a0 ∈ R and ai ∈ Rm , m = 4 for i = 1, . . . , n. The
NN control system with Kalman filter is shown in Fig. 19.

More possibilities exist to generate the training set, such
as uniform, Chebyshev center, and grid-based sampling.
Sampling may happen either in the set of the polyhedron
regions or inside the whole state constraints. In the last case,
the combined controller has to be used to generate the training
control actions. For example, outside of the polyhedron regions
the LQ controller can be a good choice. If the NN controller
is trained in the whole constraint set, then a unified controller
can be used for the suspension. However, if the polyhedral
regions provide training points of the control action, then we
have two possibilities for the final controller: the combined
explicit MPC-based NN/LQ controller or alone the explicit
MPC-based NN controller. The uniform sampling means the
training set is generated uniformly inside the state constraints
or only inside the set of the polyhedral regions. In this
case, some regions may not contribute in generation of the
training set at all, while other regions may provide many
training points. The Chebyshev center sampling eliminates
this problem and takes one training point from each of the
polyhedrons. The Chebyshev center of a polyhedron is the
center of the largest inscribed ball (Fig. 14). The grid sampling
can be performed either in the whole state constraint set or
only in the polyhedral set. The latter is supported by the MPT
toolbox but it is a very time consuming task if we have lot of
polyhedron regions. The algorithm creates first a rectangular
grid and then it throws away the training points which do
not belong to polyhedron. The MPT toolbox also allows to
generate the Chebyshev centers of each controller region.
Large amount of the training points is needed to cover the large

number of polyhedra. However, not all the training points can
be used as center point of the Gaussian basis functions (c j )
because it would result in too many neurons, increasing
the computing time unnecessarily. Good approximation can
also be reached if the training points are revised according
to some clustering algorithms and the center points of the
Gaussian basis functions are ordered to these cluster center
points. We will use the most known clustering procedure,
the so-called K-means clustering for the Chebyshev-based
sampling. In case of uniform sampling, the cluster centers will
be chosen from the uniformly distributed training points so that
we take every nth training point. Center points will be also
training points for this case but for K-means clustering it is
not ensured since it depends on which method is applied to
determine center of the clusters. The grid point-based training
set is not investigated in this article although we investigated
earlier another type of the approximation, namely, the singular
value decomposition fuzzy approximation [38]–[40], which
only works on rectangular grid training points, however, it
did not yield the expected results. The uniformly distributed
training points provides better excitation for the projected
state variables then the grid points. The above discussion also
shows that many possibilities exist to generate, handle training
points and to design different explicit NN-based controller.
Before presenting the simulation results of the NN controller,
the essential steps of the K-means clustering algorithm are
summarized shortly based on [20] and the help of k means
in MATLAB.

1) Choose K cluster center randomly.
2) Cluster the training points according to their distance

from the cluster points, e.g., by considering the squared
Euclidean or absolute !1 distance.

3) Determine the new cluster centers. For example, define
each center as the mean of the points in that cluster
or each centroid is the component-wise median of the
points in that cluster.

4) Reassign the training points to the new centers and
continue the procedure from 1 to 3 until
min

ck

∑K
k=1

∑
dist(xi , ck) does not change, where ck

denotes the cluster centers and xi denotes the training
points or a given iteration number has reached.

5) This is the step of online updates where points are
individually reassigned if the sum of distances
are reduced. After each reassignment the cluster centers
are recalculated and each iteration consists of one pass
all the points.

It is not easy to find the global minimum for K-means
clustering. The following dictionary explains the names and
notions which we will use thereinafter.

1) N and Ntr denote the prediction horizon and the number
of training points, respectively.

2) hard constr. and soft constr. tell that hard or soft con-
straints were used to derive the explicit MPC controller.

3) Chebyshev, Cheb. mean that the Chebyshev centers
provide the training points.

4) !1, abs., absolute tell that the !1 distance is used to
determine the cluster centers.
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Fig. 20. Example of the training points and centers of the Gaussian activation
functions of the neurons.

5) Euclidean, Euc say that the Euclidean distance is used
to determine the cluster centers.

6) unif. denotes that the training set is generated using
uniform distribution and we take, for example, all
50th elements to create center points for the neurons.

7) cvalues. means the center values for basis function of
the neurons.

8) of. means output feedback: e.g., MPCof means output-
feedback MPC controller (i.e., MPC controller with
Kalman filter).

Furthermore, in the lack of MPC control action for a given
state we use the LQ control action. This statement is valid for
the training set and for the control system as well.

Fig. 20 compares three types of generating training sets and
creating cluster centers on the state slice x1 − x2. Generating
the training points according to uniform distribution and
selecting the center values uniformly from that set provide the
spreadest covering on the slice. Training points are generated
inside the interval of the variables as 1-D vectors with uniform
distribution. Then these vectors are put next to each other
to create higher dimensional distribution. One can observe
that the training points and the center points of the Gaussian
basis functions can lay outside of MPC control regions.
The Chebyshev center-based sampling with Euclidean
distance-based cluster center shows narrow covering. The
Chebyshev center-based sampling with absolute (!1) distance
falls between the two previous mentioned techniques regarding
the spreading of the cluster centers, i.e., the mean value of
the distance between cluster center and its nearest cluster
center. The explicit MPC with hard or soft constraints and
with prediction horizon N = 5 will be approximated with NN
controller. In case of hard constraints the number of regions
is 11 042 and in the case of soft constraints it is 43 245.
To be able to compare the NNs based on different sam-
pling and clustering methods these numbers were considered

Fig. 21. Performance values of the different control systems with respect
to σ and the number of neurons.

Fig. 22. Performance values of the different control systems projected to
values σ .

to be the number of training points. After defining of the
training set and the centers of the Gaussian basis functions
in the neurons many NNs were designed, where the num-
ber of neurons and the value of σ was changed. The σ
is varied according to [0.2:0.2:0.8 1:3:13 16:5:201], while
the number of neurons is changed according to [2:2:250]
in MATLAB notation. It is known that the RBF NNs
are not very sensible to the value of σ and usually some
heuristical methods based on the cluster points are used to
choose them. Here, σ was chosen based on the performance
curve of the NNs. Fig. 21 depicts performance values of
the different NNs when 20-s long road velocity disturbance
were applied to the suspension system. Only the performance
surface of the uniform distribution-based RBF NNs is pre-
sented because the other type of sampling and clustering meth-
ods yield very similar stair structure view (Fig. 22). Notice
that the performance has cost character according to (25a).
We tried many different design techniques regarding training
and center points to create NN controller. All of them exhibited
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Fig. 23. Performance values of the different control systems projected to
number of neurons.

Fig. 24. Comparison of performances of the NNs based on different sampling
and clustering techniques.

property that if the value σ was increased, then the curves of
the performance decreases up to a certain σ , and later they
would increase again. Fig. 23 shows only the performance
curves which are obtained in the decreasing phase. To make
the comparison easier, a moving average filter was used with
window size 15. Except of the NN type parameterized by soft
constraints, Chebyshev center training set, absolute distance
(!1)-based clustering, and Ntr = 43245 we obtained that the
other type of the NNs have the minimal performance curve at
σ = 4, while the exception type of the NNs has the optimum
at σ = 10. These σ values are used in Figs. 24 and 25.
The reason why the NN with Chebyshev center training set,
Euclidean distance (!2)-based clustering, and Ntr = 43245 is
not presented is that in this case the Euclidean clustering had
convergence problems in case of K-means clustering. Because
of the very large computation time and to fulfill our goal,
namely, that number of neurons in the approximator do not
exceed 100, the soft constraints-based NNs with Ntr = 43245
were calculated only up to 100 neurons (Fig. 24). However,
as can be observed in Fig. 25, performance curves of the
Chebyshev-based NNs start to decrease just at 100. Therefore,
we present the results for the other NN up to 250 neurons.
The figures show that under 100 neurons the uniform

Fig. 25. Comparison of performances of the NNs based on different sampling
and clustering techniques.

Fig. 26. State trajectories of the explicit MPC/LQ and RBF NN control
systems.

distribution-based NN approximators are the preferred ones
but over 100 there do not exist significant differences between
the approximators. We also depicted performance curves of the
LQ, MPC without and LQ, MPC with Kalman filter controllers
to compare the relative placement of the performances. It can
be seen well that none of approximators can reach perfor-
mance curves of the LQ output feedback and MPC output-
feedback controllers (see JLQof and JMPCof , respectively)
but they are better than the state-feedback controller (see
JLQ and JMPC, respectively) which probably may thank to
the Kalman filters since the NN controller approximators
were trained for the state-feedback controllers. On the basis
of the figures, 20 neurons seem to be a good choice for the
uniform distributed sampling-based NN, and 100 neurons for
the Chebyshev with Euclidean distance-based network. Based
on this latter choice one can conclude to uniform distributed
sampling-based NN at 100 neurons because they have very
similar performance value at 100. Next, we investigate only
these two types of NNs. In Fig. 26, we compare the designed
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Fig. 27. Control signal and vehicle body acceleration of the explicit MPC/LQ
and RBF NN control systems.

Fig. 28. Sprung mass velocity of the explicit MPC/LQ and RBF NN control
systems.

output-feedback NN and explicit MPC/LQ controllers when
beside of the normal road velocity disturbance bigger road
defects (e.g., pot hole) also beats the tire. The impulse is 0.1-s
long and it happens first in the positive direction then in the
negative direction. Both controllers eliminate the disturbance
in effective way and the controllers behave similarly, but
the NN controller can return only after longer swing to
the normal state which can also be observed on the sprung
mass velocity in Fig. 28. The control signal and the perfor-
mance outputs are also presented in Fig. 27. The saturation
constraint limits the control signal at the second impulse.
Essentially, the NN with Chebyshev sampling and Euclidean
clustering in Fig. 29 provides similar results as the NN with
uniformly distributed sampling and clustering in Fig. 28.
Therefore, only the sprung mass velocity was depicted. NNs
contain bigger oscillation in the sprung mass velocity than the

Fig. 29. Sprung mass velocity of the explicit MPC/LQ and RBF NN control
systems.

Fig. 30. Change of the performance values with respect to time during 20 s.

Fig. 31. Change of the cost of control with respect to time during 20 s.

output-feedback explicit MPC/LQ control system. For NNs
larger number of neurons (100 instead of 20) causes better
disturbance attenuation. The longer oscillation can come from
the fact that the NN approximator can estimate only the
training points. The authors investigated that similar results can
be reached using training points 5000. After certain number
of training points the approximation does not get better and
the oscillation remains also. Improvement of the oscillation
in the NN approximator control system can be an interesting
research area later on. Figs. 30 and 31 show the change of



CSEKŐ et al.: EXPLICIT MPC-BASED RBF NN CONTROLLER DESIGN 1751

Fig. 32. Sprung mass velocity of the LQ, LQG, and RBF control systems.

Fig. 33. Control signal and vehicle body acceleration for the LQ, LQG, and
RBF control systems.

the performance values and change of the cost of control
with respect to the time during 20 s. The NN approximators
cannot provide the performance properties, which is ensured
with the output feedback and explicit MPC/LQ (Fig. 30).
It is an interesting result that the NN approximator may give
better performance than the state-feedback controllers. Note
that the explicit MPC/LQ output-feedback controller reached
better performance values than the LQG controller, which can
increase life duration of the mechanical elements in the car.
In the control energy, the RBF NN control system and the
LQG controller consumed the lowest energy, which is also an
interesting result, as shown in Fig. 31. Finally, Figs. 32 and 33
show the transient for LQ, LQG, and RBF NN suspension
control systems. The above presented results also show if the
performance function (25a) is applied, then the LQG controller
with the clipped strategy provide satisfying control properties
for the semiactive suspension and furthermore it has simple
controller structure.

VII. CONCLUSION

The explicit MPC is a promising method to increase the
practical applicability of the MPC to such real systems,

where the time consuming online optimization is not
allowed because fast control action is required. The optimal
MPC control does have a linear state-feedback form.
To make sure the controller covers the whole constraint
set, soft constraints and a combined MPC/LQ setup can be
applied. Two main disadvantages of the explicit MPC are the
exponential blow-up of the number of regions with increasing
the prediction horizon and the requirements of the full state
measurement. This paper provided solution for both problems
in case of the quarter car semiactive suspension model.
We have shown that the Kalman filter is an appropriate choice
to estimate the states from the measurement of the suspension
deflection. Afterward, we designed the RBF NN approximator
with Gaussian basis functions to replace the explicit
MPC/LQ controller to avoid the time consuming searching
among the regions. The NN control was a nonlinear state-
feedback controller. This paper presented a systematic method
to design NN approximator and investigated the efficiency of
many type of the training set generation and of the clustering
algorithm. The NN approximator was analyzed with the
designed Kalman filter together in the complete control
system. The results showed that the NN approximator works
with Kalman filter adequately, but the disturbance attenuation
is slower than in case of explicit MPC/LQ controller with
Kalman filter. Furthermore, the RBF NN control system
cannot reach the performance of the explicit MPC/LQ and
LQG control systems but it may provide better performance
than the state-feedback controllers. It was also shown that the
explicit MPC/LQ controller has smaller performance (cost)
values than the LQG controller. Cost of the control in case of
the NN controller and the LQG controller were the lowest.

The goal of this paper was to develop and analyze a
novel explicit MPC-based controller design method for the
semiactive suspension. The presented ideas and investigation
methods can be applied to similar nonlinear systems with
constraints. The advantage of employing an explicit solution
is two fold. First, the domain of the explicit solution allows
to directly generate only meaningful samples, i.e., those
which are feasible in (33). On the other hand, with the MIQP
formulation one would need to grid the state space (whose
feasibility boundaries are not known in the MIQP approach)
and solve the MIQP problem just to see if the sample if
feasible. As a consequence, one would solve many problems
which might be infeasible, increasing the computational
overhead of the learning scheme. The second advantage of
basing the same generation on the explicit solution is that
one can use its properties (e.g., relative volumes of individual
regions) to generate more samples for parts of the state space
which are more likely to be active in practice. Finally, one can
easily combine the MIQP approach with the explicit solution
as follows: use the explicit solution for a narrower region
of the state space and use the MIQP approach to obtain a
NN approximation in the remainder of the space. By doing
so we can trade of complexity for suboptimality. This paper
also showed that it can happen that a simpler control structure
can also ensure the required expectations. To sum up, this
paper built and analyzed a complete explicit MPC-based
NN control system with Kalman filter. Proof of the quality



1752 IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. 23, NO. 5, SEPTEMBER 2015

of the approximation, decreasing of the oscillation in case of
bigger road defects and making better the performance issues
for NN control system are topics of future research.
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Regionless Explicit Model Predictive Control of
Active Suspension Systems With Preview

Johan Theunissen, Aldo Sorniotti , Member, IEEE, Patrick Gruber , Saber Fallah , Marco Ricco,
Michal Kvasnica, and Miguel Dhaens

Abstract—Latest advances in road profile sensors make
the implementation of preemptive suspension control a vi-
able option for production vehicles. From the control side,
model predictive control (MPC) in combination with preview
is a powerful solution for this application. However, the sig-
nificant computational load associated with conventional
implicit model predictive controllers is one of the limiting
factors to the widespread industrial adoption of MPC. As an
alternative, this article proposes an explicit model predic-
tive controller (e-MPC) for an active suspension system with
preview. The MPC optimization is run offline, and the online
controller is reduced to a function evaluation. To overcome
the increased memory requirements, the controller uses the
recently developed regionless e-MPC approach. The con-
troller is assessed through simulations and experiments on
a sport utility vehicle demonstrator with controllable hy-
draulic suspension actuators. For frequencies <4 Hz, the
experimental results with the regionless e-MPC without pre-
view show a ∼10% reduction of the root-mean-square (RMS)
value of the vertical acceleration of the sprung mass with
respect to the same vehicle with a skyhook controller. In the
same frequency range, the addition of preview improves the
heave and pitch acceleration performance by a further 8 to
21%.

Index Terms—Active suspension, preview, regionless
explicit model predictive control, ride comfort.

I. INTRODUCTION

THE performance benefits of active suspension systems
that account for the road profile ahead have been inves-

tigated and demonstrated by several authors ([1]–[4]). Preview
strategies for controllable suspensions are typically based on
a feedforward disturbance compensation and a state feedback
contribution. An industrial benchmark is the integrated
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TABLE I
REDUCTION (IN %) OF THE RMS VALUES OF THE HEAVE ACCELERATION,

DUE TO MPC AND PREVIEW

Note: Only [23] includes a comparison based on experimental results.

feedforward-feedback scheme by Mercedes-Benz for ride
height adjustment through hydraulic active suspension
actuators ([5], [6]).

A wide range of preview suspension controllers has
been proposed in the literature, including feedforward com-
pensators [7], fuzzy logic controllers [8], gain scheduled
controllers [9], and neural network implementations [10].
Linear quadratic regulators (LQRs) and linear quadratic Gaus-
sian controllers are frequently adopted optimal control strategies
for preview suspensions, because of their simple formulations
and the common assumption of linear suspension dynamics
([11]–[17]). H∞ and H2/H∞ controllers can deal with model
uncertainties, external disturbances and parameter variations,
e.g., the sprung mass variation depending on the vehicle load
condition ([18]–[21]).

The idea of accounting for future disturbances from the road
ahead and for system or actuator constraints fits well with the
model predictive control (MPC) philosophy. Hence, several au-
thors, e.g., [22]–[31], proposed MPC implementations for pre-
view suspension systems. Table I indicates the ride comfort
benefits of various MPC suspension control implementations
from the literature without and with preview, with respect to
the passive vehicle and the same vehicle with a more conven-
tional controller, such as an LQR or skyhook. To the best of our
knowledge, the published work to date focused on conventional
implicit model predictive control (i-MPC) implementations, in
which the optimization is run online. This, in turn, requires

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/
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significant computational power and makes industrial imple-
mentations relatively difficult. As a consequence, most of
the studies are limited to simulation-based assessments. The
very few papers with experimental results either use high-
performance processors [24] or very long sample times, i.e.,
30 ms [23], to allow real-time implementation of the controllers.

To facilitate the industrial adoption of MPC for active sus-
pension control with preview, this article proposes an e-MPC
approach ([32], [33]). With e-MPC the optimization problem
is solved offline for an assigned range of operating conditions.
The first output of the optimal control sequence is stored as an
“explicit” function of the states, and the online algorithm is re-
duced to a simple function evaluation. Hence, e-MPC requires
a limited amount of online computational power compared to
i-MPC, while providing similar performance and ability to han-
dle constraints. On the other hand, the challenges of e-MPC
are the increased design complexity and memory requirements.
The latter issue is significantly mitigated by the recently de-
veloped theory of regionless e-MPC ([34], [35]). Region-based
e-MPCs—but not regionless e-MPCs—have already been im-
plemented in simulation ([36]–[39]) on semiactive and active
suspensions without preview. In a few cases, they have also
been preliminarily experimentally validated ([40], [41]). How-
ever, to the best of the knowledge of the authors, e-MPC has not
been proposed so far for preview suspension control.

In summary, the contributions of this article are as follows.
1) The e-MPC formulation for active suspension systems

with preview.
2) The adoption of the regionless e-MPC approach for sus-

pension control. This facilitates the implementation at
shorter time steps with respect to i-MPC, and reduces the
memory requirements in comparison with the traditional
region-based e-MPC.

The proof-of-concept regionless e-MPC algorithm is assessed
through vehicle simulations and preliminary experimental tests
on a vehicle demonstrator equipped with four commercially
available active suspension actuators.

II. INTERNAL MODEL FORMULATION

This article proposes a decentralized controller, i.e., based
on an independent controller for each vehicle corner (see also
Section III-D). As a consequence, a quarter car (QC) model (see
Fig. 1) is used for the internal model of the MPC formulation

m1 ẍ1 + k1 (x1 − x2) + c1 (ẋ1 − ẋ2) + ua = 0

m2 ẍ2 + k1 (x2 − x1) + k2 (x2 − w0)

+ c1 (ẋ2 − ẋ1) + c2 (ẋ2 − ẇ0) − ua = 0 (1)

where ua is the actual force generated by the actuator; m1
and m2 are the sprung and unsprung masses; k1 and c1 are the
vertical suspension stiffness and residual damping of the passive
components; k2 and c2 are tire stiffness and damping; x1 and x2
are the sprung and unsprung mass displacements; and w0 is the
vertical displacement of the tire contact patch. For simplicity,
the implementation of this article assumes c2 ≈ 0.

Fig. 1. QC model, including the hydraulic actuator, the road profile
model and preview capability.

Usually, the main nonlinearity of a suspension system is due
to the characteristic of the passive damper, which is absent in the
specific plant. Moreover, the damping resulting from other pas-
sive suspension components (e.g., the bushings) is very small,
so that c1 can be considered negligible. Hence, the hypothesis
of using a linear model in (1) is deemed acceptable.

The hydraulic suspension actuator, installed in the strut as-
sembly, is modeled as a first order transfer function

ua (s)
u (s)

=
1

s τ + 1
(2)

where u is the actuator force demand, i.e., the system control
input, and τ is the time constant of the transfer function.

The previous equations can be re-written into a continuous
time state-space formulation

ẋQC (t) = AQC xQC (t) + BQC u (t) + EQC w0 (t)

yQC (t) = CQC xQC (t) + DQC u (t) (3)

where xQC and yQC are the state and output vectors; AQC ,
BQC , CQC , and DQC are the system matrices; EQC is the
road disturbance matrix; and t is time. yQC (t) contains the
acceleration of the sprung mass ẍ1 .

The e-MPC uses a state feedback law. Hence, its perfor-
mance depends on the accuracy and appropriate selection of
the measured or estimated states. In the specific implementa-
tion, xQC (t) = [x1 ẋ1 x1 − x2 ẋ1 − ẋ2 ua ]T , i.e., xQC

contains the position and speed of the sprung mass, the suspen-
sion displacement and deflection rate, and the actual actuator
force.

In the controller implementation, the estimates of x1 and ẋ1
are computed by high-pass filtering and integrating the vertical
acceleration measurements of the vehicle body, through an al-
gorithm already implemented on production vehicles with the
same active suspension system of this article. x1 − x2 is ob-
tained from the direct measurement of the active suspension
actuator displacement and consideration of the suspension in-
stallation ratio, i.e., the ratio between the actuator displace-
ment and the relative vertical displacement between the sprung
and unsprung masses [42]. ẋ1 − ẋ2 is calculated through
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differentiation of x1 − x2 with the hybrid smooth derivative
method [43]. ua is estimated from the measurements of the
compression and rebound chamber pressures.

For preview control, the vertical road profile is modeled
through a shift register, which is represented in discrete time
form as




w0 (k + 1)

w1 (k + 1)

w2 (k + 1)

...

wN −1 (k + 1)

wN (k + 1)





=





0 1 0 0 . . . 0

0 0 1 0 . . . 0

0 0 0 1 . . . 0

...
...

...
...

. . .
...

0 0 0 0 . . . 1

0 0 0 0 . . . 0









w0 (k)

w1 (k)

w2 (k)

...

wN −1 (k)

wN (k)





+





0
0
0
...

0
1





yr (k) (4)

where k indicates the current time step. With simplified nota-
tions (4) can be rewritten as

ŵ (k + 1) =
[
0 Ar,d

]
ŵ (k) + Er,dyr (k) (5)

where ŵ = [w0 · · · wN ]T is the vector of the road system
states, i.e., the road profile heights ahead of the tire, which
consists of N points (see Fig. 1) equally spaced according to
the time step ∆t of the internal model; Ar,d is the shift model
matrix; yr (k) = wN (k + 1) is the disturbance input provided
by the preview sensor measurement; and Er,d is the road system
disturbance matrix.

By augmenting the state vector to x(t) = [x1 ẋ1 x1 − x2
ẋ1 − ẋ2 ua ŵ]T , applying zero-order-hold discretization of
the QC model (3) to obtain the system matrices AQC,d , BQC,d ,
CQC,d , DQC,d , and EQC,d , and integrating the QC model with
the road model (5), the complete vehicle-actuator-road system,
indicated by the subscripts s in the remainder, reads

x (k + 1) =

[
AQC,d EQC,d 0

0 0 Ar,d

]
x (k) + BQC,du (k)

+

[
0

Er,d

]
yr (k)

y (k) =
[
CQC,d 0

]
x (k) + DQC,du (k) (6)

which can be simplified into

x (k + 1) = As,dx (k) + BQC,du (k)

+ Es,dyr (k)

y (k) = Cs,dx (k) + DQC,du (k) . (7)

III. CONTROLLER FORMULATION

A. System Prediction

Given the initial state, x(k), and the system in (7), the
predicted output, ŷ, is calculated as

ŷ=





Cs,dAs,d

Cs,dAs,d
2

...
Cs,dAs,d

p





p×1

x (k)

+





Cs,dBQ C ,d . . . 0 0
...

. . .
...

...

Cs,dAs,d
p−1BQ C ,d . . . Cs,dBQ C ,d DQ C ,d





p×(c+1)

û

(8)

with

ŷ =





y (k + 1)
...

y (k + p)



 , û =





u (k)
...

u (k + c)



 (9)

where p and c are the number of steps corresponding to the
prediction and control horizons, and û is the control input over
c, i.e., the vector of optimization variables. (8) can be shortened
to

ŷ = Λx (k) + Θu û. (10)

The state predictions, x̂, are computed with a similar method

x̂ = Ψx (k) + Ωu û (11)

with

x̂ =





x (k + 1)
...

x (k + p)



 (12)

where Λ, Θu , Ψ, and Ωu are the resulting matrices.

B. Constrained Optimization and mp-QP
Problem Formulation

A generic model predictive controller finds the optimal se-
quence of control inputs, û, that minimizes a cost function,
JMPC, which depends on ŷ, x̂, and û

min
û

JMPC = min
û

(
ŷT Q1 ŷ + x̂T Q2 x̂ + ûT Rû

)

s.t. (x (k + i) , u (k + i)) ∈ F , i = 0, . . . , p (13)

where Q1 , Q2 , and R are weight matrices, F is a full-
dimensional polyhedral set of appropriate dimensions, i is an
integer, and p is the number of prediction steps, which defines
the prediction horizon.

By substituting the formulations of the output and state pre-
dictions (respectively (10) and (11)) into (13), eliminating the
terms not depending on û, and dividing by 2, the optimization
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problem becomes

min
û

(
1
2
ûT
(
Θu

T Q1Θu + Ωu
T Q2Ωu + R

)
û

+ x(k)T (ΛT Q1Θu + ΨT Q2Ωu

)
û

)

s.t. P û ≤ M1 + M2x (k) . (14)

The typical quadratic programming (QP) format is obtained
through the simplification of (14)

min
û

(
1
2
ûT Hû + x(k)T F û

)

s.t. P û ≤ M1 + M2x (k) (15)

where H , F , P , M1 , and M2 are constant matrices. The initial
states of the system are included in x(k), the parameter vector.

A conventional i-MPC would execute an online optimiza-
tion at each time step for a given value of x(k), which is re-
placed by x in the remainder for the sake of brevity, and the
control law would be implicitly obtained by the QP solver. In
the e-MPC case, the optimization is performed offline, i.e., the
QP problem is solved for the whole range of x, which explic-
itly generates u = u(x). The optimization problem becomes a
multiparametric QP (mp-QP) problem, generally described as
the minimization of the objective function with the constraints
defined in (15).

C. Objective Function

The key objective for ride comfort enhancement is the min-
imization of the vertical acceleration of the sprung mass. Ad-
ditionally, the optimal solution has to consider the limitation
of actuator displacement, chassis motion and wheel hop [44].
Hence, this article uses a cost function penalizing ẍ1 , x1 − x2 ,
x1 , and x2 − w0 . The control effort u is also included to limit
the actuation power consumption. The discrete form of the per-
formance index to be minimized JMPC is

JMPC =
p∑

i=1

(
ρ1 ẍ1(k + i)2 + ρ2(x1 (k + i) − x2 (k+ i))2

+ ρ3x1(k + i)2 + ρ4 (x2 (k + i)

−w0 (k + i))2
)

+
c∑

i=0

ρ5u(k + i)2 (16)

where the factors ρi are the objective function weights, which
define Q1 , Q2 , and R in (13). In the specific implementation,
the constraints are related to the actuator force and suspension
displacement.

D. Decentralized Controller

To reduce the e-MPC generation time, memory requirements
and implementation complexity, a decentralized control archi-
tecture is adopted, with one independent e-MPC at each vehi-
cle corner. In fact, each QC-actuator-road model inherits only

5 + (N + 1) mp-QP parameters. In contrast, a centralized sus-
pension controller would have to be based on a seven-degree-
of-freedom (7-DOF) model to consider the vertical dynamics
of the unsprung masses, the heave, pitch, and roll dynamics of
the sprung mass, the actuator dynamics, and the road model for
each corner. This would result in a considerably larger problem,
with 18 + 4(N + 1) mp-QP parameters.

E. Regionless e-MPC

In the e-MPC implementation, the solution of the mp-QP
problem in (15) is computed offline. The solution is the func-
tion û∗(x), which is piecewise affine and maps the parame-
ter vector onto the sequence of optimal control inputs. The
e-MPC uses only the control input at the first time step, i.e.,
u(x) = [ I 0 · · · 0 ]û∗(x), and the online implementation re-
duces to a simple function evaluation.

In the region-based e-MPC [33], the explicit representation
of the control action is a piecewise affine state feedback law,
defined by a partitioning of the state-space into m polyhedral
critical regions

u (x) =






L1x + l1 , S1x ≤ s1
...

...
Lm x + lm , Sm x ≤ sm

(17)

where Li , li , Si , and si are constant matrices that are stored in
the control hardware. The benefit of this method is the reduction
of the online computational requirements with respect to the
more common i-MPC. On the downside, the method yields
increased memory requirements, especially for systems with a
large number of parameters, and significant offline calculations.
The first point is a major issue of the region-based method
applied to preview suspension control, in particular, if multiple
preview points (i.e., e-MPC parameters) are included in the
model in (4).

To mitigate the weaknesses of the region-based e-MPC, this
article adopts the recently proposed regionless e-MPC approach,
described in [34] and [35]. The method does not need to compute
or store the critical regions, defined by Si and si . In fact, in
the offline process all the possible active sets {A1 , . . . ,ANR }
that can be locally optimal are considered through the extensive
enumeration method in [45], where NR is the number of regions.
A linear program based on the Karush–Kuhn–Tucker conditions
is solved to determine the feasibility of the candidate active sets.
For each locally optimal active set the solution is

û∗ = −H−1 (FT x + PT
Ai

λ∗) (18)

where PAi includes only the rows of P indexed by the set of
active constraints, and λ∗ represents the dual variables given by

λ∗ = Q (Ai) x + q (Ai) (19)

with

Q (Ai) = −
(
PAi H

−1PT
Ai

)−1 (
M2Ai + PAi H

−1FT
)

(20)

q (Ai) = −
(
PAi H

−1PT
Ai

)−1
M1Ai (21)
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Fig. 2. ACOCAR vehicle demonstrator with preview sensor.

where M1Ai and M2Ai contain only the rows of M1 and M2
corresponding to the active set Ai . The maps of Q(Ai) and
q(Ai) are generated offline and stored in the controller together
with H−1 , F , P , M1 , and M2 .

In the online implementation of the regionless controller,
(18)–(19) are used to calculate û∗, by finding the optimal active
set for the current x from the list of locally optimal active sets.
In particular, the optimal active set must fulfil the conditions

λ∗ ≥ 0

P û∗ < M1 + M2x. (22)

The details of the online algorithm are reported in [45]. The
resulting control action is identical to the one generated by
the region-based e-MPC, i.e., the regionless and region-based
implementations bring exactly the same results.

IV. CONTROL SYSTEM IMPLEMENTATION

A. Vehicle Demonstrator

The decentralized controller was implemented on a sport util-
ity vehicle (SUV) demonstrator (see Fig. 2) with a hydraulic
active suspension system—the Tenneco Monroe intelligent sus-
pension, ACOCAR. At each vehicle corner, a pump pressurizes
the hydraulic circuit of the actuator and thereby inputs energy
into the system. The pressure level in the hydraulic chamber is
modulated through the currents of the base and piston valves of
the actuator, which is installed in parallel to an air spring. This
actuation system mainly targets roll, pitch and primary ride
control (see [46], [47] for the definition of primary ride), i.e.,
it is designed for input frequencies <4 Hz, but usually causes
degradation of the secondary ride comfort performance, i.e.,
for frequencies >4 Hz. The vehicle demonstrator has a double
wishbone suspension on the front axle, and a multilink suspen-
sion system on the rear axle, with installation ratios of 0.7 and
0.76.

The relevant sensor set consists of the following:

1) three vertical acceleration sensors installed on the sprung
mass, two of them located in proximity of the front
bumper, and one in proximity of the rear bumper;

2) a three-degree-of-freedom (3-DOF) inertial measurement
unit;

3) suspension displacement sensors;
4) a preview sensor, i.e., the solid state LiDAR XenoTrack,

mounted on the roof of the car.
A three-dimensional (3-D) model of the road ahead is con-

structed (i.e., a rolling carpet), and only the road profile heights
directly in front of the wheels are sent to the e-MPCs. The ac-
curacy and robustness of the preview road profile signal was
guaranteed via appropriate high-pass filtering of the sensor
outputs, a compensation algorithm of the sprung mass mo-
tion, and experimental tests to obtain the synchronization lag
values.

All controllers and state estimators were installed on the
dSPACE MicroAutoBox II system of the vehicle, which has
a 16 MB flash memory. The regionless e-MPCs were integrated
into the ACOCAR suspension control software framework to
interface with the hardware. A low-level actuator management
system calculates the reference currents for the compression and
rebound valves, as well as the pump reference speed, as func-
tions of u and ẋ1 − ẋ2 . The current driver modules of the pro-
duction suspension system feed the actuator valves and pumps.

B. Model Validation

Measurements of the ACOCAR vehicle demonstrator re-
sponse on a four-poster test rig were used for the validation
of two simulation models: a) a 7-DOF model for control system
assessment, implemented in MATLAB/Simulink. This model
considers heave, roll and pitch of the sprung mass, and vertical
displacement of each unsprung mass, and includes a simplified
model of the actuation system dynamics; and b) the internal
e-MPC model, i.e., the QC model described in Section II.

The four-poster test rig was set up to emulate a typical ISO C–
D ride comfort assessment road [48]. During the experiments, a
fixed current of 0.4 A was applied to the piston and base valves
of the actuators to maximize the size of the valve orifices, and,
thus, achieve minimum damping.

The reported experimental values were calculated from the
vertical acceleration and actuator displacement measurements,
by using the state estimator of the ACOCAR suspension sys-
tem. The time domain results were converted into the frequency
domain, and are shown in Fig. 3 in terms of power spectral den-
sities (PSDs). A good match between the 7-DOF model and the
real vehicle is observed up to ∼15 Hz, which is in line with the
model bandwidth. In particular, the 7-DOF model captures the
resonance peak of the sprung mass at ∼1–1.5 Hz, and those of
the unsprung masses at ∼10–12 Hz.

The e-MPC internal model in (1) was validated in a similar
way, i.e., the front and the rear QC model outputs were com-
pared with the experimental displacements of the suspension
top mounts and wheels. A good level of modeling accuracy was
achieved also in this case, as shown in Fig. 4.
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Fig. 3. Example of experimental validation of the 7-DOF model along
the ride comfort road profile emulated on the four-poster test rig: PSDs
of sprung mass accelerations and positions.

The e-MPC internal actuator model in (2) was validated
with actuator test rig data. For example, Fig. 5 shows the time
histories of the force demand, measured force and simulated
force for step-in and step-out force demand tests. A good match
was achieved with τ = 50 ms, despite the simplicity of the
model formulation.

C. Explicit Controller Generation and Implementation

According to the internal model formulation in (7), dis-
cretized at ∆t = 10 ms, each controller is based on 8 mp-QP
parameters, i.e., the four states of the QC model, one state for
the actuator, and three states (N = 2) for the road profile ahead
according to (4).

Simulations on a ride comfort road and a speed bump were
carried out to evaluate the independent and combined effects of
p, i.e., the prediction horizon, c, i.e., the control horizon, and
N , i.e., the number of preview points. It was verified that in the
specific test scenarios the increase of p and c brings significant
benefits. Therefore, p and c were assigned relatively large values,
respectively, 8 and 6. On the contrary, N was tuned to be as low
as possible, to reduce the required flash memory size (which
strongly varies with N ) without significantly affecting comfort.
At 50 km/h, the selected parametrization corresponds to a ∼0.3
m look ahead distance and a >1 m prediction distance.

An inequality constraint was applied to the actuator force
magnitude, i.e., <9000 N. The tuning of the cost function

Fig. 4. Example of experimental validation of the 7-DOF and QC mod-
els along the ride comfort road profile emulated on the four-poster test
rig: time histories of suspension deflections. The subscripts FL, FR, RL,
and RR indicate the front left, front right, rear left, and rear right corners.

Fig. 5. Example of experimental validation of the e-MPC internal
actuator model for step-in and step-out force demand tests.

(16) prioritized the reduction of the vertical acceleration and
displacement of the sprung mass, by choosing greater values
for ρ1 and ρ3 relative to ρ2 and ρ5 . ρ4 was only used for a
preliminary feasibility check in simulation, targeting the wheel
hop reduction, while it was set to 0 in the experiments as wheel
hop was not observed.

The mp-QP problems for the active suspension system with
and without preview were solved with a custom version of
the multiparametric toolbox 3 [49] that included the region-
less solver RLENUMPQP. The solution was considered over
a bounded partition of the state-space, with the following lim-
its: ±0.1 m in body displacement; ±0.5 m/s in body velocity;
±0.15 m in suspension displacement; ±4 m/s in suspension
velocity; and ±0.15 m in road displacement.

Table II gives the comparison of the region-based and re-
gionless algorithms, in terms of solution generation time and
corresponding memory requirements, where the reduction of
the latter is of the essence for the industrial implementation of
the algorithm. In particular, the industrial partners of this article
specified an upper limit of 1 MB memory to ensure applicabil-
ity to a production-ready suspension system. As indicated by
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TABLE II
EXPLICIT SOLUTION GENERATION TIME AND MEMORY DEMAND OF THE

REGION-BASED AND REGIONLESS E-MPC APPROACHES

Fig. 6. Critical regions on the ẋ1 (x1 ) plane for the e-MPC with preview
tested on the vehicle demonstrator.

Table II, the regionless e-MPC achieves this specification for
both configurations, with and without preview, which is an im-
portant outcome of this article. To meet the 1 MB memory spec-
ification at the vehicle level for the system with preview, and
verify the system robustness with respect to the modeling uncer-
tainty, the same regionless explicit solution was implemented
on the front and rear suspensions, despite a marginal difference
in their parameters. In contrast, the traditional region-based e-
MPC solution obtained with the ENUMPQP solver meets the
memory specification only for the nonpreview version, and sig-
nificantly exceeds the limit when preview is included. Moreover,
the online algorithm of the regionless e-MPC required, on aver-
age, only 0.09 ms run time (with a maximum of 0.2 ms) on the
dSpace platform during a typical test. The short computation
times therefore allow the implementation of the controller at
almost any time-step used in automotive applications.

With the regionless approach, the regions do not need to
be calculated, but they can be reconstructred and visualized a
posteriori. For the specific preview controller, the solution is
a set of affine functions over 1099 polyhedral regions. Figs. 6
and 7 show two-dimensional (2-D) slices over the multidimen-
sional state-space. Such representation of the explicit control
law allows the formal analysis of the stability and robustness
properties of the resulting controller. The figures also report the
operating points of the system along a speed bump at 50 km/h.
The analysis of the actual operating points of the vehicle in real
maneuvers is useful to understand whether specific portions of
the e-MPC control law can be adopted to formulate a simplified
rule-based controller.

Fig. 7. Critical regions on the w1 (w0 ) plane, for the e-MPC with preview
tested on the vehicle demonstrator.

Fig. 8. Distribution of the randomly selected parameters of the Monte
Carlo analysis.

D. e-MPC Stability

From a theoretical viewpoint, the closed-loop stability of
the proposed e-MPC can be achieved by including the term
xT (k + p)Zx(k + p) into the objective function (16) via (15),
where Z is the solution of the algebraic Riccati equation for the
system in (7), along with the constraint x(k + p) ∈ Θ, where Θ
is a positive invariant set for the system. However, stability can
also be achieved by appropriately choosing the state and input
weighting coefficients ρi in (16). Typically, selecting the state
weights significantly larger than the input weight ρ5 helps to
achieve a stable behavior of the closed-loop system, which is
the tuning method used here.

In this article, the stability of the controller was verified
through Monte Carlo simulations. The e-MPC strategy was
tested in 1000 challenging scenarios, each set up with a different
vehicle mass, speed and actuator response time. The simulations
were performed over a 1-m long speed bump with a height that
was also changed between runs. Fig. 8 shows the distribution
of the randomly selected values of the four parameters. The
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controller was considered stable if the suspension deflections at
each corner of the 7-DOF model did not exceed 5 mm, 3 s after
the front axle hit the bump. Stability was achieved in all cases.

E. Benchmark Controller: Centralized Skyhook

A centralized skyhook algorithm [51], already implemented
and tested on the case study vehicle demonstrator, was used as
the experimental benchmark for the decentralized e-MPCs. In
the skyhook approach, the total sprung mass reference heave
force Fh , antipitch moment Mp , and antiroll moment Mr , are
calculated as




Fh

Mp

Mr



 =




ch 0 0
0 cp 0
0 0 cr








ẋs,est

θ̇est

ϕ̇est



 (23)

where ch , cp , and cr are the skyhook damping coefficients for
the heave, pitch and roll motions; and ẋs,est , θ̇est , and ϕ̇est are
the estimated heave, pitch and roll rates of the sprung mass. The
matrix form of (23) is Fsh = cshVest , where Fsh is the vector
of the total skyhook force and moments, csh is the matrix of
the skyhook coefficients, and Vest is the vector including the
three speeds in (23). In addition, Fsh = Luc,sh , where uc,sh is
the vector of the skyhook actuation forces at the four corners,
i.e., the outputs of the controller, and L is the matrix with the
coefficients to calculate the resulting force and moments acting
on the sprung mass. The terms of L include the geometric vehicle
parameters, e.g., the front and rear semi-wheelbases hF and hR ;
and track widths tF and tR . In the controller implementation, a
pseudoinverse formulation is used to obtain the control action
vector uc,sh

uc,sh = [uF L uF R uRL uRR ]T =
(
LT L

)−1
LT cshVest

(24)
with

L =




−1 −1 −1 −1
hF hF −hR −hR
tF
2 − tF

2
tR
2 − tR

2



 (25)

where the notations FL, FR, RL, and RR indicate the front
left, front right, rear left, and rear right corners.

V. RESULTS

A. Simulation Results

The 7-DOF vehicle model was used for the virtual valida-
tion of the controllers along a ride comfort track, at a constant
speed of 60 km/h. The analysis involved the regionless e-MPC
implementations, including and excluding preview, and their
performance comparison with the passive vehicle, i.e., the case
study SUV without active suspensions. The simulations with
the controllers were based on realistic data of next-generation
suspension actuators with higher bandwidth than those installed
on the real vehicle demonstrator, and under the hypothesis of
perfect synchronization of the preview input with the actual
road profile at the wheels. This set-up was chosen to assess

Fig. 9. Time domain plots of heave, pitch and roll accelerations ob-
tained on a simulated section of the ride comfort road at 60 km/h.

Fig. 10. Simulation of a ride comfort road at 60 km/h: PSDs of the
heave and pitch accelerations.

TABLE III
RMS VALUES OF THE SPRUNG MASS ACCELERATIONS FOR THE SIMULATED

RIDE COMFORT ROAD AT 60 KM/H

Note: The % variations are with respect to the system in the column to the
immediate left.

the medium-to-long-term potential of the e-MPC preview
technology.

Fig. 9 reports the time histories of the heave, pitch, and roll
accelerations for a section of the run. In particular, the passive
set-up has a 3.96 m/s2 peak heave acceleration, which is re-
duced to 1.91 and 1.26 m/s2 for the e-MPCs without and with
preview. Fig. 10 shows the results in terms of PSD profiles of
the heave and pitch accelerations, while Table III reports the
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root-mean-square (RMS) values of the vehicle body accelera-
tions ai,RMS for heave, pitch and roll, calculated as

ai,RMS =
(∫ f2

f1

PSDi (f) df

)0.5

(26)

where f is the frequency, and f1 and f2 are the boundaries of
the considered frequency range. In the PSD plots, the benefits
of the controllers are evident for the 0–15 Hz range. This con-
firms the appropriateness of the e-MPC designs for improving
both primary ride and secondary ride. In particular, the e-MPC
without preview reduces the ai,RMS values by more than 45%
with respect to the passive vehicle, while the introduction of
preview brings a further improvement, ranging from 19 to 35%
depending on the considered acceleration.

The table also includes the RMS values of the heave, pitch
and roll accelerations of the vehicle sprung mass, after the ap-
plication of frequency weighting functions according to [52].
In particular, the heave acceleration is weighted more in the
4–8 Hz frequency band than in the other frequency ranges. The
overall improvements brought by the e-MPCs are similar to
those without frequency weighting and consistent with the re-
sults in Table I, which confirms the all-around effectiveness of
the proposed controllers.

As the actuation dynamics represent an unmatched uncer-
tainty in the system, ride comfort road simulations at 60 km/h
were run to assess robustness with respect to the actuator time
constant τ , which was varied up to 300 ms (six times the value
for the available hydraulic actuators), while keeping the e-MPC
tuned for the nominal τ . The results show that the controllers
without and with preview perform significantly better than the
passive set-up, and the active setup with preview always pro-
vides the best performance.

B. Experimental Results

The performance of the e-MPCs (excluding and including
preview) was experimentally tested with the ACOCAR vehicle
demonstrator (see Section IV-A) and compared to the car with
the active skyhook controller (Section IV-E) and a passive sus-
pension set-up. The passive set-up was obtained by applying
fixed currents to the actuator valves to achieve a suspension
tuning that is close to the one of the passive version of the SUV.

The experiments consisted of two tests carried out on the
public roads of Sint Truiden (Belgium).

1) Test 1: Driving over a short wavelength speed bump with
a height of 5 cm and a length of 0.4 m, at approximately
30 km/h.

2) Test 2: Driving over a long wavelength speed bump with
a height of 15 cm and a length of 2.5 m, at approximately
50 km/h, which causes significantly higher accelerations
than test 1.

The tests were repeated several times to verify the reliability
of the measurements. Fig. 11 shows the time history of the heave
position and pitch angle of the vehicle body for test 2. The
results confirm the reduction of the sprung mass motion when
negotiating the bump. For instance, the passive and skyhook

Fig. 11. Experimental results for test 2: Time domain plots of the heave
position and pitch angle.

Fig. 12. Experimental results for test 1: PSDs of the heave and pitch
accelerations.

Fig. 13. Experimental results for test 2: PSDs of the heave and pitch
accelerations.

set-ups have heave displacements of –0.018 and –0.014 m at the
first negative oscillation peak. For the e-MPCs without and with
preview, these values are reduced to –0.011 and –0.010 m.

Figs. 12 and 13 show the PSD results in the frequency do-
main. Tables IV and V report the RMS values of the heave
and pitch accelerations of the vehicle sprung mass without and
with frequency weighting, up to 15 Hz, i.e., well beyond the
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TABLE IV
RMS VALUES OF THE SPRUNG MASS ACCELERATIONS DURING TEST 1

Note: The % variations are with respect to the system in the column to the immediate left.

TABLE V
RMS VALUES OF THE SPRUNG MASS ACCELERATIONS DURING TEST 2

Note: The % variations are with respect to the system in the column to the immediate left.

bandwidth of the specific actuators. The roll acceleration results
are omitted, as roll motion was not excited by these tests.

As expected, given the relatively low bandwidth of the spe-
cific actuators, the controlled set-ups mainly improve primary
ride, i.e., the range of 0–4 Hz. For example, in this frequency
range, the e-MPC without preview improves the RMS heave
acceleration performance without frequency weighting in both
tests by 11% compared to the skyhook. The addition of preview
reduces the RMS accelerations by a further 10% and 12% in
tests 1 and 2. The e-MPC without preview reduces the pitch
accelerations by 17% and 7% in the two tests compared to the
skyhook, while the preview adds a further benefit, i.e., 21% in
test 1 and 8% in test 2.

The results are confirmed over the 0–15 Hz frequency band.
For instance, the RMS values of the heave acceleration in the
two tests are 0.95 and 1.61 m/s2 for the passive set-up, while the
e-MPC with preview reduces the values to 0.80 and 0.74 m/s2. In
the same frequency range, the heave acceleration performance
of the e-MPC with preview is consistently better than that of
the e-MPC without preview; 4% improvement during test 1 and
12% improvement during test 2. Similarly, the preview reduces
the RMS of the pitch motion by 16% and 4%. Moreover, the
e-MPC without preview consistently outperforms the skyhook
algorithm, e.g., by 9% in terms of heave acceleration. An impor-
tant conclusions is that despite the decentralized architecture of
the implemented e-MPCs, the associated vehicle performance
improvement is evident also in terms of pitch acceleration. In
fact, the RMS values of pitch acceleration with the skyhook

controller are 14% and 6% higher than with the e-MPC with-
out preview. This result is particularly remarkable considering
that the skyhook controller includes a term directly targeting
the pitch dynamics. Also, the level of technology maturity of
its implementation on the vehicle demonstrator is significantly
higher than that of the proposed e-MPCs.

In general, the RMS values of the heave and pitch fre-
quency weighted accelerations of the vehicle sprung mass in the
0–15 Hz frequency range tend to generate more limited con-
troller benefits in comparison with the non-weighted results.
This is mainly due to the actuator bandwidth, and the fact that
the frequency weighting functions were not accounted for in the
cost function (16) nor in the tuning of the e-MPC parameters,
which is the subject of future work. Nevertheless, the e-MPCs
still show considerable benefits over the skyhook.

As a summary of the performance benefit, Tables IV and V
also include the vibration total value av i.e., an indicator that
combines vibrations in multiple directions [52]

av =
(
k2

ha2
h,RMS + k2

pa2
p,RMS

)0.5
(27)

where ah,RMS and ap,RMS are the RMS heave and pitch accel-
erations. kh and kp are the multiplying factors, both set to 0.4.
In test 1, the skyhook reduces the av indicator based on the fre-
quency weighted accelerations by only 3% with respect to the
passive vehicle, while the e-MPCs without and with preview
outperform the production skyhook controller by 12% and a
further 7%. In test 2, despite the already excellent performance
of the skyhook, which provides a 37% improvement over the
passive case, the e-MPCs without and with preview further re-
duce the vibration total value by 4% and 8%. Such preliminary
experimental benefits are aligned with the literature in Table I,
which is mainly based on simulation results, and encourage the
further industrial development of regionless e-MPC for active
suspension control.

VI. CONCLUSION

To the best of our knowledge, for the first time this article
implemented a regionless e-MPC strategy for an active suspen-
sion system with and without preview. The activity allows the
following conclusions.

1) The internal QC models of the decentralized e-MPC ar-
chitecture provide a sufficiently good match with the
experimental data, and can be considered simple yet
appropriate formulations for suspension control design.

2) The regionless e-MPC with preview based on a QC
model brings a memory requirement reduction by a fac-
tor of ∼30, compared to the corresponding region-based
e-MPC.

3) The e-MPC simulation results with hydraulic actuators
along a ride comfort road show reductions of the RMS
values of the sprung mass accelerations in excess of 45%
relative to the passive car, and a further benefit (up to
35%) is achieved with the addition of preview.

4) The preliminary experimental results along two speed
bump road inputs on a vehicle demonstrator with active
suspension actuators show that, compared to the more
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conventional skyhook, the e-MPC without preview im-
proves primary ride performance—with reductions of
primary ride vehicle body accelerations ranging from 7
to 17%. The addition of preview further reduces primary
ride accelerations by 8 to 21%. All the evaluated e-MPC
implementations improve the vibration total value in the
0–15 Hz frequency range, which indicates their overall
ride comfort enhancement capability.

Future developments will include the systematic optimization
of the tuning parameters of the proposed controllers, and the as-
sessment of centralized control approaches based on regionless
e-MPC technology.
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We propose to reduce the complexity of explicit MPC controllers by removing regions that will never
be reached during the closed-loop evolution from a given set of initial conditions. The identification of
such regions is done by solving a reachability analysis problem, formulated as a mixed-integer feasibility
program. The procedure directly accounts for possible discrepancies between the prediction model and
the actual plant dynamics by, among other things, considering a case where state measurements are
affected by an unknown, but boundedmeasurement noise. The result of the procedure is the reduction of
explicit MPC complexity without sacrificing closed-loop performance.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Since its inception [1], Explicit Model Predictive Control (MPC)
has proved to be a successful concept to design feedback
controllers which enable fast and cheap implementation of
optimization-based control in many applications, such as in au-
tomotive, aerospace, and process industries, see, e.g., [2–4]. In
explicit MPC the optimal receding-horizon (RHC) feedback law
is constructed as the explicit relation between the state mea-
surements and the associated optimal control actions [5]. The
relation, which for a rich class of MPC problems takes the form of
a piecewise affine (PWA) function, is constructed by parametric
optimization [6,7]. The on-line implementation of explicit MPC
controllers then reduces to a mere function evaluation that can
be performed fast even on hardware with modest computational
resources.

The implementation complexity of explicit MPC, which entails
both the required computational resources as well as the amount
ofmemory required to store the PWA feedback law, is directly pro-
portional to the total number of controller’s regions. The number
of regions, however, often exceeds practical limits. Therefore sig-
nificant attention is devoted to reducing the complexity of explicit
MPC controllers. Numerous approaches have been proposed in the
literature to reduce the number of regions by, e.g., exploiting the
geometry of explicit MPC solutions [8], tessellation techniques [9],
convex liftings [10], bilevel optimization [11], or by using move
blocking techniques [12].

⇤ Corresponding author.
E-mail addresses: michal.kvasnica@stuba.sk (M. Kvasnica),

peter.bakarac@stuba.sk (P. Bakará£), martin.klauco@stuba.sk (M. Klau£o).

In this paper we propose a novel method which removes from
the explicit MPC controller those regions which are not reach-
able [13], in the closed-loop sense, from a given set of initial
conditions L. To illustrate the reasoning, consider the control of
an object along a 1-dimensional axis. The states of the system are
composed of the object’s position and its velocity, i.e., x = [p, v]|.
The control objective is to manipulate the object’s acceleration
(which is the control input), such that the object moves from
the current position to the origin. Once the origin is reached, the
control system is stopped, the object is physically moved to a
different location, and the control system is restarted. In such a
scenario the set L of initial conditions for the closed-loop system
is given by L = {(p, v) | v = 0}. Clearly, while moving the
object from the initial position to the origin, a non-zero speed will
be attained. Hence, during the closed-loop evolution, the states
leave the set L. However, not all of the controller’s regions may
be reached during the closed-loop response. Our objective is to
determine, in a rigorous fashion, which regions could be reached if
the closed-loop evolution starts from an arbitrary point in the set
L. If a particular critical region is determined to never be reachable,
it can be removed from the definition of the explicit MPC feedback
law, decreasing its complexity. This idea is shown graphically in
Fig. 1. Note that the same result cannot be simply achieved by
takingL as the set of initial conditions forwhich the open-loopMPC
problem is solved, as it would render the controller undefined for
states outside of L.

To the authors’ best knowledge, this idea first appeared in [14].
There the authors suggested to identify reachable regions by per-
forming numerical closed-loop simulations for several individual
initial conditions. However, since only a finite number of initial
conditions is investigated, one could, falsely, remove a region that
could be reached by a different initial condition, not among the

https://doi.org/10.1016/j.sysconle.2018.12.002
0167-6911/© 2018 Elsevier B.V. All rights reserved.
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Fig. 1. Illustration of the idea. The red crosses depict the discrete-time closed-loop
evolution of system’s states starting from twodistinct initial conditions. The regions
in gray can be reached during the closed-loop operation, while the regions in the
white color will never be reached. The objective is to identify which regions could
be reached if a whole set L of initial conditions (depicted as the solid blue line) is
analyzed.

ones analyzed. To remedy such a drawback, the authors in [14]
propose to employ interpolation, which naturally leads to loss of
performance. In this paper we improve upon the aforementioned
approach in two ways. First, we show how to analyze a whole
convex set of initial conditions L. Hence, our approach never re-
moves regions that could be reached from some x(0) 2 L and,
as a consequence, the simplified controller offers the same closed-
loop performance as the original (complex) feedback. Second, our
procedure can be extended to cover cases where the state mea-
surements are affected by an unknown noise, and to analyze sce-
narios when the MPC controller, designed for a linear prediction
model, controls a system with a different dynamics. The decision
about which regions are reachable is formulated as a reachability
problem and solved as a feasibility mixed-integer problem that
entails the optimality conditions of the underlying MPC feedback.

2. Preliminaries

We consider the control of linear discrete-time systems de-
scribed by the state-space representation

x(t + 1) = Ax(t) + Bu(t), (1)

with the state vector x 2 X ⇢ Rnx and the input vector u 2
U ⇢ Rnu with X and U being polytopic constraint sets that contain
the origin in their respective interiors. The constrained finite-time
optimal control problem is given by

U
?
ol = arg min x

|
N
QNxN +

N�1X

k=0

x
|
k
Qxxk + u

|
k
Quuk (2a)

s.t. xk+1 = Axk + Buk, k = 0, . . . ,N � 1, (2b)

xk 2 X , k = 0, . . . ,N � 1, (2c)

uk 2 U, k = 0, . . . ,N � 1, (2d)

xN 2 Xf, (2e)

where xk and uk are, respectively, predictions of states and inputs
at the kth step of the prediction horizon (denoted by N). Moreover,
QN = Q

|
N

⌫ 0, Qx = Q
|
x ⌫ 0 and Qu = Q

|
u � 0 denote

weighting matrices, and Xf ✓ X is the terminal set. Finally,
U
?
ol = [u?0|, . . . , u?N�1

|]| denotes the open-loop sequence of opti-
mal control moves obtained by solving (2) for a particular initial
condition x0. After introducing the substitution xk+1 = A

k
x0 +P

k�1
i=0 A

k�i�1
Bui, the open-loop profile of predicted states, i.e.,Xol =

[x0|, . . . , xN |]|, can be compactly written as Xol = � x0 +  Uol,
and (2) can be rewritten [6] into

U
?
ol(x0) = arg min

Uol

1/2U
|
olPUol + x

|
0QUol (3a)

s.t. GUol  w + Ex0, (3b)

x0 2 K, (3c)

which is a strictly convex parametric quadratic program (QP) with
x0 being the parameters, and K ⇢ Rnx is the set of parameters of
interest (typically, K = X ).

It is well known (see, e.g., [1,6]) that the explicit representation
of U

?
ol as a function of the initial condition x0 can be obtained

by solving (3) using parametric optimization. Then, U?ol(x0) is a
piecewise affine function, i.e.,

U
?
ol(x0) := Fix0 + gi if x0 2 Ri, i = 1, . . . , R, (4)

where Fi 2 RNnu⇥nx , gi 2 RNnu , and R denotes the total number of
polytopic critical regions Ri, described by

Ri = {x0 |Hix0  hi}. (5)

The receding-horizon feedback law is obtained by calculating
the open-loop sequence U

?
ol for a particular initial condition x0 =

x(t) at each sampling step, but only employing its first element,
i.e., u?0, as the closed-loop control action. Hence, the RHC feedback
law  : Rnx ! Rnu is given by

(x(t)) =
⇥
I 0 · · · 0

⇤
| {z }

�

U
?
ol(x(t)). (6)

In this paper we study the evolution of the system in (1) subject
to MPC feedback law u(t) = (x(t)), i.e.,

x(t + 1) = Ax(t) + B(x(t)), (7)

In particular, we investigate the closed-loop trajectories X
M

cl =
[x(0)|, . . . , x(M)|]| over a finite numberM of time steps. Note that
the system in (7) is nonlinear because, in general, the feedback law
(·) is a piecewise affine function due to (4).

Remark 2.1. The receding horizon nature of the feedback law
in (6) causes, in general, a mismatch between the closed-loop
state trajectory X

N

cl of (7) and the open-loop predictions Xol even
when the prediction model (2b) is identical to the dynamics of the
controlled system in (7), see, e.g., [15, Section 13.1].

3. Problem statement

We aim at reducing the complexity of explicit representations
of MPC feedback laws in (6) by removing critical regions of (4)
that will be unreachable when the evolution of the closed-loop
system (7) starts from some x(0) 2 L, where L ⇢ Rnx is a known
set.

Definition 3.1. The set of states S ✓ Rnx is called reachable from

the set L by the system in (7) under the RHC feedback (6) if there
exists an initial state x(0) 2 L such that x(M) 2 S for some finiteM ,
where x(i) is the ith element of the closed-loop sequence governed
by (7). If no such x(0) 2 L exists, the set S is called unreachable.

If some critical regions of (4) are determined to be unreachable,
they can be removed from (4), hence reducing the memory and
computational resources required to implement such a controller.
The difficulty of determining the reachability/unreachability status
of a particular critical region stems from the fact that one needs
to analyze all possible initial conditions from the set L. Moreover,
each initial condition has a different optimal control action associ-
ated to it via (2).
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Remark 3.2. It is important to realize that there is a fundamental
difference between the setL and the setK in (3c). The former is the
set of the initial conditions for the closed-loop system, i.e., x(0) 2 L,
while K is the set of initial conditions for the open-loop problem,
i.e., x0 2 K. As can be seen in Fig. 1, it is expected that the closed-
loop states x(t) leave the setL for some t > 0. Hence, settingK ⌘ L
would not lead to the same result as the procedure of this paper.
Instead, it would force the explicit MPC controller to be undefined
for states outside ofL sinceK is the set of parameters for which (3)
is solved.

The reachability analysis problem can be formally stated as
follows:

Problem 3.3. Given the critical regions Ri of the PWA feedback
law (4) and a polytopic set L of initial conditions for the closed-
loop system (7), determine, for each region, whether it is reachable
by the closed-loop system (7) under the RHC feedback (6), i.e., find
x(0) 2 L such that x(M) 2 Ri for some finite non-negative integer
M , or determine that no such x(0) 2 L exists.

Remark 3.4. Any critical region Ri that has a non-empty inter-
section with L is trivially reachable, according to Definition 3.1,
for M = 0. Such a detection can be performed at the price of
solving a single linear program for each region.We also pronounce
as reachable any critical region that intersects the terminal setXf to
avoid dealing withM ! 1 due to asymptotic convergence inside
ofXf if the terminal set is composed of several (e.g., nested) critical
regions.

4. Main results

The reachability of a particular critical region Ri by the MPC
feedback law (6) in exactly j steps is identical to the existence of
an initial condition x(0) 2 L such that the final element of the
evolution of the system in (7), i.e., x(j) = Ax(j � 1) + B(x(j � 1)),
satisfies x(j) 2 Ri.We recall that (x(k)) = �U

?
ol(x(k)) via (6)where

U
?
ol(x(k)) is the open-loop optimizer of (2) for the particular initial

condition x(k), k = 0, . . . , j � 1. The difficulty of determining the
reachability status lies in the fact thatU?ol(x(k)) depends on x(k) and
therefore attains different values at different time steps.

Technically, the reachability ofRi in exactly j steps can be stated
as

find x(0) (8a)

s.t. x(0) 2 L, (8b)

x(j) 2 Ri, (8c)

x(k + 1) = Ax(k) + B�U
?
ol(x(k)), (8d)

U
?
ol(x(k)) = arg min

Uol(k)
1/2Uol(k)|PUol(k) + x(k)|QUol(k) (8e)

s.t. GUol(k)  w + Ex(k), x(k) 2 K (8f)

where constraints (8d)–(8f) are enforced for k = 0, . . . , j � 1. In
what follows we first state main theoretical results before provid-
ing a computationally tractable formulation of (8).

Lemma4.1. If (8) is feasible for some j 2 [0, . . . ,M], then the critical

region Ri is reachable from L under the RHC feedback in the sense of

Definition 3.1. If the problem is infeasible for all j = 0, . . . ,M, then

Ri is unreachable from L in up to M steps.

Proof. Follows directly from Definition 3.1, from the fact that
(x(k)) = �U

?
ol(x(k)) as in (6), and since (8e)–(8f) represents the

open-loop optimizer to (2) with x(k) as the initial condition. ⌅

Lemma 4.2. Let Ri with Ri \ (Xf [ L) = ; be given and let the

tuning parameters of the MPC problem (2) be such that the controller

forces the state of the closed-loop system (7) to enter a positively

invariant terminal setXf in, at most, M time steps for all feasible initial

conditions x(0). If (8) is infeasible for all j = 0, . . . ,M then Ri is

unreachable for all time, i.e., 6 9k > 0 such that x(k) 2 Ri.

Proof. Infeasibility of (8) for all j = 0, . . . ,M implies unreachabil-
ity of Ri in up to M steps. Since the terminal set Xf is assumed to
be positively invariant, the MPC setup (2) is assumed to be tuned
in a way that Xf is reached in at most M steps, and because only
the critical regions outside of Xf are considered (cf., Remark 3.4),
it follows that after at most M steps the states of the closed-loop
system (7) enter Xf and stay in the set for all future time instants.
Therefore if Ri is unreachable in, at most, M steps, it will not be
reachable inM + k steps for an arbitrary k > 0. ⌅

Remark 4.3. In practice, it is difficult to derive (or even to esti-
mate) M directly from parameters of the open-loop MPC problem
in (2). A practical approach to detectM would be to grid the state-
space, perform numerical closed-loop simulations, and detect the
largest number of steps the closed-loop response requires to reach
the terminal set. Alternatively, an a-priori upper bound on M can
be set and be interpreted as the worst acceptable liveness of the
controller. Then infeasibility of (12) implies that the corresponding
critical region is not reached during the closed-loop evolution, or
that Ri could be reached, but after an unacceptably long time.

As noted in Section 3, any regions that are unreachable from the
given set of initial conditions L may be safely removed from the
PWA feedback law (4), thus reducing its memory storage as well as
the induced amount of computational operations required to eval-
uate (4) for given state measurements. Although the reachability
status of each critical region is determined off-line it is desired,
from a practical point of view, to be able to solve (8) swiftly,
especially for controllers with many critical regions. Therefore
in the next sections we review various ways of formulating and
solving (8).

Remark 4.4. In practice, infeasibility of (8) can be caused by
aspects not related to reachability ofRi, e.g., by running into a time
limit in the solver or encountering numerical difficulties. Therefore
we suggest to soften the hard constraint (8c), i.e., to replace it
by Hix(j)  hi + si where Hi, hi are the defining half-spaces
of the ith critical region (see (5)), si 2 Rni is a vector of non-
negative slack variable, and ni denotes the number of constraints
of the ith region. Moreover, the feasibility objective in (8a) should
be replaced by min 1|

si. Such a modification renders (8) always
feasible. If, however, s?

i,` > 0 for some of its element(s), then the
original hard constraint (8c) could not be satisfiedwithout relaxing
it, i.e., s?

i,` > 0 in the modified problem implies infeasibility of (8)
with hard constraints in (8c).

4.1. Formulation of (8) as amixed-integer optimization problemusing

KKT conditions

The main difficulty of determining feasibility of (8) stems from
the fact that it is a bilevel optimization problem with a feasi-
bility outer objective (8a) and an associated inner optimization
problem (8e)–(8f), which is equivalent to (3). These two problems
are coupled by the open-loop optimizer U?ol(x(k)) from the lower
problem, which in turn depends on x(k) from the upper problem.
A standard way of solving bilevel problems of the form (8) is
to replace the inner problem by its Karush–Kuhn–Tucker (KKT)
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conditions [16, Section 5.5.3]:

PU
?
ol(k) + Q

|
x(k) + G

|�(k) = 0, (9a)

GU
?
ol(k)  w + Ex(k), (9b)

�(k) � 0, (9c)

�i(k)(GiU
?
ol(k) � wi � Eix(k)) = 0, (9d)

where (9a) is the stationarity condition, (9b) represents primal fea-
sibility, (9c) is the dual feasibility, and (9d) stands for the comple-
mentary slackness condition, which is imposed for i = 1, . . . , nc,
where nc is the number of rows of G. Moreover, Gi denotes the
ith row of the corresponding matrix. Since the inner problem
(8e)–(8f) is a strictly convex parametric QP, the KKT conditions (9)
are necessary and sufficient [16, Section 5.5.3]. However, they are
nonlinear due to product between the Lagrange multipliers � and
the decision variables U?ol in (9d).

Such a nonlinearity can be worked around by realizing that
for (9d) to hold, either �i(k) = 0 or GiU

?
ol(k)� wi � Eix(k) = 0. One

can introduce binary indicators �i(k) 2 {0, 1} and �i(k) 2 {0, 1} for
k = 0, . . . , j � 1 and i = 1, . . . , nc such that

(�i(k) = 1) , (�i(k) = 0), (10a)

(�i(k) = 1) , (GiU
?
ol(k) � wi � Eix(k) = 0). (10b)

By applying standard rules of propositional logic [17], the equiva-
lences in (10) canbe furthermore rewritten into a set of inequalities
that are linear in the decision variables �i(k), U?ol(k), �i(k), and �i(k):

� Z(1 � �i(k))  �i(k)  Z(1 � �i(k)), (11a)

� Z(1 � �i(k))  GiU
?
ol(k) � wi � Eix(k)  Z(1 � �i(k)), (11b)

where Z is a sufficiently large constant. It is trivial to verify that
if �i(k) = 1 in (11a), then �i(k) = 0 is the only feasible value. If
�i(k) = 0, then (11a) is inactive. Similar reasoning holds for (11b).
Then the complementarity slackness condition (9d) can be equiv-
alently written as the propositional logic statement of the form
�i(k) _ �i(k) (i.e., either the ith Lagrange multiplier is zero, or
the ith constraint is active). Such a statement can be equivalently
written as �i(k) + �i(k) � 1. Therefore the KKT conditions (9)
can be equivalently written as a combination of (9a)–(9c), together
with (11) and �i(k)+ �i(k) � 1 replacing (9d); and will be denoted
by KKT (x(k),U?ol(k), �(k), �(k), � (k))  0 in the sequel. Then the
bilevel optimization problem (8) can be equivalently written as

find x(0) (12a)

s.t. x(0) 2 L, (12b)

x(j) 2 Ri, (12c)

x(k + 1) = Ax(k) + B�U
?
ol(k), (12d)

KKT(x(k),U?ol(k), �(k), �(k), � (k))  0, (12e)

where constraints (12d) and (12e) are imposed for k = 0, . . . , j�1.
Since L and Ri are assumed to be polytopes, and because (12e)
can be cast as a set of mixed-integer inequalities as per (9a)–(9c)
and (11), problem (12) for a finite j is a mixed-integer feasibil-
ity problem in decision variables x(0), . . . , x(j) with x(k) 2 Rnx ,
U
?
ol(0), . . . ,U

?
ol(j � 1) with U

?
ol(k) 2 RNnu , �(k) 2 Rnc , and binary

decision variables �(k) 2 {0, 1}nc and � (k) 2 {0, 1}nc for k =
0, . . . , j � 1.

4.2. Formulation of (8) as amixed-integer optimization problemusing

the explicit optimizer

An alternative way of formulating and solving (8) as a mixed-
integer problem is to employ the explicit representation of the op-
timizer to (8e)–(8f), readily available in (4). By doing so,

(8e)–(8f) can be removed and (8d) is replaced by

x(k + 1) = Ax(k) + B�(Fix(k) + gi) if x(k) 2 Ri, (13)

for i = 1, . . . , R where R denotes the number of critical regions.
Note that (13) involves IF/THEN rules. These can be tackled in the
propositional logic framework as follows. First, we equivalently
rewrite (13) into

[x(k) 2 Ri] ) [x(k + 1) = Ax(k) + B�(Fix(k) + gi)]. (14)

Subsequently, we introduce binary variables ✓i(k) 2 {0, 1} for
i = 1, . . . , R and k = 0, . . . , j such that ✓i(k) = 1 if and only
if x(k) 2 Ri. Since the union of critical regions of the parametric
solution to a strictly convex QP of the form (3) is convex, this is
equivalent to (see [18, Section 3.1])

Hix(k) � hi  Z(1 � ✓i(k)),
RX

i=1

✓i(k) = 1, (15)

where Hi and hi define the half-spaces of the ith critical region
in (5), and Z is a sufficiently large positive constant. Finally, the
implication in (14) is equivalent to

�Z(1�✓i(k))  x(k+1)�Ax(k)�B�(Fix(k)+gi)  Z(1�✓i(k)), (16)

by exploiting continuity of the explicit optimizer in (4) along
boundaries of critical regions.

Therefore (8) can be equivalently reformulated by replacing
(8d) by (16) and (8e)–(8f) by (15). As all constraints are linear, the
reformulated problem is again amixed-integer feasibility program.
However, unlike the formulation in (12) which has a total of 2nc
binary variables for each step k = 0, . . . , j (specifically, �(k) and
� (k)), the formulation of this section features R binary variables
✓ (k) for each step of the reachability analysis. In practice, R � nc
and therefore the formulation of Section 4.1 is typically superior,
from a computational point of view, to the approach based on an
explicit optimizer.

4.3. Formulation of (8) as a set-based reachability problem

An another option is to approach (8) as a set-based reachability
problem. Specifically, denote by

S(j) = {x(j) | x(0) 2 L, x(k+1) = Ax(k)+B(x(k)), k = 0, . . . , j�1}
(17)

the set of states of the system in (1) that are reachable from the
set of initial conditions L under the MPC feedback law  in (6) in
j steps. Clearly, if S(j) \ Ri = ; for all j = 0, . . . ,M , then the
ith critical region is unreachable and can therefore be removed
from the explicit optimizer (4). The difficulty of characterizing the
sets S(j) stems from the fact that  is a PWA function, therefore
computing (17) entails solving a forward reachability problem for
PWA systems [19, Chapter 6.3]. Specifically, the dynamics of the
closed-loop system in (7) subject to the PWA controller (4) and (6)
is given by the autonomous system

x(k + 1) = (A + B�Fi)| {z }
Ãi

x(k) + �gi|{z}
f̃i

if x(k) 2 Ri, (18)

where Fi, gi are the parameters of the explicit optimizer in (4), and
� is as in (6). Let S(0) = {L} and denote by I`(k) = {i | Ri \
S`(k) 6= ;} the index set of critical regions that have a non-empty
intersection with the `th element of S(k) for k = 0, . . . , j�1. Then

S(k + 1) = {Ãi � (Ri \ S`(k)) + f̃i}8i2I`(k),8`2[1,...,|S(k)|], (19)

where Ã � P + f̃ = {Ãx + f̃ | x 2 P} is the one-step forward
reachable set of the autonomous system x(t + 1) = Ãx(t) + f̃ , and
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|S(k)| is the cardinality of the set. We remark that ifP = Ri \S`(k)
is a polytope (as is the case for polytopic critical regions (5) and
polytopic set of initial conditions L), each element of S(k + 1) will
be a polytope as well [15, Section 5.4.11]. Therefore the set S(j)
can be computed by propagating the sets in (19) forwards in time
for k = 0, . . . , j � 1. The downside of this approach is that the
cardinality of S(k) increases, in the worst case exponentially, with
k and with the number of critical regions.

5. Complexity reduction

Next we show how to employ the reachability procedures re-
ported in Section 4 to reduce complexity of explicit MPC feedback
laws in (4) and (6). Denote by I ✓ {1, . . . , R} the index set of the
critical regions Ri of (4) that are reachable1 from L. Consider the
reduced optimizer

eU?ol(x) = Fix + gi if x 2 Ri, 8i 2 I, (20)

created from (4) by retaining only the critical regions indexed by
I. Let

̃(x) =
⇥
I 0 · · · 0

⇤eU?ol(x) (21)

be the corresponding reduced RHC feedback law.

Lemma 5.1. Let the set L of initial conditions for the closed-loop

system (7) be given, along with parameters of the MPC problem (2).
Assume that these parameters are chosen such that the RHC feed-

back (6) with the original (complex) optimizer (4) drives the states

of the closed-loop system to the terminal setXf in finite time. Then the

closed-loop profile of (7) under the original complex feedback (·) is
equivalent to the closed-loop profile under the reduced feedback ̃(·)
for all x(0) 2 L.

Proof. Follows directly from the fact that the reduced optimizer
eU?ol(·) contains all reachable critical regions of U?ol(·). Hence there is
no x(0) 2 Lwhich would generate a closed-loop sequence (7) that
would enter any critical region not indexed by I. ⌅

A consequence of Lemma 5.1 is that the reduced feedback (21)
is equivalent, in the closed-loop sense, to the original (complex)
strategy (6). Under such an equivalence the complexity of the
explicit MPC optimizer (4) can be reduced as follows. Assume the
explicit representation of U?ol(x) in (4) is available. For each critical
region Ri with i = 1, . . . , R, determine reachability of Ri per the
procedures of Section 4. Then the index set I of reachable criti-
cal regions is obtained by solving R decision problems described
previously. Afterwards, only the regions indexed by I are retained
and the unreachable critical regions are removed from the explicit
representation of the RHC controller.

6. Extensions

6.1. State measurements affected by measurement noise

The reachability approach to complexity reduction in explicit
MPC presented in Section 4 can be further extended to caseswhere
the statemeasurements are affected by an unknown, but bounded,
measurement noise ⇠ 2 ⌅ with⌅ being a polytope. In this case, (7)
becomes

x(t + 1) = Ax(t) + B(x(t) + ⇠ (t)). (22)

1 Recall that, by Remark 3.4, any critical region that intersects either L or Xf is
considered reachable. The reachability status of the remaining critical regions needs
to be checked per the procedures of Section 4.

Notice that ⇠ enters only into the argument of the feedback law (6),
which is evaluated for noisy statemeasurements x(t)+⇠ (t), but the
noise does not directly affect the open-loop predictions (2b).

Determining reachability/unreachability of a particular critical
region Ri in the presence of measurement noise amounts to de-
termining whether there exists a sequence {⇠ (0), . . . , ⇠ (M � 1)}
which, when employed as a measurement noise, will drive the
system (22) to Ri in, at most,M steps.

Such a decision problem can be formulated by extending the
formulation in (12) into the form

find x(0) (23a)

s.t. x(0) 2 L, (23b)

x(j) 2 Ri, (23c)

x(k + 1) = Ax(k) + B�U
?
ol(k), (23d)

KKT(x(k) + ⇠ (k),U?ol(k), �(k), �(k), � (k))  0, (23e)

⇠ (k) 2 ⌅ , (23f)

where (23d)–(23f) are imposed for k = 0, . . . , j � 1. The KKT con-
ditions in (23e) implicitly define the optimal open-loop sequence
associated to the noisy state measurements and can be converted
into a set of linear inequalities involving binary variables using the
propositional logic framework as set forth in Sections 4.1 and 4.2.

Lemma 6.1. Let Ri with Ri \ (Xf [ L) = ; be given. If the mixed-

integer feasibility problem (23) is feasible for some j 2 [0, . . . ,M],
then the critical regionRi is reachable fromL under the RHC feedback.

If the problem is infeasible for all j = 0, . . . ,M, thenRi is unreachable

from L.

Proof. Follows along the lines of proofs of Lemmas 4.1 and 4.2.
Specifically, if (23) is feasible for some j, then there exists a x(0) 2
L, along with a sequence of measurement noises {⇠ (0), . . . , ⇠ (j �
1)}, such that x(j) 2 Rj. If no such initial condition and/or sequence
of noise values could be found, the region is unreachable in finite
time. If, moreover, reachability of the terminal set Xf in M steps is
enforced by a proper tuning of the MPC problem in (2), it follows
from Lemma 4.2 that infeasibility of (23) for all j 2 [0, . . . ,M]
implies unreachability of Ri by x(k) for any k > 0. ⌅

Remark 6.2. Critical regionRi is declared reachable by Lemma 6.1
if there exists a sequence of noise variables, i.e., {⇠ (0), . . . , ⇠ (j �
1)}, such that x(j) 2 Ri for some 0  j  M . This sequence
corresponds to the worst-case behavior of the closed-loop system.
Employing a different sequence of noise values can render the
region unreachable. However, since the noise is assumed to be a
random variable, the worst case needs to be considered. On the
other hand, if (23) is infeasible for all j = 0, . . . ,M , then Ri is
unreachable regardless of a choice of the noisewith ⇠ (j) 2 ⌅ holds.

6.2. Nonlinear systems

So far we have considered the case where the dynamics of
the closed-loop system in (7) is identical to that of the prediction
model in (2b). The results can be further generalized as follows.
Consider that the closed-loop dynamics (7) is driven by

x(t + 1) = f (x(t), u(t)), (24)

where f is an arbitrary vector field. Notice, however, that we
assume that u(t) = (x(t)) with  as in (6), i.e., the system is
controlled by an MPC strategy designed for a linear prediction
model in (2b). By replacing (8d) by

x(k + 1) = f (x(k),�U
?
ol(x(k))), (25)
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and after treating (8e)–(8f) using the propositional logic frame-
work of Sections 4.1 and 4.2, problem (8) becomes amixed-integer
nonlinear program (MINLP). Importantly, Lemmas 4.1 and 4.2 still
apply, i.e., infeasibility of (8) with (8d) replaced by (25) implies
unreachability of a particular critical region even under the nonlin-
ear dynamics in (24). This extension therefore allows to study the
behavior of linearMPC in conjunctionwith nonlinear systems. One
obvious application is in the spirit of complexity reduction as set
forth in Section 5 where one removes from the explicit MPC feed-
back law the regions that are unreachable by the nonlinear system.

The procedure can also be used to analyze the safety of linear
MPC applied to control nonlinear systems. Specifically, denote by
F = [iRi the feasible set of the explicit optimizer (4) (we remark
that for strictly convex QP formulations (3)F is a polytope), and let
E = Rnx \F be the complement toRnx , i.e., the set of states outside
of F . We remark that E = {En} is composed of a finite number of
polyhedra En [15, Section 5.5.1] since F is a polytope. Then finite-
time reachability of any element of E (verified by solving (8) with
Ri replaced by En in (8c)) implies a lack of recursive feasibility
guarantees of the linear MPC controller (2) in conjunction with
the nonlinear dynamics (24). Such an a-posteriori analysis allows
the control designer to base the control synthesis on linear models
and check if the safety guarantees (i.e., infinite-time constraint
satisfaction) extend to a nonlinear dynamics.

It should be noted that MINLP formulations arising from such
an extension are notoriously difficult to solve. However, if the non-
linear vector field f in (24) is piecewise affine, i.e., f (x(t), u(t)) :=
Aix(t) + Biu(t) + gi if (x(t), u(t)) 2 Di with polyhedral regions of
validityDi, then the resulting feasibility optimization problem can
be cast as a mixed integer linear program that can be solved rather
efficiently using off-the-shelf tools, see [18, Section 3.1] for details.

6.3. Reachability-based explicit MPC solver

One of the advantages of the KKT-based reachability analysis
of Section 4.1 is that (12) can determine reachability of an arbi-
trary set Ri (i.e., not necessarily just that of a critical region) by
employing only the implicit representation of the MPC feedback
law, cf. (8e)–(8f) and (12e). As a consequence, the full explicit MPC
solution as in (4) is not required to determine reachability of Ri.

This observation can be used to design an explicit MPC solver
that never generates unreachable regions in the first place, i.e., no
post-processing of Section 5 is required. To do so, we propose to
extend the enumeration method for parametric QPs (3), originally
suggested in [20]. Here, instead of approaching critical regions (5)
as geometric sets, the regions are equivalently captured by their
underlying active sets, i.e., the index sets of constraints that are ac-
tive at the optimum. Specifically, the primal feasibility constraints
in (9b) are split into

GAi
U
?
ol = wAi

+ EAi
x, (26a)

GNi
U
?
ol < wNi

+ ENi
x, (26b)

where Ai ✓ {1, . . . , nc} (we recall that nc is the number of
constraints in (3b)) is the index set of active constraints and Ni =
{1, . . . , nc} \ Ai are the inactive constraints. To determine all opti-
mal active sets, the authors of [20] have proposed to enumerate
all possible combinations thereof, followed by a branch-and-cut
pruning of the tree of possible active sets. Specifically, if a particular
active set Ai is determined to be infeasible, so will be any other
active set Ai0 with Ai0 � Ai, cf. [20, Section 3.2]. Such a feasibility-
based pruning allows to keep the size of the exploration tree
(which would otherwise explode exponentially with the problem
size) under control.

If the parametric QP (3) originates from an MPC problem (2)
where, moreover, only a limited subset of initial conditions x(0) 2

L is considered, then the procedure of [20] can be further improved
as follows. Note that feasibility of (26a) is a necessary condition
for the inclusion in (12c) to hold. Next, replace x(j) 2 Ri in (12c)
by GAi

U
?
ol(x(j)) = wAi

+ EAi
x(j) from (26a). Clearly, infeasibility

of (12) then implies that Ai is not a feasible active set. Thus the
corresponding critical regionRi is unreachable either in finite time
(Lemma 4.1) or in infinite time (Lemma 4.2). Subsequently, we
have by [20, Section 3.2] that any other active set Ai0 � Ai will
be infeasible, and, in consequence, the associated region Ri0 will
be unreachable and therefore need to be constructed and included
into (4). In short, we are proposing to extend the feasibility test
of [20, eq. (16)] by including (12) such that regions that are not
reachable from a given set of initial conditions x(0) 2 L are
not generated during the construction of the explicit solution (4).
Doing so has two upsides. First, the size of the exploration tree is
limited further, allowing the enumeration-based approach to per-
form faster. Second, such an approachdirectly generates the simple
solution without having to perform, a-posteriori, the analysis of
Section 5.

7. Examples

7.1. Illustrative 2D example

We consider the control of pendulum, which consists of a ball
attached to the ceiling by a rope. The dynamics of the system is
modeled by the discrete-time linear system

x(t + 1) =

0.5403 �0.8415
0.8415 0.5403

�
x(t) +


�0.4597
0.8415

�
u(t) (27)

where x 2 R2 is the state vector (composed of the ball’s position
and its velocity), and the control input u 2 R is the acceleration
of the ball. The states and the input of (27) are constrained by⇥ �10

�10
⇤

 x 
⇥
10
10

⇤
and �1  u  1. The penalties were chosen as

Qx =
⇥
1 0
0 1

⇤
, Qu = 1, and QN given as the solution to the algebraic

Riccati equation, Xf designed as the LQR set, and the prediction
horizon was set to N = 8. The explicit MPC solution in (4) was
calculatedwith theMPT toolbox [21]. The solution consisted of 147
polytopic critical regions in the 2-dimensional space.

To reduce the complexity, we have first applied the procedure
of Section 4.1 with the set of initial conditions for the closed-loop
system L = {x | x2 = 0, �5  x1  5} (i.e., the ball placed
anywhere between±5with zero velocity). The reachability of each
critical region was tested using the procedures of Section 4.1–
4.3. Specifically, the mixed-integer problems of Sections 4.1 and
4.2 were formulated by YALMIP [22] and solved by Gurobi. The
set-based reachability method of Section 4.3 was implemented
using the MPT toolbox. The runtimes2 of respective methods are
reported in Table 1. Allmethods provided the same answer, namely
that only 23 out of the 147 regions are reachable by the closed-loop
systemwith x(0) 2 L. Therefore the complexity of the simple con-
troller (20)–(21) was reduced by a factor of 6.3 without sacrificing
the closed-loop performance. The reachable/unreachable regions
are depicted in Fig. 2, along with several illustrative closed-loop
trajectories.

Then we have investigated how the reachability status of indi-
vidual critical regions is affected when a bounded measurement
noise is assumed per the scenario of Section 6.1. In particular, we
have assumed that the noise is boundedby ⌅ = {⇠ |

⇥ �0.25
�0.25

⇤
 ⇠ ⇥

0.25
0.25

⇤
}. The analysis was performed by solving the mixed-integer

problems (23) with M set to M = 20. The analysis took 4.5 s.
Out of the 147 regions of the original feedback, 31 were reachable

2 All computations were performed on a 3.5 GHz Intel Core i7 CPU with Matlab
R2017b, YALMIP R20180926, Gurobi 7.5.2 and MPT 3.3 beta.
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Table 1
Runtimes of various reachability analysis methods for the 2D oscillator.
Method Runtime
Section 4.1 1.9 s
Section 4.2 8.2 s
Section 4.3 30.0 s

Fig. 2. The 23 reachable (gray) and 124 unreachable (white) critical regions for the
pendulum example. The red dashed lines represent closed-loop profiles for four
different initial conditions. Only the reachable regions are retained by the simpler
optimizer (20). Notice that not all of the reachable regions are activated by the four
example closed-loop trajectories. However, they could be reached should a suitable
initial condition from the set L be selected.

Fig. 3. 31 reachable regions under noisy measurements (light gray = regions
reachable under zero noise, dark gray = regions reachable with non-zero noise).

Fig. 4. The mass spring damper system.

under noisy measurements. In particular, the index set of regions
that were reachable under the noisy measurements included all
the regions that were reachable with zero noise, plus additional 8
regions that could be reached should an unfavorable realization of
the noise occur. The newly added reachable regions are depicted
in dark color in Fig. 3.

7.2. Mass spring damper system

Next we analyze a system composed of L = 5 masses inter-
connected by springs and dampers, depicted in Fig. 4. Each mass

is represented by two states (position pi and velocity ṗi), thus the
overall system has 10 states. The control input is the external force
F1 applied to the left-most mass. The linearized dynamics is given
by

M1p̈1 � C1(ṗ2 � ṗ1) � K1(p2 � p1) = F1, (28)

for the left-most mass,

Mip̈i � Ci(ṗi+1 � ṗi) + Ci+1(ṗi � ṗi�1) � Ki(pi+1 � pi)
+Ki�1(pi � pi�1) = 0, (29)

for the intermediate masses, and

MLp̈N � CL�1(ṗL � ṗL�1) + KL�1(pL � pL�1) = 0, (30)

for the right-most mass. For this system, the MPC problem (2) was
constructed with N = 5, U = {F1 | |F1|  5}, X = {x |
|pi|  10, |ṗi|  20, i = 1, . . . , L}, Qx = I10⇥10, Qu = 0.001,
QN given as the LQR penalty, and Xf as the LQR set. Numerical
values of constants were set to Mi = 10 kg, Ci = 10 N m�1, and
Ki = 20 kg s�1, i = 1, . . . , L. Sampling time of 0.2 s was chosen to
discretize (28)–(30).

The parametric QP (3) was subsequently solved using the enu-
merative solver of [20], implemented in the MPT toolbox. After
62 s we have obtained the explicit optimizer (4) defined over
1715 regions in the 10-dimensional state space. Complexity of this
solution was subsequently reduced by applying the procedures of
Sections 4 and 5. Specifically, we have assumed L = {x | ṗi =
0, i = 1, . . . , L}, i.e., masses starting from an arbitrary position
with zero velocity. The analysis of Section 4.1 has shown that only
87 regions are reachable from L, therefore the complexity of the
explicit MPC controller can be reduced by a factor of 20 without
sacrificing performance. The analysis took 283 s (notice that the
problem has 5 times more states and 10 times more regions as the
case in Section 7.1).

Finally, we have augmented the extensive enumeration solver
of [20] as proposed in Section 6.3 to include reachability-based
pruning of active sets. This allowed to solve the parametric QP in
just 33 s, yielding directly just the 87 reachable regionswithout the
need to apply the a-posteriori analysis of Sections 4 and 5.

8. Conclusion

We have proposed to apply reachability analysis to remove
from a given explicit MPC controllers the regions which are not
reachable from a given set of initial conditions. The reachability
problem was formulated for three different scenarios. The third
one is the most versatile one, since it allows for a mismatch be-
tween the predicted open-loop trajectory and the actual closed-
loop response, and accounts for measurement noise as well. Each
reachability problemwas formulated as amixed-integer feasibility
problemwhich entails Karush–Kuhn–Tucker optimality conditions
to express reachability under the optimal MPC feedback.

Themain advantage of the proposed approach is that the reach-
ability/unreachability status of a particular critical region can be
determined without having to know the full explicit solution, as
the procedure of Section 4.1 is based on the implicit representation
of the MPC feedback law. This opens up the possibility to combine
the proposedmethodwith a parametric programming solver to di-
rectly generate a simple solution,without the need to construct the
full (complex) explicit optimizer first, as reported in Section 6.3.
An another application of the presented procedure, described in
Section 6.2, is to analyze safety and liveness properties of RHC
controllers where the open-loop optimization problem is solved
numerically at every sampling instant. Then the critical regions can
be interpreted as the sets of unsafe conditionswhich the controller
is supposed to avoid. If such a set is determined to be reachable,
then the controller fails the safety check. Similarly, when checking
liveness, one can employ the suggested procedure to verify that a
certain set of states is reachable in a given number of steps.
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