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Parallel MPC for Linear Systems With Input Constraints
Yuning Jiang , Member, IEEE, Juraj Oravec , Boris Houska , and Michal Kvasnica , Member, IEEE

Abstract—This article is about a real-time model predictive con-
trol algorithm for large-scale, structured linear systems with poly-
topic control constraints. The proposed controller receives the
current state measurement as an input, and computes a subop-
timal control reaction by evaluating a finite number of piecewise
affine functions that correspond to the explicit solution maps of
small-scale parametric quadratic programming (QP) problems. We
provide asymptotic stability guarantees, which can be verified of-
fline. The feedback controller is computing approximations of the
optimal input, because we are enforcing real-time requirements
assuming that it is not possible to solve the given large-scale QP
in the given amount of time. Here, a key contribution of this article
is that we provide a bound on the suboptimality of the controller.
The approach is illustrated by benchmark case studies.

Index Terms—Model predictive control (MPC), parametric opti-
mization.

I. INTRODUCTION

The advances of numerical optimization methods over the last
decades [1], in particular, the development of efficient quadratic pro-
gramming problem (QP) solvers [2], have enabled numerous industrial
applications of model predictive control (MPC) [3]. Modern real-time
optimization and control software packages [4], [5] achieve run-times
in the milli- and microsecond range by generating efficient and reliable
C-code [6], [7]. However, as much as these algorithms perform well
on desktop computers or other devices with comparable computation
power, the number of successful implementations of MPC on embed-
ded industrial hardware, such as programmable logic controllers and
field-programmable gate arrays, remains limited [8]. Here, the main
question is what can be done if an embedded device has not enough
computational power or storage space to solve the exact MPC problem
in real-time.
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Many researchers have attempted to address this question. For ex-
ample, the development of Explicit MPC [9] aims at reducing both
the online run-time and the memory footprint of MPC by optimizing
precomputed solution maps of multiparametric optimization problems.
However, Explicit MPC has the disadvantage that the number of poly-
topic regions over which the piecewise affine solution map of a paramet-
ric quadratic program is defined, grows, in the worst case, exponentially
with the number of constraints. Some authors [10] have suggested
addressing this issue by simplifying the MPC problem formulation
by using move-blocking [11], but the associated control reactions can
be suboptimal by a large margin. Other authors [12] have worked on
reducing the memory footprint of Explicit MPC—certainly making
considerable progress yet failing to meet the requirement of many
practical systems with more than just a few states. In fact, despite all
these developments in Explicit MPC, these methods are often applicable
to problems of modest size only. As soon as one attempts to scale up to
larger systems, Explicit MPC is often outperformed by iterative online
solvers such as active set [2] or interior-point methods [5].

A recent trend in optimization-based control is to solve large MPC
problems by breaking them into smaller ones. This trend has been
initiated by research on distributed optimization [13]. For example,
dual decomposition [14], alternating direction method of multipli-
ers (ADMM) [13], and alternating direction inexact newton (AL-
ADIN) [15] have been applied to MPC in various contexts and by many
authors [16]–[20]. Additionally, applications of accelerated variants of
ADMM to MPC can be found in [21], [22]. However, modern dis-
tributed optimization methods, such as ADMM or ALADIN, typically
converge to an optimal solution in the limit, if the number of iterations
tends to infinity. Thus, if real-time constraints are present, one could at
most implement a finite number of such ADMM or ALADIN iterations
returning a control input that may be infeasible or suboptimal by a large
margin.

Therefore, this article asks the question whether it is possible to
approximate MPC feedback laws by evaluating a constant, finite num-
ber of precomputed, explicit solution maps that are associated to MPC
problems of a smaller scale. Here, a key requirement is that uniform
asymptotic stability and performance guarantees of the implemented
closed-loop controller have to be verifiable offline. The contribution
of this article is the development of a controller, which meets this
requirement under the restricting assumption that the original MPC
problem is a strongly convex QP, as introduced in Section II. The
control scheme itself is presented in the form of Algorithm 1 in
Section III. This algorithm alternates between solving explicit solution
maps that are associated with small-scale decoupled QPs and solving
a linear equation system of a larger scale. However, in contrast to AL-
ADIN, ADMM or other existing distributed optimization algorithms,
Algorithm 1 performs a constant number of iterations per sampling
time.

The stability and performance properties of Algorithm 1, which
represent the main added value compared to our preliminary work [23],
are summarized in Sections III-C, III-D, and III-E, respectively. Instead
of relying on existing analysis concepts from the field of distributed
optimization, the mathematical developments in this article rely on

0018-9286 © 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
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results that find their origin in Explicit MPC theory [24]. In particular,
the technical developments around Theorem 1 make use of the solu-
tion properties of multiparametric QPs in order to derive convergence
rate estimates for Algorithm 1. Moreover, Theorem 2 establishes an
asymptotic stability guarantee of the presented real-time closed-loop
scheme. This result is complemented by Corollary 1, which provides
bounds on the suboptimality of the presented control scheme. Finally,
Section IV-A discusses implementation details with a particular empha-
sis on computational and storage complexity exploiting the fact that the
presented scheme can be realized by using static memory only while
ensuring a constant run-time, as illustrated by numerical case studies.

II. LINEAR-QUADRATIC MPC

This article concerns discrete-time MPC problems

J(x0) = min
x,u

M(xN ) +
N−1∑
k=0

�(xk, uk)

s.t.

⎧⎨
⎩
∀k ∈ {0, . . . , N − 1}
xk+1 = Axk +Buk

uk ∈ U
(1)

with strictly convex quadratic stage and terminal cost

�(x, u) = x�Qx+ u�Ru and M(x) = x�Px .

Here,xk ∈ Rnx denotes the state at timek anduk ∈ Rnu the associated
control input assuming that the current time of the MPC controller is set
to 0. The matrices A,P,Q ∈ Rnx×nx , B ∈ Rnx×nu , R ∈ Rnu×nu

are given and constant. Notice that (1) is a parametric optimization prob-
lem with respect to the current state measurement x0. The optimization
variable x = [x�1 , x

�
2 , . . . , x

�
N ]� includes all but the first element of the

state sequence and the control sequence u = [u�0 , u
�
1 , . . . , u

�
N−1]

� is
defined accordingly.

Assumption 1: We assume that
a) the control constraint set U ⊆ Rnu is a closed and convex polyhe-

dron satisfying 0 ∈ U ;
b) the matrices Q, R, and P are all symmetric and positive definite.

Assumption 1 a) and b) implies strong convexity such that the primal
solution of (1) is unique whenever it exists.

A. Asymptotic Stability

Notice that the stability properties of MPC controllers have been
analyzed exhaustively [25]. In this context, a standard assumption can
be formulated as follows.

Assumption 2: The terminal cost M in (1) admits a control law
μ : Rnx → U such that for all x ∈ Rnx

�(x, μ(x)) +M(Ax+Bμ(x)) ≤M(x) .

The MPC controller (1) is asymptotically stable if Assumptions 1
and 2 hold [25].

III. SUBOPTIMAL REAL-TIME MPC

In this section, we propose and analyze a real-time algorithm for
finding approximate solutions of (1).

A. Preliminaries

Let us introduce the vectors y0 = u0, yk = [x�k u�k ]
�, yN = xN ,

and their associated constraint sets

Y0 = U and Yk =
{
y ∈ Rnu+nx | [ 0 I ] y ∈ U

}
(2)

for all k ∈ {1, . . . , N − 1}. Moreover, we introduce

Fk(yk) = �(xk, uk) , FN (yN ) = M(xN ) (3)

for k ∈ {1, . . . , N − 1} and matrices

H0 = B, Hk =
[
A B

]
, Gk =

[
I 0

]
, GN = I

as well as h0 = Ax0, hk = 0 for all k ∈ {1, . . . , N − 1}. Now, (1)
can be written in the form

J(x0) = min
y

N∑
k=0

Fk(yk)

s.t.

⎧⎨
⎩
∀k ∈ {0, . . . , N − 1},
Gk+1yk+1 = Hkyk + hk | λk

yk ∈ Yk .
(4)

The notation “| λk” behind the affine constraints in the abovementioned
optimization problems indicates that λk denotes their associated mul-
tipliers. It is helpful to keep in mind that both the function F0 and the
vector h0 depend on x0. In addition, we introduce a shorthand for the
objective in (4) and its convex conjugate function

F (y) =
N∑

k=0

Fk(yk) , F
�(λ) = max

y
{−F (y) + 〈λ, y〉}

where the shorthand notation

〈λ, y〉 = −(H�0 λ0

)�
y0 +

N∑
k=1

(
G�kλk−1 −H�k λk

)�
yk

+ λ�N−1G
�
NyN

is used to denote a weighted (nonsymmetric) scalar product of primal
and dual variables. Notice that the functions F and F � are strongly
convex quadratic forms with F (0) = 0 and F �(0) = 0 as long as
Assumption 1 is satisfied. The optimal primal and dual solutions of (4)
are denoted by x� and λ�, respectively. It is well-known that x� and λ�

are continuous and piecewise affine functions of x0 (see [26]).

B. Algorithm

The main idea for solving (4) approximately and in real time is to
consider the auxiliary optimization problem

J(x0) = min
y

N∑
k=0

Fk(yk − yref
k )

s.t.

{ ∀k ∈ {0, . . . , N − 1}
Gk+1yk+1 = Hkyk + hk | λk

(5)

with reference trajectory yref. If yref = y� is equal to the minimizer
of (4), then y� is a minimizer of (5). Notice that the main motivation
for introducing the coupled QP (5) is that this problem approximates (4)
without needing inequality constraints. Thus, this problem can be
solved by using a sparse linear algebra solver.

Let us assume that ym and λm are the current approximations of the
primal and dual solution of (4). Algorithm 1 constructs the next iterate

Authorized licensed use limited to: Slovak University of Technology. Downloaded on June 30,2021 at 08:40:43 UTC from IEEE Xplore.  Restrictions apply. 
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Algorithm 1: Parallel Real-Time MPC.

Initialization:
• Choose y1=[y1�

0 , . . . , y1�
N ]�, λ1=[λ1�

0 , . . . , λ1�
N−1]

�, a constant
γ>0, and a maximum number m of iterations per sampling time.

Online:
1) Wait for the state measurement x0 and compute the constant

f1 = F (y1) + F �(λ1) .

If f1 ≥ γ2x�0Qx0, rescale

y1 ← y1

√
γ2‖x0‖2Q

f1
and λ1 ← λ1

√
γ2‖x0‖2Q

f1

where ‖x0‖2Q � x�0Qx0.
2) For m = 1→ m

a) solve the small-scale decoupled QPs in parallel

min
ξm
0
∈Y0

F0(ξ
m
0 )− (H�0 λm

0 )�ξm0 + F0(ξ
m
0 − ym

0 )

min
ξm
k
∈Yk

Fk(ξ
m
k ) + (G�kλm

k−1 −H�k λm
k )�ξmk + Fk(ξ

m
k − ym

k )

min
ξm
N

FN (ξmN ) +
(
G�Nλm

N−1
)�

ξmN + FN (ξmN − ym
N )

for all k ∈ {1, . . . , N − 1} and denote solutions by
ξm = [ξm0 , ξm1 , . . . , ξmN ].
b) Solve the coupled QP

min
ym+1

N∑
k=0

Fk(y
m+1
k − 2ξmk + ym

k )

s.t.

{ ∀k ∈ {0, . . . , N − 1},
Gk+1y

m+1
k+1 = Hky

m+1
k + hk | δmk

(7)

and set λm+1 = λm + δm.
End

3) Send u0 = ξm0 to the real process.
4) Set y1 = [ym�

1 , . . . , ym�
N , 0]�, λ1 = [λm�

1 , . . . , λm�
N−1, 0]

�,
go to Step 1.

ym+1 and λm+1 by performing two main operations. First, we solve
augmented Lagrangian optimization problems of the form

min
ξm∈Y

F (ξm) + 〈λ, y〉+ F (ξm − ym) . (6)

with Y = Y0 × · · · × YN−1 ×Rnx . Problem (6) can be solved in paral-
lel, see Step 2.a) of Algorithm 1. In the following, we setQ = 1

2
∇2F (0)

such that ‖ξm − ym‖2Q = F (ξm − ym) recalling that F is a centered
positive-definite quadratic form. And second, we solve QP (5) for
the reference point yref = 2ξm − ym without considering the input
constraints. These two main steps correspond to Step 2a) and b) in
Algorithm 1.

Algorithm 1 is initialized with guesses

y1 = [y1�
0 , . . . , y1�N ]� and λ1 = [λ1�

0 , . . . , λ1�
N ]�

for the primal and dual solution of (4) offline. Notice that Algorithm 1
receives a state measurement x0 in every iteration (Step 1) and returns
a control input to the real process (Step 3). Similar to the classical
real-time MPC scheme [6], or related warm-start techniques [27], Step

4) shifts primal and dual variables y1 and λ1, which are, however,
rescaled in Step 1), based on a tuning parameter γ > 0.

Assumption 3: The constant γ in Algorithm 1 is such that

F (y�) + F �(λ�) ≤ γ2x�0Qx0 .

Notice that such a bound γ exists and can be computed offline,
because y� and λ� are Lipschitz continuous and piecewise affine
functions of x0 [26]. Notice that the choice γ =∞ would mean that
the variables are never rescaled. In this case, Algorithm 1 is unstable
in general. In order to see this, consider the scenario that a user
initializes the algorithm with an arbitrary (y1, λ1) �= 0. Now, if the
first measurement happens to be at x0 = 0, the optimal control input
is at u� = 0. But, if we run Algorithm 1 with m <∞, it returns an
approximation u0 ≈ u� = 0, which will introduce an excitation as we
have u0 �= 0 in general. Thus, if we would not rescale the initialization
in Step 1), it would be impossible to establish stability.

C. Convergence Properties of Algorithm 1

This section provides a concise overview of the theoretical conver-
gence properties of Algorithm 1. Here, we initially focus on establishing
conditions for convergence of the iterates of this algorithm (Lemma 1),
which are then, in a second step, used to establish a linear convergence
rate estimate (Theorem 1).

Lemma 1: Let Assumption 1 be satisfied and let (4) be feasible, such
that a unique minimizer y� and an associated dual solution λ� exist.
Then, the iterates of Algorithm 1 satisfy

m∑
m=m̂

F (ξm − y�) ≤ F (ym̂ − y�) + F �(λm̂ − λ�)

4

for all m ≥ m̂ and all m̂ ≥ 2.
Notice that the statement of Lemma 1 is useful in the sense that

an immediate consequence of this statement is that the iterates of
Algorithm 1 would converge to the exact solution of (4), if we would
set m =∞, i.e.,

lim
m→∞

ξm = y� and lim
m→∞

λm = λ� .

The proof of the abovementioned lemma is technical but important for
the developments in this article

Proof: Let us introduce the auxiliary functions

F0(φ0) = F0(φ0)−
(
H�0 λm

0

)�
φm
0 +∇F0(ξ

m
0 − ym

0 )�φ0

Fk(φk) = Fk(φk) +
(
G�kλm

k−1 −H�k λm
k

)�
φm
k

+∇Fk(ξ
m
k − ym

k )�φk

FN (φN ) = FN (φN ) +G�Nλm
N−1φ

m
N +∇FN (ξmN − ym

N )�φN .

Because ξmk is a minimizer of the kth decoupled QP in Step 2a) of
Algorithm 1, it must also be a minimizer of Fk on Yk. Thus, because
Fk is strongly convex with Hessian ∇2Fk, we must have

N∑
k=0

Fk(ξ
m
k ) +

N∑
k=0

Fk(ξ
m
k − y�

k) ≤
N∑

k=0

Fk(y
�
k) .

On the other hand, due to duality, we have

N∑
k=0

Fk(y
�
k) + 〈λ�, y�〉+

N∑
k=0

Fk(ξ
m
k − y�

k)

≤
N∑

k=0

Fk(ξ
m
k ) + 〈λ�, ξm〉.
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Adding both inequalities and collecting terms yields

0 ≥
N∑

k=0

∇Fk(ξ
m
k − ym

k )�(ξmk − y�
k) + 2

N∑
k=0

Fk(ξ
m
k − y�

k)

+ 〈λm − λ�, ξm − y�〉

= (ξm − ym)�Q(ξm − y�) + 2
N∑

k=0

Fk(ξ
m
k − y�

k)

+ (λm − λ�)� A (ξm − y�) (8)

with A = ∇λ,x〈λ, x〉. Similarly, the stationarity condition QP (7) can
be written as follows:

Q(ym+1 − 2ξm + ym) +A�δm = 0 .

Because Q is positive definite, we solve this equation with respect to
ξm finding

ξm =
1

2
Q−1A�(λm+1 − λm) +

ym + ym+1

2
. (9)

Here, we have additionally substituted the relation

δm = λm+1 − λm .

Notice that we have Aym = Aym+1 = Ay� for all m ≥ 2, because
the solutions of the QP (7) must satisfy the equality constraints in (4).
If we substitute this equation and the expression for ξm in (8), we find
that

−2F (ξm − y�)

≥ (ξm − ym)�Q(ξm − y�) + (λm − λ�)� A (ξm − y�)

=
1

4
(λm+1 − λm)�AQ−1A�(λm+1 − λm)

+
1

4
(ym+1 − ym)Q(ym − 2y� + ym+1)

+
1

2
(λm − λ�)�AQ−1A�(λm+1 − λm)

=
1

2

(
F (ym+1 − y�)− F (ym − y�)

)
+

1

2

(
F �(λm+1 − λ�)− F �(λm − λ�)

)
(10)

for all m ≥ 2. Now, the statement of Lemma 1 follows by summing up
the abovementioned inequalities for m = m̂ to m = m and using that
the last element in the telescoping sum on the right hand

F (ym+1 − y�) + F �(λm+1 − λ�)

2
≥ 0

is nonnegative. �
The following theorem uses the abovementioned result in order to

derive a convergence rate estimate of Algorithm 1.
Theorem 1: Let Assumption 1 be satisfied and let (4) be feasible,

such that a unique minimizer y� and an associated dual solution λ�

exist. Then, there exists a positive constant κ < 1 such that

F (ym+1 − y�) + F �(λm+1 − λ�)

≤ κ (F (ym − y�) + F �(λm − λ�)) (11)

for all m ≥ 2.
Proof: Let Ŷk denote the intersection of all active supporting hyper-

planes at the solutions of the small scale QPs of Step 2a) in Algorithm 1

for k ∈ {0, . . . , N − 1}. We construct the auxiliary optimization prob-
lem

min
ŷ

N∑
k=0

Fk(ŷk)

s.t.

⎧⎪⎪⎨
⎪⎪⎩
∀k ∈ {0, . . . , N − 1}
Gk+1ŷk+1 = Hkŷk + hk | λ̂k

0 = HN ŷN | λ̂N

ŷk ∈ Ŷk

(12)

and denote optimal primal and dual solutions of this problem by ŷ� and
λ̂�. Next, we also construct the auxiliary QPs

min
ξm
0
∈Ŷ0

F0(ξ
m
0 )− (H�0 λm

0

)�
ξm0 + F0(ξ

m
0 − ym

0 )

min
ξm
k
∈Ŷk

Fk(ξ
m
k ) +

(
G�kλm

k−1 −H�k λm
k

)�
ξmk + Fk(ξ

m
k − ym

k )

min
ξm
N

FN (ξmN ) + (G�Nλm
N−1)

�ξmN + FN (ξmN − ym
N ) .

Because these QPs have equality constraints only, their parametric
solutions must be affine. Thus, there exists a matrix T1 such that

ξm − ŷ� = T1

(
ym − ŷ�

λm − λ̂�

)
.

Similarly, the coupled QP (7) has equality constraints only; that is, there
exists a matrix T2 such that(

ym+1 − ŷ�

δm

)
= T2

(
ξm − ŷ�

ym − ŷ�

)
.

Now, we use the equation λm+1 − λ� = λm − λ� + δ and substitute
the above equations finding that(

ym+1 − ŷ�

λm+1 − λ̂�

)
= T

(
ym − ŷ�

λm − λ̂�

)
(13)

with

T =

(
T2

(
T1

(I 0)

)
+ (0 I)

)
.

Next, we know from Lemma 1 that if we would apply Algorithm 1 to
the auxiliary problem (12), the corresponding primal and dual iterates
would converge to ŷ� and λ̂�. In particular, inequality (10) yields

(ym+1 − ŷ�)�Q(ym+1 − ŷ�)

+ (λm+1 − λ̂�)�Q−1A�(λm+1 − λ̂�)

< (ym − ŷ�)�Q(ym − ŷ�)

+ (λm − λ̂�)�AQ−1A�(λm − λ̂�) (14)

whenever

(
ym − ŷ�

λm − λ̂�

)
�= 0. By substituting the linear (13), we find

that this is only possible if

T�
(
Q 0

0 AQ−1A�
)
T � κAI (15)

for a constantκA < 1. Now, one remaining difficulty is that the constant
κA (as well as the matrix T ) depends on the particular set A of active
supporting hyperplanes in the small-scale QPs. Nevertheless, because
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there exists only a finite number of possible active sets, the maximum
κ = maxA κA must exist and satisfy κ < 1. Now, the equation(

ym+1 − y�

λm+1 − λ�

)
= T

(
ym − y�

λm − λ�

)
(16)

holds only for our fixed m and the associated matrix T for a particular
active set, but the associated decent condition(

ym+1 − y�
)� Q (ym+1 − y�

)
+
(
λm+1 − λ�

)� AQ−1A� (λm+1 − λ�
)

≤ κ[(ym − y�)�Q(ym − y�)

+ (λm − λ�)�AQ−1A�(λm − λ�)] (17)

holds independently of the active set of the QPs in the mth iteration
and is indeed valid for all m. A resubstitution of F and F � yields the
statement of the theorem. �

D. Asymptotic Stability of Algorithm 1

The goal of this section is to establish asymptotic stability of Al-
gorithm 1. Because we send the control input u0 = ξm0 to the real
process, the next measurement will be at x+

0 = Ax0 +Bξm0 . Notice
that, in general, we may have x+

0 �= x�
1 = Ax0 +By�

0 , since we run
Algorithm 1 with a finite m <∞.

Theorem 2: Let Assumptions 1, 2, and 3 be satisfied. Let the constant
σ > 0 be such that the semidefinite inequality B�QB � σR holds and
let the constants η, τ > 0 be such that

|J(x+
0 )− J(x�

1)| ≤ η‖x+
0 − x�

1‖Q +
τ

2
‖x+

0 − x�
1‖2Q (18)

If the constant m ∈ N satisfies

m >

2 log

(
2ηγ

√
σ(1+κ)

κ
+ 2τσγ2 1+κ

κ

)
log(1/κ)

(19)

then the controller in Algorithm 1 is asymptotically stable.
Proof: Because we have x+

0 − x�
1 = B(ξm0 − y�

0) = P(ξm − y�)
with P = [B, 0, . . . , 0], we can substitute (9) to find

x+
0 − x�

1 = P
[Q−1A�(λm+1 − λm)

2
+

ym+1 + ym

2
− y�

]

=
1

2
PQ−1A�(λm+1 − λ�) +

1

2
PQ−1A�(λ� − λm)

+
1

2
P(ym+1 − y�) +

1

2
P(ym − y�).

The particular definition of σ implies P�QP � σQ and

4
(
x+
0 − x�

1

)�
Q
(
x+
0 − x�

1

)
≤ 4(λm+1 − λ�)�AQ−1P�QPQ−1A�(λm+1 − λ�)

+ 4(λm − λ�)�AQ−1P�QPQ−1A�(λm − λ�)

+ 4(ym+1 − y�)�P�QP(ym+1 − y�)

+ 4(ym − y�)�P�QP(ym − y�)

≤ 4σ(F (ym+1 − y�) + F �(λm+1 − λ�))

+ 4σ(F (ym − y�) + F �(λm − λ�))

≤ 4σ(1 + κ)κm−1 (F (y1 − y�) + F �(λ1 − λ�)
)

≤ 16σ(1 + κ)κm−1γ2F0(y
�
0).

The last inequality holds based on the inequalities

F (y�) + F �(λ�) ≤ γ2x�0Qx0 ≤ γ2F0(y
�
0),

F (y1) + F �(λ1) ≤ γ2x�0Qx0 ≤ γ2F0(y
�
0)

which hold due to Assumption 3 and the particular construction in
Step 1 of Algorithm 1. Now, a division by four yields

∥∥x+
0 − x�

1

∥∥2
Q
≤ 4σγ2

(
1 + κ

κ

)
κmF0(y

�
0) . (20)

By combining this inequality with (18) we find∣∣J(x+
0 )− J(x�

1)
∣∣

≤ 2

[
ηγ

√
σ(1 + κ)

κ
+ τσγ2 1 + κ

κ

]
κ

m
2 F0(y

�
0). (21)

Thus, if we set

α = 1− 2

[
ηγ

√
σ(1 + κ)

κ
+ τσγ2 1 + κ

κ

]
κ

m
2 > 0

we have

J(x+
0 ) ≤ J(x0)−

(
F0(y

�
0)− J(x+

0 ) + J(x�
1)
)

≤ J(x0)− αF0(y
�
0) (22)

which is sufficient to establish asymptotic stability [28]. �

E. Performance of Algorithm 1

The result of Theorem 2 can be extended in order to derive an upper
bound on the suboptimality of Algorithm 1.

Corollary 1: Let the assumption of Theorem 2 holds with

α = 1− 2

[
ηγ

√
σ(1 + κ)

κ
+ τσγ2 1 + κ

κ

]
κ

m
2 .

If ycl
i = (xcl

i , u
cl
i ) denotes the sequence of closed-loop states and con-

trols that are generated by the controller in Algorithm 1, an a-priori
bound on the associated infinite-horizon closed-loop performance is
given by

∞∑
i=0

�(xcl
i , u

cl
i ) ≤

J(x0)

α
.

Proof: Because (22) holds, we have

J(xcl
i+1) ≤ J(xcl

i )− αF0(y
cl
i )

which yields the inequality

∞∑
i=0

F0(y
cl
i ) ≤

1

α

∞∑
i=0

(
J(xcl

i )− J(xcl
i+1)

)
.

The statement of the corollary follows after simplifying the telescoping
sum on the right and substituting the equation F0(y

cl
i ) = �(xcl

i , u
cl
i ). �

Remark 1 (MPC with state constraints): Notice that (1) admits
control constraints only. A complete discussion of how to extend the
presented algorithm and analysis for MPC problems with state con-
straint would go beyond the scope of this article. However, one method
for taking such state constraints into account can be obtained by adding
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TABLE I
COMPLEXITY OF STEPS 2A’) AND B) OF ALGORITHM 1

L1-penalty functions to the stage cost �. Our stability and convergence
proofs can be extended for this case because adding L1-penalties does
not change the fact that the cost-to-go functionJ is piecewise quadratic.

IV. IMPLEMENTATION DETAILS AND CASE STUDIES

This section applies Algorithm 1 to benchmark case studies.

A. Implementation on Hardware With Limited Memory

Algorithm 1 has two main steps, Step 2a) and b). In Step 2a) decou-
pled QPs have to be solved online. We solve these QPs offline using
multiparametric programming by precomputing the solution maps

ξ�0(θ0, x0) = arg min
ξ0∈Y0

2F0(ξ0) + θ�0 ξ0

ξ�1(θ1) = arg min
ξ1∈Y1

2F1(ξ1) + θ�1 ξ1

ξ�N (θN ) = arg min
ξN

2FN (ξN ) + θ�NξN (23)

with parameters θ0 ∈ Rnu+nz , θ1 ∈ Rnx+nu , and θN ∈ Rnx . Here, ξ�0
depends on x0 recalling that this dependency had been hidden in our
definition ofF0 and Y0. We use multi-parametric toolbox (MPT) [29] to
precompute and store the maps ξ�0 , ξ�1 and ξ�N . Consequently, Step 2a)
in Algorithm 1 can be replaced by

• Step 2a’) Compute the parameters

θm0 = −H�0 λm
0 − 2Σ0y

m
0 (24a)

θmk = G�kλm
k−1 −H�k λm

k − 2Σky
m
k (24b)

θmN = G�Nλm
N−1 − 2ΣNym

N (24c)

with Σ0 = R, Σk = blkdiag{Q,R}, k ∈ {1, . . . , N − 1},
ΣN = P and set

ξm0 = ξ�0(θ
m
0 , x0) , ξmk = ξ�1(θ

m
k )

for all k ∈ {1, . . . , N} by evaluating the respective explicit
solution maps (23). In this article, we use the enumeration-
based multiparametric QP algorithm from [30] for generating
these maps.

Notice that the complexity of preprocessing the small-scale QPs (23)
depends on the number NR = max{NR,0, NR,1} of critical regions
over which the piecewise affine (PWA) optimizers ξ�0 , ξ�1 , and ξ�N are
defined [31], but NR is independent of the prediction horizon N as
summarized in the first row in Table I. For a derivation of the associated
run-time and memory complexity results we refer to [23], [32], [33].

In Step 2b) coupled QP (7) must be solved. Because this QP has
equality constraints only, (7) is equivalent to a large but sparse system
of equations. Moreover, all matrices in (7) are given and constant during
the online iterations. This means that all linear algebra decompositions

Fig. 1. CPU time comparison: Algorithm 1 versus traditional MPC
(Condensing + qpOASES) both run in MATLAB R2018a interfacing
C/C++ code.

can be precomputed offline. If one uses standard Riccati recursions for
exploiting the band-structure of (7), the computational complexity for
all offline computations is at most of order O(Nn3

x), while the online
implementation has complexity O(Nn2

x) [34] as summarized in the
second row in Table I.

B. Parallel MPC With Long Horizons

The first benchmark considers a linear dynamic system with

A =

⎡
⎢⎢⎢⎣
0.9993 −3.0083 −0.1131 −1.6081

0 0.9862 0.0478 0

0 2.0833 1.0089 0

0 0.0526 0.0498 1

⎤
⎥⎥⎥⎦

and B =

[
−0.0804 −0.0291 −0.8679 −0.0216
−0.6347 −0.0143 −0.0917 −0.0022

]�
.

The states of this system can be interpreted as the yaw, pitch, roll,
and the attack angles of an aircraft while the controls are given by the
elevator and the flaperon angles [35]. The state constraint and control
constraint are given by

X =

{
x ∈ R4

∣∣∣∣∣
[
−0.5
−100

]
≤
[
0 1 0 0

0 0 0 1

]
x ≤

[
0.5

100

]}

U = [−25, 25]× [−25, 25]
the stage cost weights are set to

Q = diag(0.1, 100, 0.1, 100) , R = diag(10, 10)

and the initial state is given by x0 = [ 20 0 20 20 ]. The matrix P is
computed by solving an algebraic Riccati equation such that the termi-
nal cost is locally equal to the unconstrained infinite horizon cost [25].
Moreover, the parameter γ = 10 is fixed in our implementations.

Fig. 1 shows a CPU time comparison of Algorithm 1 (with m = 3
and m = 10) and traditional MPC in dependence on the prediction
horizon. The implementations of Algorithm 1 uses MATLAB R2018a
with YALMIP [36] and MPT 3.1.5 [29] but the comparison is based
on qpOASES [2]. Algorithm 1 is faster for large N , but this speed-
up comes along with a loss of control performance (see Fig. 2 ). For
m = 10 the suboptimal closed-loop state trajectory is, however, almost
indistinguishably close to the optimal trajectory.
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Fig. 2. Closed-loop state and control trajectories: m ∈ {3, 10,∞},
N = 40.

Fig. 3. Sketch of a spring-vehicle-damper system.

Our implementation of Algorithm 1 requires 81 kB memory cor-
responding to 92 regions (independent of N ). These numbers can
be compared with the following results for a standard Explicit MPC
implementation using the geometric parametric linear complementarity
problem (LCP) solver of MPT 3.1.5 [29]:

ForN > 10 our implementation of Explicit MPC ran out of memory.

C. Spring-Vehicle-Damper System

Our second case study considers a spring-vehicle-damper system
with Ī vehicles with mass mv = 1kg, as visualized below.

The nonzero blocks of the system matrices are given by

Ai,i = I + Ts

(
0 1

−2 kv
mv

−2 dv
mv

)
, Bi =

(
0

0

)

AĪ,Ī = I + Ts

(
0 1

− kv
mv

− dv
mv

)
, BĪ =

(
0
Ts
mv

)

Ai−1,i = Ai,i+1 = Ts

(
0 0
kv
mv

dv
mv

)

for i ∈ {1, . . . , Ī − 1}. Here, kv = 3N/m denotes the spring constant,
dv = 3Ns/m a damping coefficient, and Ts = 0.1 s the step-size of an

Fig. 4. Total number of active constraints of all distributed QP solvers
during the MPC iterations for different choices of m.

Fig. 5. Closed-loop performance degradation (log scale) with respect
to the optimal objective function J∞ as a function of m.

Euler discretization. The state and control constraints are set to

X = X1 × . . .×XĪ , U = [−2, 0.5]
where X1 = . . . = XĪ = [−0.5, 1.5]× [−0.5, 1] .

The weighting matrices of the stage cost are set toQ = 10 I andR = I .
In this example, an implementation of Algorithm 1 requires 287 kB

corresponding to 432 critical regions. This memory requirement is
independent of the number of vehicles Ī and the prediction horizon
N . In contrast to this, the number of regions for standard explicit MPC
depends on both Ī and N

Fig. 4 shows the total number of active constraints of all distributed
QP solvers for different choices of m. Here, the number of active
constraints of optimal MPC (corresponding tom =∞) are shown in the
form of red crosses in Fig. 4. If we compare these optimal red crosses
with the blue diamonds (m = 1), we can see that the choice m = 1
still leads to many wrongly chosen active sets. However, for m ≥ 10
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a reasonably accurate approximation of the optimal number of active
constraints is maintained during all iterations. Finally, Fig. 5 shows the
suboptimality of Algorithm 1 in dependence on m for a representative
case study with Ī = 3 and N = 30.

V. CONCLUSION

This article has introduced a parallelizable and real-time verifiable
MPC scheme, presented in the form of Algorithm 1. This control
algorithm evaluates at every sampling time a finite number of precom-
puted, explicit piecewise affine solution maps that are associated with
parametric small-scale QPs. Theorem 2 and Corollary 1 provide both
asymptotic stability guarantees as well as bounds on suboptimality. The
presented explicit MPC approach can be used to reduce the storage and
run-time of explicit MPC by orders of magnitude.
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a b s t r a c t

Tunability is a major obstacle in the creation and subsequent application of the explicit model
predictive control (MPC). The main bottleneck lies in the need to reconstruct the parametric solution
each time weighting factors changes. Such an operation makes the implementation of the explicit MPC
impractical. This manuscript addresses the problem of producing a suboptimal parametric solution to
the optimal control problem, where the change of the weighting factor does not warrant the recon-
struction of the explicit MPC. The solution is achieved by interpolating between two boundary explicit
solutions for a range of values in weighing factors. Furthermore, we show that the suboptimal solution
enforces the closed-loop stability and recursive feasibility. The stability and recursive feasibility are
maintained by carefully choosing the terminal penalty and terminal set in those boundary explicit
solutions.
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1. Introduction

In model predictive control (MPC) design, the tuning matrices
serve a dual purpose. First is scaling individual components of
the state and input vectors. For this purpose, the selection of
penalty matrices is dictated by the physics of the plant. While in
this scaling approach, we neglect the control-oriented objectives
such as performance or comfort. The second purpose of tuning
matrices is to manage the aggressivity of the controller. We can
find many industrial applications where fixed values of tuning
factors determined before control do not yield satisfactory per-
formance over time, e.g., see Schutter, Zanon, and Diehl (2020),
Sorourifar, Makrygirgos, Mesbah, and Paulson (2021) and Wo-
jsznis, Gudaz, Blevins, and Mehta (2003), and references therein.
Therefore, the tunability of the MPC is a highly demanded feature
by control engineers. Implementation of optimal control problem
with non-fixed tuning factors in explicit MPC framework (Be-
mporad, Morari, Dua, & Pistikopoulos, 2002) can be done in an
optimal fashion in two ways. First, we can construct a parametric
solution to the MPC problem subject to all parameters, which
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now includes tuning factors, resulting in non-linear paramet-
ric optimization. The second approach lies in reconstructing the
explicit solution each time instant if weighting factors change,
which counteracts the effect of having an explicit MPC. So far,
a limited number of scientific works have been published in this
direction. However, by addressing the issue of effective real-time
implementation of tunable explicit MPC strategies, we signifi-
cantly increase their implementation potential in various fields of
applications (Theunissen et al., 2020). Moreover, these controllers
can, to some extent, replace gain-scheduling controllers with the
added value of constraint satisfaction. The tunability properties
of the explicit MPC solutions were previously addressed in Baric,
Baotic, and Morari (2005), where a parametric solution with
respect to the weighting factor has been derived. The drawback
of the proposed solutions is its strict limitation to linear terms in
the objective function, namely the 1/∞-norm. Furthermore, the
authors in Baric et al. (2005) provide a solution only for MPCs
with scalar tuning factor multiplying the weighting factor related
to the input penalty. Computing explicit MPC that can be re-tuned
online will necessarily increase the complexity of the solution, as
the number of parameters needs to be increased. Unfortunately,
1/∞-norm-based penalization setup is rarely used in practice,
as the controller exhibits more aggressive behavior around the
origin than the quadratic (2-norm) counterparts. Moreover, 1/∞-
norm penalization induces a sort of a dead-zone behavior for
the input penalty in the sense that despite the input penalty
being tuned in some range, the optimal control input remains
the same, i.e., the effect is discontinuous in contrast to the 2-
norm case. A notable step forward in producing online tunable
implementation of the explicit MPC with a 2-norm penalization

https://doi.org/10.1016/j.automatica.2022.110315
0005-1098/© 2022 Elsevier Ltd. All rights reserved.
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was presented in Klaučo and Kvasnica (2018). Here the authors
present an interpolation-based procedure, which allows for the
online tuning of the input weighting factor leading to a subop-
timal solution. The proposed approach relies on two boundary
explicit MPCs, which are constructed for two specific input penal-
ties. The presented approach allows a real-time change in the
input penalty matrix within a given range and allows modifying
the penalty matrix during the operation without the necessity
to resolve optimization problems. The idea is to reconstruct the
close-to-optimal control action by devising the convex combi-
nation of the available solutions of two boundary explicit MPCs.
The approach presented in this paper significantly improves the
propositions in Klaučo and Kvasnica (2018), as we generalize
the original results and, under mild assumptions, we formulate
a procedure where we guarantee the closed-loop system stabil-
ity and recursive feasibility (Mayne, Rawlings, Rao, & Scokaert,
2000). The proposed control strategy is significantly less complex
compared to the conventional approach in Baric et al. (2005), and
the suboptimality level of the proposed scheme appears to be
negligible.

2. Problem statement

Throughout the paper, we consider the following two MPC
design problems implemented in the receding horizon control
fashion (Maciejowski, 2000). The first boundary MPC formulation
is stated as

min
u0,u1,...,uN−1

x⊺NPLxN +

N−1∑
k=0

(
x⊺kQLxk + u⊺

kRLuk
)

(1a)

s.t. : xk+1 = A xk + B uk, (1b)
uk ∈ U, (1c)
xk ∈ X , (1d)
xN ∈ TL, (1e)
x0 = θ (t), (1f)
k = 0, 1, . . . ,N − 1, (1g)

while the second one has a modification in the objective function
and terminal set, namely,

min
u0,u1,...,uN−1

x⊺NPHxN +

N−1∑
k=0

(
x⊺kQHxk + u⊺

kRHuk
)

(2a)

s.t. : (1b), (1c), (1d), (1f), (1g), (2b)
xN ∈ TH, (2c)

where N is prediction horizon, PL, PH ∈ Rn×n, QL,QH ∈ Rn×n,
RL, RH ∈ Rm×m, are terminal, state, and input pairs of the penalty
matrices, respectively. Prediction model in (1b) has the form of
linear time invariant (LTI) system for state matrix A ∈ Rn×n and
input matrix B ∈ Rn×m. Vectors x ∈ Rn, u ∈ Rm are vectors of
system states and control inputs, respectively. U ⊆ Rm, X ⊆ Rn

are sets of input and state constraints, respectively. TL, TH ⊂ Rn,
are sets of terminal constraints. θ (t) ∈ Ω is vector of initial
conditions and Ω ⊆ X is set of feasible initial conditions.

Assumption 2.1. Let MPC problems (1), (2) be asymptotically
stable and recursive feasible. Assume, in (1), (2) hold:

(1) sets U , X , TL, TH, Ω are closed convex polyhedra containing
origin in their strict interiors,

(2) matrices PL, PH, QL,QH, RL, RH are positive definite.

As the initial condition in (1f) has a parametric form, the
MPC problems in (1), (2) are problems of the multiparametric
quadratic programming (mpQP), see Bemporad et al. (2002).

Problem 2.1. Based on the parametric (explicit) solutions of the
MPC problems in (1), (2), the task is to approximate the optimal
solution ũ0 for any MPC problem having input or state penalty
matrix between the matrix pair (RL, RH) or (QL,QH), respectively,
without the necessity to solve the optimization problem.

3. Tunable explicit MPC

Problem 2.1 is addressed by approximated solution of the MPC
problem having following form:

min
u0,u1,...,uN−1

x⊺N P̃xN +

N−1∑
k=0

(
x⊺kQ̃ xk + u⊺

k̃Ruk
)

(3a)

s.t. : (1b), (1c), (1d), (1f), (1g), (3b)
xN ∈ T̃ , (3c)

where P̃ , T̃ are appropriate terminal penalty and terminal con-
straint set, respectively. For input and state penalty matrices
in (3a), respectively, hold:

R̃ = (ρ − 1)RL + ρ RH, 0 ≤ ρ ≤ 1, (4a)
Q̃ = (φ − 1)QL + φ QH, 0 ≤ φ ≤ 1. (4b)

Remark 3.1 (Linear Tuning). We consider a linear tuning, i.e., ei-
ther input penalty R̃ or state penalty Q̃ in cost (3a) is tuned.
Therefore, if 0 < ρ < 1 then Q̃ = QL = QH, and, vice-versa, if
0 < φ < 1 then R̃ = RL = RH holds.

Remark 3.2 (Input-penalty-based Tuning). Without loss of gener-
ality, hereafter, we consider a tuning of input penalty R̃ accord-
ing to (4a). Analogous results hold for state penalty Q̃ tuning
according to (4b).

Remark 3.3 (Application Range). The application range of the
proposed tunable explicit MPC is not limited just to MPC formu-
lation in (3). For the sake of simplicity, we consider the general
regulation problem, but various formulations satisfying stability
and recursive feasibility could be applied, e.g., robust (Kvasnica,
Takács, Holaza and Ingole, 2015), regionless (Kvasnica, Takács,
Holaza and Di Cairano, 2015), approximated (Bakaráč et al., 2018),
convex-lifting-based (Nguyen, Gulan, Olaru, & Rodriguez-Ayerbe,
2018), etc.

The general structure of the MPC problems in (1), (2) is re-
stricted by following mild assumptions.

Assumption 3.1. Consider following assumptions hold:

(1) terminal penalties in (1a), (2a) are same and computed
according to P̃ = PL = PH in (3a),

(2) terminal sets in (1e), (2c) are same and computed accord-
ing to T̃ = TL = TH in (3c),

(3) input penalties RL, RH are diagonal matrices such that
λi(RL) ≤ λi(RH) holds ∀i = 1, . . . ,m, where λ denotes
vector of input penalty matrix eigenvalues.

Remark 3.4 (Sufficient Prediction Horizon). Assumption 3.1 is
necessary to provide the guarantees on the closed-loop system
stability and recursive feasibility. On the other hand, the suffi-
cient length of the prediction horizon N lead to omitting As-
sumption 3.1(1), (2), see Mönnigmann (2019) to determine the
minimum length prediction horizon providing the stability guar-
antees.

The main benefit of the real-time tunable explicit MPC is that
for any ρ ∈ [0, 1], the online evaluation of the approximated
control action is optimization-free and boils down to a mere
linear function evaluations.
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Definition 3.1 (Approximated Control Input). Given the parametric
solutions of MPC problems in (1), (2), and current system mea-
surement θ (t) ∈ Ω . The vector of approximated control inputs
ũ ∈ Rm for MPC problem in (3) is evaluated using the convex
combination:

ũ = (ρ − 1)uL + ρ uH, 0 ≤ ρ ≤ 1, (5)

where uL, uH, respectively, are optimal control inputs of MPC
problems (1), (2) for θ (t).

Although the ũ0 is approximated solution, it provides primal
feasibility of MPC problem in (3).

Lemma 3.5 (Primal Feasibility). Given parametric solution of MPC
problems in (1)–(2), given MPC problem in (3), and state measure-
ment θ (t) ∈ Ω . Approximated solution ũ evaluated by Definition 3.1
ensures primal feasibility of MPC problem in (3) for θ (t).

Proof. Let uL,k, uH,k, k = 0, 1, . . . ,N − 1, be the optimal
solutions of MPC problems in (1)–(2), respectively. According to
Definition 3.1, ũ is evaluated using (5). As the consequence, for
any θ (t) ∈ Ω holds:

if uL,k ≤ uH,k ⇒ uL,k ≤ ũk ≤ uH,k, (6a)

if uL,k ≥ uH,k ⇒ uH,k ≤ ũk ≤ uL,k, (6b)

for ∀k = 0, 1, . . . ,N − 1.
Optimal solutions uL,k, uH,k are primal feasible, i.e., uL,k, uH,k ∈

U . From the definition of the convex set holds true that convex
combination of uL,k, uH,k evaluated by (5) satisfies that ũk ∈ U for
∀k = 0, 1, . . . ,N − 1.

Analogous hold true for state constraints in (1d), (1e), as they
are, according to a linear prediction model in (1b), a linear com-
bination of control inputs uL,k, uH,k for given state measurement
θ (t) ∈ Ω . □

Assumption 3.2 (Terminal Penalty). Terminal penalty P̃ = P̃⊺
≻ 0

in (3a) is a matrix of a common quadratic Lyapunov function
V (x) = x⊺P̃x, V : Rn

→ R, constructed w.r.t. LTI prediction model
in (1b) and tunable input penalty R̃ in (3a) for ∀ρ within the range
of interval [0, 1] in (4a).

In offline phase, there are various ways on how to con-
struct and/or validate Lyapunov function candidates, and how
to minimize their conservativeness. Inspired by the approach
in Kothare, Balakrishnan, and Morari (1996), we evaluate the ter-
minal penalty matrix P̃ in (3a) by solving the following problem
of semidefinite programming (SDP):

min
γ ,X,Y

γ + tr(X) (7a)

s.t. :

⎡⎢⎢⎣
X ⋆ ⋆ ⋆

AX + BY X ⋆ ⋆

Q
1
2 X 0 γ I ⋆

R
1
2
j Y 0 0 γ I

⎤⎥⎥⎦ ⪰ 0, j = 1, 2, (7b)

where decision variables are X = X⊺
∈ Rn, Y ∈ Rn×m, and γ ∈ R.

R1 = RL, R2 = RH, and I , 0 are identity and zero matrices of appro-
priate dimensions, and symbol ⋆ denotes Hermitian structure of
LMIs in (7b). Note, X ≻ 0 is weighted inverted Lyapunov matrix
such that P̃ = γ X−1, and Y is well-known matrix of state feed-
back parametrization. Further technical details are introduced
in Kothare et al. (1996). The other strategies determining the
terminal penalty are reported, for example, in Bloemen, van den
Boom, and Verbruggen (2002) and Lee, Hyun Kwon, and Choi
(1998).

Assumption 3.3 (Terminal Constraint). Terminal constraint set T̃
is a maximal control invariant set C∞ constructed in the intersec-
tion of the terminal penalties in (1e), (2c) w.r.t. input constraints
in (1c), i.e., holds T̃ = C∞ ⊆ (TL ∩ TH) ⊂ X .

In offline phase, terminal sets TL, TH in (1e), (2c) are de-
termined to be control invariant for given MPC problems. We
consider evaluation of these terminal sets based on the solu-
tion of matrix Riccati equations in the LQR-based control frame-
work (Borrelli, 2017). Next, following Assumption 3.3, the termi-
nal set T̃ in (3c) is evaluated to be a maximal control invariant set
C∞ constructed in the intersection of TL ∩ TH. C∞ is constructed
w.r.t. input constraints in (1c), i.e., once system states xk enter C∞,
there always exists such control input ũk that ensures xk+1 ∈ C∞

hold true. Note, C∞ always exists, as there is a neighborhood of
origin such that 0 ∈ TL, 0 ∈ TH ⇒ TL ∩ TH ̸= ∅. The iterative
procedure constructing C∞ is introduced, e.g., in Borrelli (2017).

Having a suitable terminal penalty matrix P̃ and terminal
constraint set T̃ , we formulate the main results of this work.

Theorem 3.6 (Tunable Explicit MPC). Given parametric solutions of
MPC problems in (1), (2), given MPC problem in (3), current system
state measurement θ (t) ∈ Ω , and corresponding control input ũ0
by Definition 3.1. If Assumptions 3.1–3.3 hold, then the closed-loop
system is asymptotically stable and problem in (3) is recursively
feasible for any ρ within the range of interval [0,1] in (4a).

Proof. According to Assumption 3.2, for ∀ρ within the range of
interval [0, 1] in (4a), there exists a common quadratic Lyapunov
function represented by positive definite matrix P̃ for MPC prob-
lem in (3). According to Assumption 3.1, the terminal constraint
set T̃ and terminal penalty P̃ of MPC problems in (1), (2) are
the same. According to Assumption 3.3, terminal constraint set T̃
is maximal control invariant set C∞ w.r.t. constraints on control
inputs in (1c).

The pair of control inputs uL,0, uH,0 represent the optimal solu-
tions of MPC problems in (1), (2), respectively. This pair of optimal
control inputs uL,0, uH,0 was evaluated w.r.t. the same terminal
penalty represented by P̃ , and system states converge to the
same terminal penalty set T̃ . As the consequence, they guarantee
the closed-loop system stability and recursive feasibility for MPC
problems in (1), (2), respectively.

According to Assumption 3.1, MPC problem in (3) shares the
same terminal penalty and terminal constraint set. According to
Definition 3.1 and Lemma 3.5, for any ũ0 holds (6). As the con-
sequence, ũ0 leads to closed-loop system stability and recursive
feasibility of MPC problem in (3). □

Compared to the implementation of the conventional (non-
tunable) explicit MPC, the proposed method increases effort in
both: (i) offline phase by solving two parametric optimization
problems and in (ii) online phase by evaluating two boundary
explicit control laws. The evaluation of convex combination in (5)
is negligible. Moreover, the memory footprint increases as the
parametric solution of both MPC problems needs to be stored. On
the other hand, the real-time tunable explicit MPC offers an infi-
nite number of stabilizing sub-optimal control actions (i.e., MPC
controllers) for input penalty tuning given by ρ ∈ [0, 1] (or
φ ∈ [0, 1] for state penalty tuning) in (4) without the necessity
to solve any optimization problem. This valuable benefit enables
convenient tuning, validation, and verification of the closed-loop
control performance reducing the evaluation effort to a few linear
algebra operations. The increased online effort could be reduced
by introducing advanced techniques recalling some information
from the computation of uL to speed up evaluation of uH in (5).
This approach goes beyond the scope of this paper and is a subject
of further research.
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Fig. 1. Control performance of real-time tunable explicit MPC ensured by ũ (dark
red, dashed), uL (blue, solid), uH (gray, solid), uopt (orange, dotted), reference
(green, dotted), constraints (black, dashed) for sequence of tuning parameter
ρ = 0.25, 0.50, 0.75. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

Remark 3.7 (1-norm and ∞-norm Cost). Cost functions in MPC
problems (1), (2) have the form of (squared) 2-norm. Analogous
results of Lemma 3.5 and Theorem 3.6 hold for 1-norm and
∞-norm cost functions. Moreover, as 1-norm and ∞-norm are
of linear nature (piecewise affine), the suboptimality level of
approximated control input in (5) converge much faster to the op-
timum value for given prediction horizon N . The closed-loop sys-
tem stability and recursive feasibility issues of Assumptions 3.2,
3.3 can be addressed according to Remark 3.4.

4. Example

The simplified numerical example demonstrates the real-time
tunable level of aggressiveness/energy loses of the closed-loop
performance under different setups of (Q , R) proportion. This
ability is illustrated considering a well-known example of a dou-
ble integrator system with LTI prediction model in (1b) having

A =

[
1 1
0 1

]
, B =

[
1.0
0.5

]
, and following setup of MPC problems

in (1), (2): QL = QH = I , RL = 0.5, RH = 10.0, U = {u : −1 ≤ u ≤

1}, X = {x : −5 ≤ x ≤ 5}, and N = 2, 3, 5, 10. Solving SDP in (7)
and evaluation of C∞, return terminal penalty and terminal set in
the form

P̃ =

[
6.3743 0.5172
0.5172 15.5601

]
,

Table 1
Performance criteria.

N Performance loss [%] Offline [s] Online [ms]

ρ = 0.25 ρ = 0.50 ρ = 0.75 tcon topt tapp
2 0.23 0.13 0.11 0.34 0.52 1.07
3 0.36 0.27 0.10 0.45 0.55 1.12
5 0.26 0.28 0.16 0.80 0.57 1.13
10 0.21 0.22 0.13 1.26 0.63 1.27

T̃ =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
x :

⎡⎢⎢⎢⎢⎢⎣
0.0651 −0.4463
0.1742 −0.2388
0.4004 0.6479

−0.0651 0.4463
−0.1742 0.2388
−0.4004 −0.6479

⎤⎥⎥⎥⎥⎥⎦ x ≤

⎡⎢⎢⎢⎢⎢⎣
0.8925
0.9553
0.6479
0.8925
0.9553
0.6479

⎤⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
.

Based on value of N , solving1 MPC problems (1), (2) lead to
polytopic partitions having from 9 up to 21 critical regions for (1)
and from 11 up to 15 critical regions for (2), after processing
an optimal regions merging (Kvasnica, Holaza, Takács and Ingole,
2015). The series of explicit MPC controllers for input penalty
R̃ corresponding to particular setup of tuning parameter ρ =

0.25, 0.50, 0.75 in (5) was constructed to investigate the closed-
loop performance. Fig. 1 depicts the closed-loop control trajecto-
ries excited by initial conditions x0 = x15 = x30 = [4.5, −2.7]⊺
for particular setup of N = 10. The control profiles generated by
approximated control inputs ũ are compared to optimal perfor-
mance uopt. Table 1 summarizes construction time tcon of explicit
controllers and the average real-time evaluation of optimal topt
and approximated tapp control actions running non-optimized
code on a non-industrial hardware. It can be observed that ap-
proximated control action increased a runtime, approximately,
by factor 2. On the other hand, there is no need to solve any
multiparametric optimization problem online. Moreover, the per-
formance loss computed as a ratio of optimal and approximated
closed-loop costs is negligible, as reported in Table 1.
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A B S T R A C T   

It has been proven that advanced building control, like model predictive control (MPC), can notably reduce the 
energy use and mitigate greenhouse gas emissions. However, despite intensive research efforts, the practical 
applications are still in the early stages. There is a growing need for multidisciplinary education on advanced 
control methods in the built environment to be accessible for a broad range of researchers and practitioners with 
different engineering backgrounds. This paper provides a unified framework for model predictive building 
control technology with focus on the real-world applications. From a theoretical point of view, this paper pre-
sents an overview of MPC formulations for building control, modeling paradigms and model types, together with 
algorithms necessary for real-life implementation. The paper categorizes the most notable MPC problem classes, 
links them with corresponding solution techniques, and provides an overview of methods for mitigation of the 
uncertainties for increased performance and robustness of MPC. From a practical point of view, this paper de-
livers an elaborate classification of the most important modeling, co-simulation, optimal control design, and 
optimization techniques, tools, and solvers suitable to tackle the MPC problems in the context of building climate 
control. On top of this, the paper presents the essential components of a practical implementation of MPC such as 
different control architectures and nuances of communication infrastructures within supervisory control and data 
acquisition (SCADA) systems. The paper draws practical guidelines with a generic workflow for implementation 
of MPC in real buildings aimed for contemporary adopters of this technology. Finally, the importance of stan-
dardized performance assessment and methodology for comparison of different building control algorithms is 
discussed.   

1. Introduction 

Buildings today contribute to roughly 40% of the global energy use 
(approx. 64 PWh), of which a large portion is used for heating, cooling, 
ventilation, and air-conditioning (HVAC) (IEA International Energy 
Agency & International Partnership for Energy Efficiency Cooperation, 
2015). Energy savings thus become a priority in the design and 

operation of modern HVAC systems. Numerous studies reported that 
advanced HVAC control can notably reduce energy use and mitigate 
greenhouse gas emissions with average energy savings of 13% to 28% 
(Gyalistras et al., 2010; del Mar, Álvarez, de A., & Berenguel, 2014; 
Roth, Westphalen, Dieckmann, Hamilton, & Goetzler, 2002). This means 
that in the ideal case of full employment of this technology, annual final 
energy savings of roughly 8PM h to 18PM h can be projected. Based on 
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this potential, recently revised EU policy on the energy performance of 
buildings states that large buildings should be equipped with building 
automation and control systems by 2025 if economically and technically 
feasible (EUp, 2018). 

However, the majority of buildings today still adopt simple rule- 
based control (RBC) techniques with only limited energy saving capa-
bilities (Aghemo et al., 2013; Mechri, Capozzoli, & Corrado, 2010). The 
promise of a digital age comes with decreasing costs in computation and 
sensing, which is paving the way for the adoption of advanced control 
strategies, like model predictive control (MPC). In the last decade, MPC 
has become a dominant control strategy in research on intelligent 
building operation. The main benefit of MPC is a systematic thermal 
comfort improvement with simultaneous energy savings spanning from 
15% up to 50% demonstrated on numerous simulation and several pilot 
case studies (Ma et al., 2012; Oldewurtel et al., 2012; Sturzenegger, 
Gyalistras, Morari, & Smith, 2016; ̌Siroký, Oldewurtel, Cigler, & Prívara, 
2011), as well as grid flexibility services via price-responsiveness and 
active demand response capabilities (Bianchini, Casini, Pepe, Vicino, & 
Zanvettor, 2017; Borsche, Oldewurtel, & Andersson, 2014; Cutsem, 
Kayal, Blum, & Pritoni, 2019a; Esther & Kumar, 2016). The strength of 
MPC lies in the use of a mathematical model of the building to predict its 
future behavior. By using these predictions, MPC can optimally choose 
the control actions based on a given objective while taking into account 
the comfort and technological constraints, and weather forecasts in a 
systematic and flexible way. 

Despite the abundance of research papers and several pilot in-
stallations, the transfer of this technology to the building market is still 
in its early stages. The difficulty of the building sector stems from the 
fact that building management systems (BMS) engineers do not have 
advanced education in modern optimal control methods and tools, as 
control engineers do in other fields that have utilized MPC successfully, 
such as the process industry. Moreover, in contrast to the production of 
cars or user electronics, design and production of building and their 
HVAC systems are not standardized. Every building is a unique system 
which requires tailored modeling and control design, hence imposing 
increased engineering time and cost, particularly for advanced control 
strategies. All of this emphasizes the requirement for extending the 
theoretical education and practical skill set of the building control 
practitioners to enable the installation, maintenance, and operation of 
advanced MPC applications. An additional limiting factor is the poor ICT 
infrastructure in pre-existing buildings. One of the emerging advanced 
building control solutions is cloud-based control as a service platform. 
Although, significant privacy and cyber-security challenges are linked 
with these remote control architectures. Based on the observations 
described above and reflections presented in Cigler, Gyalistras, Široký, 
Tiet, and Ferkl (2013a); Prívara et al. (2013), six main challenges for 
wide-spread application of MPC to buildings are defined:  

1. Availability of appropriate hardware and software infrastructure 
with compatible communication interfaces. 

2. User-friendly, control-oriented, accurate, and computationally effi-
cient building modeling.  

3. Automated design, tuning, and deployment of MPC.  
4. Plug-and-play implementation, and robust operation of MPC.  
5. Privacy and cyber-security issues and the user trust.  
6. Trained personnel to handle commissioning, and maintenance of 

MPC in practice. 

The first challenge does not fall in the scope of research anymore 
because it lies in the domain of market adaptation. To address the sec-
ond challenge, a methodology for the automatic synthesis of building 
models based on Building Information Models (BIM) has been proposed 
(Andriamamonjy, 2018). Different attempts in reducing the model 
development effort via available templates in Modelica libraries like 
Buildings (Wetter, Zuo, Nouidui, & Pang, 2014) and IDEAS (Baetens 
et al., 2015), or via physically inspired reduced-order automated system 

identification toolchains (De Coninck, Magnusson, Åkesson, & Helsen, 
2016). Dedicated tools are also emerging for automated MPC design for 
buildings (Blum & Wetter, 2017; Drgoňa, 2019; Jorissen, Boydens, & 
Helsen, 2018a). Computationally lightweight approximations of MPC 
control laws (Drgoňa, Picard, Kvasnica, & Helsen, 2018), and rule 
extraction algorithms based on machine learning (Domahidi, Ullmann, 
Morari, & Jones, 2014), or toolchains for generation of optimized 
C-code (Jorissen et al., 2018a) aim to tackle the fourth challenge of easy 
installation and robust operation. The privacy issues could be solved in 
two ways, first by employing local control solutions without the need for 
real-time remote communication, and second by the adoption of 
advanced cybersecurity measures (Cybersecurity in smart buildings 
inaction is not an option anymore, 2015). 

The ambition of this paper is to deliver a comprehensive summary on 
the topic of MPC for buildings, which could help to tackle the last 
challenge from the list. The necessary theoretical base on MPC is first 
supported by a literature review of the most recent advances in the field. 
Then, an extensive overview and conceptual comparison of dedicated 
software tools is given, followed by practical guidelines for imple-
mentation and performance assessment of MPC in real buildings. 

1.1. Previous reviews considering MPC for buildings 

We would like to acknowledge a first attempt to provide a unified 
MPC framework, which was given in Serale, Fiorentini, Capozzoli, 
Bernardini, and Bemporad (2018). This review paper aims to build a 
bridge between control and building engineers with a common dictio-
nary and taxonomy of classes to enhance the professional relationship 
between these two originally distinct engineering areas. The most recent 
review on MPC for buildings with the focus on demand-side flexibility 
compares the pros and cons of the current technology and highlights the 
requirement of expert knowledge as the main bottleneck (Zong et al., 
2019). An overview on three major research topics in building control, 
in particular semantic interoperability, fault detection, and MPC, was 
presented in Benndorf, Wystrcil, and Réhault (2018). A paper with 
in-depth literature review and classification of building control methods 
with particular focus on MPC has been published by (Afram & Jana-
bi-Sharifi, 2014b). 

More specific reviews of the MPC technology focusing on particular 
aspects of building control are as follows. One of the earliest short re-
flections on MPC technology for buildings was given by (Henze, 2013) 
envisioning a large impact of MPC technology on intelligent building 
operation. A review paper focused on artificial neural network based 
MPC was given in Afram, Janabi-Sharifi, Fung, and Raahemifar (2017). 
A review on an important aspect of occupancy behavior focused MPC 
was introduced in Mirakhorli and Dong (2016), concluding that using 
occupancy measurement and models in combination with MPC can 
improve the comfort and decrease the energy use in contrast to a stan-
dard schedule based control strategy. Reviews (Hilliard, Kavgic, & 
Swan, 2015; Rockett & Hathway, 2017) focus on challenges, aspects and 
future trends of MPC for commercial buildings. Paper (Hilliard et al., 
2015) provides recommendations for selecting a building response 
model, simulation timestep, prediction horizon, forecast resolution, and 
optimization algorithm, while (Rockett & Hathway, 2017) stresses the 
urgent need for research on the automated creation and updating of 
predictive models for MPC. Authors in Killian and Kozek (2016) ask ten 
questions about MPC for buildings and provide critical analysis of 
challenges, future trends, and potential of MPC for the general building 
market. The identified challenges are high modeling and parametriza-
tion effort, shortage of modeling and optimal control experts active in 
the building automation domain, and lack of commercial tools for 
expert-free building modeling. in Kavgic, Hilliard, and Swan (2015), the 
authors discussed the opportunities for implementation of MPC in 
commercial buildings together with the identification of specific build-
ing characteristics indicating increased potential for MPC, like large 
thermal mass, high solar gains, discrete occupancy periods, and the 
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opportunity to vary temperature setpoints. 
Dounis and Caraiscos (2009); Naidu and Rieger (2011); Wang and 

Ma (2008) are more general building control reviews and classification 
studies covering advanced intelligent and optimal building control 
strategies. A detailed review in Shaikh, Nor, Nallagownden, Elamvazu-
thi, and Ibrahim (2014) summarizes the impact of smart control stra-
tegies on energy and comfort management in buildings focusing on 
aspects such as building sector, optimization objectives, energy source, 
control algorithm and simulation tools used. Optimal operation of en-
ergy management systems with a weather forecast is reviewed in Lazos, 
Sproul, and Kay (2014) concluding that weather has a significant in-
fluence on building energy operation and that the minimization of 
forecast uncertainty can lead to increased energy savings in the range of 
15% to 30%. A most recent analysis of optimization-based building 
automation and control systems focusing on performance gap mitigation 
and uncertainty evaluation was given in Aste, Manfren, and Marenzi 
(2017). Different optimization methods applied to different energy 
domain areas are reviewed in Baños et al. (2011). A review of 
multi-criteria decision analysis (MCDA), which could be used to aid the 
selection of the objectives for MPC for buildings, was presented in 
Wang, Jing, Zhang, and Zhao (2009). Finally, deeper insights into MPC 
technology, in general, can be found, e.g. in Bemporad (2006); Mayne 
(2014). 

1.2. Contributions and structure of the paper 

The presented paper aims to provide a comprehensive up to date 
overview of MPC technology applied to buildings. Although there are 
several reviews on general intelligent building operation strategies and 
MPC, to the authors’ best knowledge, a unifying overview integrating 
both theoretical and practical aspects is still missing in this field. The 
ambition of this paper is thus to fill this gap and provide the reader with 
a single publication capable of guiding the whole process of imple-
mentation of MPC in a real building. The paper is also aimed to act as a 
detailed introduction to the topic for control and mechanical engineers 
and researchers, facilitating the information exchange in the multidis-
ciplinary domain of building control. In comparison to referenced 
literature reviews in Section 1.1, the purpose of this paper is not to 
redefine, but refine and extend given MPC frameworks from previous 
literature overviews with a particular focus on providing a detailed list 
of software resources for increased accessibility of the technology. 

The first part of the paper emphasizes a theoretical perspective. 
Section 2 defines the general MPC framework with standard notation. 
Section 3 elaborates on building modeling. Section 4 gives a brief 
summary of algorithmic principles behind MPC. Sections 5 and 6 sum-
marize different MPC problem classes and corresponding solution ap-
proaches, respectively. Section 7 compactly reviews methods for dealing 

Table 1 
Nomenclature of terms and acronyms used in the paper.  

Notation Meaning Notation Meaning 

Control terminology 
PID proportional-integral-derivative RBC rule-based control 
MPC model predictive control LMPC linear MPC 
NMPC nonlinear MPC HMPC hybrid MPC 
eMPC explicit MPC OSF-MPC offset-free MPC 
RMPC robust MPC SMPC stochastic MPC 
LBMPC learning-absed MPC RHC reciding horizon control 
DPC data predictive control OCP optimal control problem 
SSM state-space model TF transfer function 
KF Kalman Filter MHE moving horizon estimation 
UKF Unscented Kalman Filter EKF extended Kalman Filter 
TVKF time-varying Kalman Filter SKF stationary Kalman Filter 
ADP approximate dynamic programming DP dynamic programming 
HJB Hamilton-Jacobi-Bellman equation RL reinforcement learning 
Optimization terminology 
OP optimization problem ADMM alternating direction method of multiliers 
LP linear programming QP quadratic programming 
NLP nonlinear programming SQP sequential quadratic programming 
MIP mixed integer programming MINLP mixed integer nonlinear programming 
MILP mixed integer linear programming MIQP mixed integer quadratic programming 
GDP generalized disjunctive programming mpP multi parametric programming 
mpQP multi parametric quadratic programming mpLP multi parametric linear programming 
LMI linear matrix inequality CC chance constraints 
SDP semidefinite programming SOCP second order cone programming 
Modeling terminology 
ODE ordinary differential equations DAE differential algebraic equations 
AR auto regressive ARMA auto regressive moving average 
BJ Box-Jenkins ARMAX auto regressive moving average with exogenous inputs 
ANN artificial neural network DT decision tree 
SVM support vector machines RF random forests 
kNN k-nearest neighbors GP gaussian processes 
4SID subspace state space system identification OE output error 
MBE mean biased error RMSE root mean square error 
EEP expected error percentage CV coefficient of variation 
PRBS pseudo random binary signal CRPS continuous ranked probability score 
Building domain terminology 
HVAC heating, ventilation, and air conditioning AHU air handling unit 
VAV variable air flow BES building energy simulation 
FMI functional mockup interface BIM building information modeling 
PIR passive infrared sensor BaU business as usual 
iCRTF inverse comprehensive room transfer functions CFD computational fluid dynamics 
SCADA supervisory control and data acquisition BMS building management system 
HMI human machine interface CM number of comfort violations minimization 
CT comfort tracking PMV predicted mean vote  
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with uncertainties in MPC for buildings. Everything is supported by a 
comprehensive up-to-date literature review reporting successful real- 
world applications or in-depth simulation case studies of the presented 
concepts. 

In the second part of the paper, the emphasis lies on the practical 
aspects of the technology. Section 8 provides a comprehensive list of 
available software tools for modeling, analysis, and solution of MPC 
problems. Section 9 delves deeper into practical aspects of MPC imple-
mentation, such as control configuration, communication infrastructure, 
and SCADA architecture, together with practical guidelines for imple-
mentation in real buildings. Section 10 introduces the need and meth-
odology for performance assessment and comparison of MPC strategies 
for buildings. Finally, Section 11 concludes the paper. 

1.3. Nomenclature 

Table 1 summarizes the terminology and acronyms used in the paper 
with domain-specific classification. 

2. Model predictive building control 

The purpose of the following section is to compactly define and 
summarize the general MPC framework for building applications. We 
present here the fundamental building blocks and corresponding con-
cepts of MPC, different problem formulations, and a notation based on 
standards used in the control engineering community. The general MPC 
framework compatible with the structure of this paper is presented in 
Fig. 1. The presented framework is the extension of the MPC framework 
given in Serale et al. (2018). 

2.1. Model predictive control basics 

MPC is a constrained optimal control strategy that calculates the 
optimal control inputs by minimizing a given objective function over a 
finite prediction horizon. The mathematical model of the system 
together with the current state measurements and weather forecast are 
used to predict and optimize the future behavior of the building. 

2.1.1. Standard MPC scheme 
Fig. 2 illustrates a typical abstract closed-loop MPC scheme which 

can describe most of the building control applications. The control loop 
consists of the building affected by disturbances d (e.g., weather con-
ditions), predicted by weather forecast d̂, the state estimator providing 
the state estimates x̂ and the MPC controller which optimally manipu-
lates the control actions u (e.g., heat flows, valves opening, pump 
powers), e.g., such that it minimizes used energy and keeps the output 
vector y (e.g., room temperatures) within the given comfort bounds. 

2.1.2. General MPC formulation 
The general MPC formulation for buildings can be represented as the 

following optimal control problem (OCP) in discrete time: 

min
u0 ,…,uN− 1

ℓN(xN) +
∑N− 1

k=0
ℓk(xk, yk, rk, uk, sk) (1a)  

s.t. xk+1 = f (xk, uk, dk), k ∈ NN− 1
0 (1b)  

yk = g(xk, uk, dk), k ∈ NN− 1
0 (1c)  

uk = fHVAC(xk, ak,mk), k ∈ NN− 1
0 (1d) 

Fig. 1. Structure of the general MPC framework for building control applications compatible with the structure of this paper. Solid lines represent the sub-categories, 
while dashed lines with arrows depict causal dependencies and information flow during the design process. 

Fig. 2. Schematic representation of the standard closed-loop system for 
building control with MPC and state estimator. 
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sk = h(xk, yk, uk, rk), k ∈ NN− 1
0 (1e)  

xk ∈ 𝒳 , uk ∈ 𝒰, ak ∈ 𝒜, sk ∈ 𝒮, k ∈ NN− 1
0 (1f)  

dk = d(t+ kTs), k ∈ NN− 1
0 (1g)  

rk = r(t+ kTs), k ∈ NN− 1
0 (1h)  

x0 = x̂(t), (1i)  

where xk ∈ Rnx denotes the values of states, yk ∈ Rny the outputs, uk ∈

Rnu the building envelope inputs, ak ∈ Rna the HVAC actuators, mk ∈ Rnm 

the additional measured variables, dk ∈ Rnd the disturbances, rk ∈ Rnr 

the reference signals, and sk ∈ Rns denote the slack variables, at the kth 
step of the prediction horizon N with a sampling time Ts, where n⋆ de-
notes the dimensionality of associated variable ⋆. 

The objective function is given by (1a), where ℓN(xN) represents the 
terminal penalty used to ensure the stability and convergence of the 
control. For most of the building control applications the terminal 
penalty is omitted. ℓ(rk, yk, uk, sk) is called a stage cost and its purpose is 
to assign a cost to a particular choice of xk, yk, rk, uk and sk. 

The predictions of the state values are obtained from the state update 
Eq. (1b), while the values of the predicted outputs are given by the 
output Eq. (1c). The building envelope inputs uk are subject to the HVAC 
dynamics (1d). Slack variables usually represent the violations of 
additional algebraic constraints (1e), such as comfort zones. States, 
envelope inputs, actuators, and slack variables are often subject to 
bounding constraints (1f). The initial conditions of the state variables 
are given by (1i) which are either measured or estimated. A forecasts of 
the disturbances and reference signals are given by (1g) and (1h), 
respectively. For building control applications, disturbances usually 
represent weather conditions and occupancy behavioral patterns, while 
reference signals span from tracking a single reference signal to more 
common comfort ranges on controlled variables. For the sake of gener-
ality we denote by ξ the vector that encapsulates all time-varying pa-
rameters of (1), i.e., the current state estimates x̂(t), current and future 
disturbances d(t),…, d(t + (N − 1)Ts), and reference signals r(t),…,r(t +
(N − 1)Ts). Compression of all parameters into single vector ξ is 
convenient for compact representation of MPC feedback law A =
fMPC(ξ), where A = [ a0, a1,…, aN− 1 ] is the vector of computed optimal 
control actions. 

2.1.3. Standard MPC notation 
Table 2 summarizes the standard notation and meaning of the vari-

ables used in the control community together with most common 

physical representations in buildings. 

2.2. Objectives in building control 

The objective, or also called cost function, represents the perfor-
mance target to be minimized. When two or more targets are set, the 
problem is referred to as a multi-objective optimization. In such cases, 
the terms of the objective function are often conflicting and a trade-off 
among them has to be found. Common approaches for multi-objective 
optimization include goal attainment, minimax, and Pareto front. 

Goal attainment In building control, the vast majority of MPC prob-
lems are using goal attainment formulations aiming to find a balance 
between weighted goals, such as energy use and thermal comfort of the 
occupants. This balance is typically adjusted by means of weighting 
terms to give priority to one of the targets. For example, Eq. (1a) can be 
re-written as (2). Where ‖ Qssk‖

2
2 represents an arbitrary discomfort term 

in the form of the weighted squared 2-norm of the slack variables, and 
Quuk stands for the weighted linear energy term. The matrices Qs and Qu 
here represent the weighting factors, and κk is the time-varying factor 
representing, e.g. the weight associated with price or emission profiles. 
In human perspective, these weighting factors represent the “price” that 
the user is willing to pay to have more or less comfort. Besides standard 
weighting techniques, other methods to select the preferred objective 
have also been tested, such as lexicographic formulations which assume 
that the objectives can be ranked in order of importance (O’Dwyer, De 
Tommasi, Kouramas, Cychowski, & Lightbody, 2017). 

min
u0 ,…,uN− 1

∑N− 1

k=0
( ‖Qssk‖

2
2 +Quκkuk

)
(2)  

Minimax Also called Min-Max formulations aim to minimize the worst- 
case values of a set of multivariate functions. Minimax objective func-
tions are typically being used for finding conservative solutions to the 
optimization problems in the presence of uncertainties. More details on 
this class problems are provided in Section 7.2 dedicated to robust MPC. 
Pareto front Finds trade-off solutions in which an improvement in one 
objective requires a degradation in another. A generic review on MPC 
and PID design with Pareto front objectives was provided in Gambier 
(2008). Authors in Zhao, Shen, Li, and Bentsman (2017) demonstrated 
how to formulate and solve the preference adjustable multi-objective 
MPC for constrained nonlinear systems. The advantage of 
multi-objective MPC in the context of building control is that the 
resulting Pareto front solution space allows the user to choose the 
outcome according to his comfort preferences and economic constraints 
(Arendt et al., 2019; 2016; Ascione, Bianco, De Stasio, Mauro, & Vanoli, 
2016; Ascione, Bianco, Mauro, Napolitano, & Vanoli, 2019; Li & Mal-
kawi, 2016; Liu et al., 2013). 

The formulation of the objective function is influenced by several 
factors, like building dynamics, type of the HVAC system, the level of 
detail of the controller model, observability and controllability of the 
system and user preference. For example, if only the building envelope is 
modeled, a classic approach is to minimize its heat inputs from the 
different heating and cooling systems, with each system having an 
associated cost (Picard & Helsen, 2018). In other approaches where the 
HVAC is explicitly modeled, setpoints of the components are usually 
manipulated to minimize the energy use (Jorissen, 2018). Although 
energy use and user comfort are the most frequently used objectives, it is 
possible and for some cases desired to have also different objectives like 
minimization of monetary costs, or greenhouse gases (GHG) emissions, 
maximization of the share of renewable energy sources (RES), and more. 
The following subsections elaborate more on different objectives used in 
the building control sector. Earlier reviews on MPC objective functions 
for building control can be found in Cigler, Široký, Korda, and Jones 
(2013b); Cupeiro Figueroa, Cigler, and Helsen (2018). 

Table 2 
Standard notation and most common physical representation of the variables 
used in MPC for buildings.  

Notation Controller Building Units 

x states building structure temperatures [K] 
y outputs room operative temperatures [K] 
u inputs heat flows to the zones [W] 
a actuators valve and pump modulations [%] 
m measurements HVAC states [K, W, 

%] 
d disturbances ambient temperatures, solar 

radiation, 
[K, W]   

and internal heat gains [W] 
r references comfort zones, setpoints [K] 
s slack variables discomfort measures [K] 
ξ parameters aggregate of the building states, [K]   

references, and disturbances [K,W] 
Q weighting factors importance of particular objective [− ] 
N prediction 

horizon 
predicted future time window [− ] 

Nc control horizon optimized future time window [− ]  

J. Drgoňa et al.                                                                                                                                                                                                                                  



Annual Reviews in Control 50 (2020) 190–232

195

2.2.1. Comfort satisfaction 
The main purpose of heating, cooling, and ventilation systems in 

buildings is to maximize the thermal comfort and indoor environmental 
quality (IEQ) for the occupants. Enhanced IEQ can improve occupants’ 
productivity by 5 to 10% Olesen (2005), or satisfy the specific re-
quirements of more demanding occupants like elderly people who in 
general prefer warmer thermal conditions (Schellen, van Marken Lich-
tenbelt, Loomans, Toftum, & De Wit, 2010). 

In general, the main constituent of the IEQ is thermal comfort. The 
standard way to achieve thermal comfort is to maintain the zone tem-
peratures of the building within a given temperature range or so-called 
comfort zone, e.g., as defined by the international standard ISO7730 
(International Organization for Standardization, 2005). An advanced 
metric used to assess thermal comfort is the Predicted Mean Vote (PMV) 
indicator of Fanger (Fanger, 1973). PMV is used not only in the thermal 
comfort model of ISO7730 (International Organization for Standardi-
zation, 2005) but also in other standards like ASHRAE55 (American 
Society of Heating Refrigerating & Air Conditioning Engineers, 2013), 
EN15251 (Comite’Europe’en de Normalisation, 2007), and ISSO74 (van 
der Linden, Boerstra, Raue, Kurvers, & de Dear, 2006). PMV is a 
nonlinear model, which depends on various parameters like the meta-
bolic rate, the clothing insulation, the indoor air temperature, the 
radiant temperature, the air velocity, the relative humidity, and on the 
outdoor meteorological conditions. However, its nonlinear nature 
makes it computationally more expensive for MPC applications (Castilla, 
Álvarez, Normey-Rico, & Rodriguez, 2014; Castilla et al., 2011), leading 
to the use of approximated versions of this model (Cigler, Prívara, Váňa, 
Žáčeková, & Ferkl, 2012; Klaučo & Kvasnica, 2014; Yang et al., 2018). 
The PMV value is moreover complicated to calculate in such a way that 
it fits the real observed mean vote (Humphreys & Nicol, 2002). On the 
other hand, some studies recommend an adaptive thermal model that 
involves acclimation of people, which could improve people’s health by 
increasing their thermo-neutral zone (van Marken Lichtenbelt & 
Kingma, 2013). Standards including adaptive comfort bounds are 
defined by the thermal models in EN15251 (Comite’Europe’en de Nor-
malisation, 2007), ASHRAE55 (American Society of Heating Refriger-
ating & Air Conditioning Engineers, 2013), and ISSO74 (van der Linden 
et al., 2006). A comprehensive comparison of adaptive thermal comfort 
models defined by different standards can be found in Sourbron and 
Helsen (2011). The main disadvantage of these personalized comfort 
metrics is that their parameters need to be properly measured or esti-
mated, which often increases their cost and limits their applicability in 
control practice. For a more comprehensive overview of thermal com-
fort models, we refer the reader to Enescu (2017). Table 3 presents a 
compact summary of most common thermal comfort models used in 
MPC. 

However, thermal comfort constitutes only a part of IEQ since it also 
depends on additional factors, such as indoor air quality (IAQ), lighting 
quality, visual and acoustic comfort. For example, evidence exists that 
mechanical ventilation systems lead to an overall improvement of the 
IAQ and reduction of reported comfort and health-related problems 
(Kephalopoulos, Geiss, Barrero-Moreno, D’Agostino, & Paci, 2016). To 
predict the air quality an occupancy model needs to be developed, e.g., 

based on statistical data or available measurements (Jorissen, Boydens, 
& Helsen, 2017). The occupancy models can also be used to predict the 
thermal loads and thus improve thermal comfort, and when correctly 
implemented they can further save up to 30% of energy (Mirakhorli & 
Dong, 2016). Furthermore, ventilation units can have some degree of 
freedom with respect to the relative humidity of the supplied air, and 
therefore they can also be straightforwardly incorporated into MPC 
formulations via humidity models or additional constraints on temper-
atures (Freire, Oliveira, & Mendes, 2005). The lighting quality can be 
improved by utilizing blind control and electric lighting power control 
(Oldewurtel, Sturzenegger, & Morari, 2013). In general, based on the 
available sensors, the output vector y can include not only the temper-
ature measurements but also CO2 concentrations, humidities, illumi-
nance, and others. 

2.2.2. Minimization of cost 
The minimization of the energy use in a building does not necessarily 

result in the minimization of the related operational costs. If for 
example, the energy prices are volatile, as it is the case for electricity, it 
may be worth to shift the load and store thermal energy during cheap 
periods for its later use when the energy prices are higher. This thermal 
energy can be stored in buffer tanks, geothermal borefields or by using 
the building’s own thermal inertia. An economic objective can be 
formulated by transforming the energy use into monetary cost by means 
of a variable cost factor, (i.e., the term κk in Eq. (2)) which can be 
considered as a forecasted disturbance to the model. 

The variability fuel prices (gas, oil, and wood) can be neglected 
because their dynamics is relatively slow, making the cost factor quasi- 
constant over the prediction horizon. These cost factors could be 
updated offline in the formulation when the price has a substantial 
change. Nonetheless, times are changing for electricity prices. The 
minimization of the monetary cost is equal to the minimization of en-
ergy in the cases where only electricity-based systems are used and the 
user has contracted a flat tariff. However, today, a wider variety of tariffs 
are being implemented with higher variability in both energy and peak 
demand prices. With the implementation of smart meters, even for the 
residential sector, it would be possible to access, e.g., hourly prices. 
Subsequently, using an economic objective has major potential if 
electricity-based supply systems such as heat pumps and chillers are 
used. The advantage of these objectives has been widely studied in the 
context of demand-response problems with real-time pricing (Avci, 
Erkoc, Rahmani, & Asfour, 2013; Bianchini, Casini, Vicino, & Zarrilli, 
2016a). It has been shown that economic optimization could be used to 
reduce the peak electricity demand (Oldewurtel, Ulbig, Parisio, Ander-
sson, & Morari, 2010b), or increase the stability, flexibility, and sus-
tainability of the energy system, particularly in the face of growing 
intermittent renewable generation (Patteeuw, Henze, & Helsen, 2016; 
Qureshi & Jones, 2018). Examples of such a pricing-formulation are 
given by Bianchini, Casini, Vicino, and Zarrilli (2016b); Oldewurtel, 
Ulbig, Parisio, Andersson, and Morari (2010c); Vrettos, Lai, Oldewurtel, 
and Andersson (2013). A simulation study of different economic MPC 
formulations under commercial time-of-use tariffs concluded that mul-
tiple MPC formulations could offer the same value for the user (in terms 
of utility bill cost) but different grid service capabilities such as load 
shifting (Cutsem, Kayal, Blum, & Pritoni, 2019b). 

2.2.3. Minimization of greenhouse gas emissions 
This objective can be chosen if the user is motivated to reduce the 

carbon footprint of the building HVAC system. In contrast to the eco-
nomic objective, the cost factor is replaced by an emission factor on the 
used energy amount. The minimization of GHG is equal to the minimi-
zation of energy in the cases where only conventional fossil energy 
sources are being used. The emissions for gas and oil boilers are pro-
portional to the amount of combustible used. When electricity is sup-
plied by a distributor who guarantees that it comes from the renewable 
electricity pool, the direct GHG emissions are zero. In this case, 

Table 3 
Selective summary of thermal comfort models used in MPC formulations.  

Reference Static 
model 

Adaptive 
model 

PMV Others 

Sturzenegger et al. (2013) • – – – 
Oldewurtel et al. (2013) • – – •

Feng, Chuang, Borrelli, and 
Bauman (2015) 

– • – – 

Maasoumy et al. (2014) – • – – 
Castilla et al. (2014, 2011) – – • – 
Freire, Oliveira, and Mendes 

(2008) 
– – • •
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minimization of GHG emissions is not possible. The emission factor 
differs from the cost factor when electricity-based components take the 
energy from a standard electricity supplier. The cost profiles usually do 
not coincide with the GHG emissions profile. The GHG emission factor 
varies with the distribution of the different generation system types 
active at the considered moment. These emission factors can be provided 
or estimated through generation schedules by the grid operators. Cases 
where this objective function is used, can be found in Knudsen and 
Petersen (2016); Vogler-Finck, Wisniewski, and Popovski (2018). 

2.2.4. Maximization of the share of renewable energy use 
In cases where the building has local RES, these terms can typically 

be added to the above formulations with a negative cost/emission factor, 
which would lead to their maximum usage. The formulation that max-
imizes the share of RES (or minimizes the share of fossil fuels) uses 
different weighting factors on different available energy sources. 
Moreover, when sufficiently large thermal energy storage capacity and 
accurate controller models are available, the MPC can harness the power 
of the predictions to maximize the use of intermittent renewable systems 
by storing the energy for later use into thermal mass or batteries. The 
abstract factor κk = 1 − Rk in Eq. (2) is used as the time-varying factor, 
where Rk represents the share of renewable energy in the load at the 
moment k. Some examples that use this objective function are treated in 
Vandermeulen, Vandeplas, Patteeuw, Sourbron, and Helsen (2017); 
Vogler-Finck, Pedersen, Popovski, and Wisniewski (2017) 

2.2.5. Optimization of multiple generation and storage components 
Another prominent set of multi-term objectives is optimizing the use 

of multiple energy generation (eg., PV cells) and energy storage com-
ponents. The objective here is to increase the energy efficiency and 
flexibility of the building stock by load shifting, the energy exchange 
between multiple buildings or storage units, and by prioritizing the use 
of cheapest, cleanest, or most efficient energy sources. For instance, MPC 
formulation increasing the flexibility of a commercial building with 
thermal energy storage (TES) in demand-side management (DSM) pro-
grams was evaluated in Cao, Du, and Soleymanzadeh (2019). Authors in 
Tarragona, Fernández, and de Gracia (2020) apply MPC in a heating 
system with TES, PV panels, and electricity grid supply and study the 
impact of different MPC settings on the energy cost performance. MPC 
formulation for extremely large central cooling systems with TES was 
introduced in Shan, Fan, and Wang (2019). Kuboth, Heberle, 
König-Haagen, and Brüggemann (2019) formulate economic MPC for a 
residential building with a coupling of thermal and electric supply by an 
air source heat pump. A simulation study of MPC formulation for a 
residential house leveraging local PV microgeneration was presented in 
Godina, Rodrigues, Pouresmaeil, and Catalão (2018). MPC formulation 
optimizing the coefficient of performance (COP) of a hybrid geothermal 
system with a borefield heat exchanger was presented in. Cupeiro Fig-
ueroa, Picard, and Helsen (2020). in Zhao, Lu, Yan, and Wang (2015), an 
MPC formulation with multiple energy generation and storage compo-
nents was tested on a real building. 

2.2.6. Optimization of large-scale systems 
In the case of large-scale commercial HVAC systems, the imple-

mentation of MPC as a single monolithic optimization problem is not 
practical nor desirable given real-time operating requirements (Raw-
lings et al., 2018). In these situations, decomposing the problem into a 
set of smaller problems presents a viable and practical alternative. A 
hierarchical decomposition of economic MPC in large-scale HVAC sys-
tems with district heating/cooling networks was applied and tested on a 
500-zone campus in Rawlings et al. (2018). The energy hub concept 
allows optimizing a set of buildings in a cooperative manner, providing 
opportunities for load shifting, and sharing of costly energy generation 
and storage components, such as heat pumps, boilers, batteries (Dari-
vianakis, Georghiou, Smith, & Lygeros, 2015). 

2.2.7. Long-term objectives 
In general, it is difficult to incorporate the long-term dynamic effects 

of the system which exceed the defined prediction horizon N. Such 
problems arise, for example, in MPC applications with seasonal energy 
storage units, like underground thermal energy storage (UTES), large- 
scale storage tanks, etc. However, to avoid thermal depletion of these 
storage systems, a thermal balance should be ensured on the long-term. 
To this end, some authors (Jorissen, 2018; Verhelst, 2012) have 
included a long-term cost in the objective function, that penalizes the 
use of the seasonal storage system at specific moments, thereby inviting 
the system to use the secondary production unit. However, this 
long-term cost could move from penalization objectives within the ho-
rizon towards shadow costs over a longer horizon. Since the accuracy of 
the predictions would decay over time, historical data may be needed to 
fit the predictions over longer horizons. 

2.2.8. Design and tuning factors 
In MPC there are several important setup and tuning factors, which 

can be considered as hyperparameters with a strong influence on the 
overall performance of the system. We summarize them in the following 
list: 

Weighting factors Q: give the preferences to the multiple objectives 
to be penalized in the objective function. 
Sampling period Ts: is the time interval in which the computed 
control actions remain constant, and the choice of it depends on the 
time constant of the controlled system. 
Prediction horizon N: N are here the number of time steps and hence 
N Ts defines the length of a time window for which MPC computes 
the predictions given by model (1b) and enforces the system 
behavior desired by the objective function. 
Control horizon Nc: Nc ≤N represents the number of time steps for 
which MPC computes the optimal control actions which minimize 
the given objective function. Hence the length of an optimized time 
window is given by Nc Ts. 

Fig. 3 provides a conceptual example of the characteristic MPC 
behavior for a building with a highlighted summary of design and tuning 
factors. 

Weighting factors are usually determined based on magnitudes of the 
penalized signals, while the other parameters should be set up based on 
the dynamics of the controlled system. The practical rule is that Ts 
should be large enough for computing, communicating, and imple-
menting the next control signal, though small enough to control the 
system in a stable way. The general rule in control theory is to choose Ts 
such that there are at least 10 to 20 samples in the rise time T90 of the 
process step response. Buildings are in principle slow dynamic systems 
with Ts usually spanning from 15min to 180min. In control theory, N 
should be large enough to cover the settling time of the process step 
response. N for building control applications usually spans between 5h 
to 48h (Afram & Janabi-Sharifi, 2014b). Typically, the control horizon is 
chosen such that Nc ≤N and Nc ≥ 2. For many practical applications, the 
rule of thumb is to set Nc roughly to 20% of N. The advantage of Nc <N 
lies in reduced computational demands by having fewer decision vari-
ables in the resulting optimization problem (Cagienard, Grieder, Kerri-
gan, & Morari, 2004). The reason why Nc ≤N is often used in practice is 
that the effect of the computed control actions decreases with each step 
in the future, which means that only the first few computed control 
actions have a major impact on the trajectory of the controlled variables. 
Eq. (3) serves as an example of such an objective function where Nc <N. 
The number of optimized variables is decreased from nuN to nuNc which 
can significantly reduce the computational burden especially for prob-
lems with many control inputs. 
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min
u0 ,…,uNc − 1

∑N− 1

k=0
‖ Qssk ‖

2
2 +

∑Nc − 1

k=0
Quκkuk (3) 

A common practical problem that can appear in poorly tuned MPC is 
an oscillatory behavior. If the weights are unbalanced and control 
constraints are not tight enough, the control actions can result in bang- 
bang control profiles, i.e., either idle (no energy) or deadbeat (full 
power) control actions. These oscillations can be corrected by properly 
balancing the weighting terms, e.g., based on the magnitudes and ranges 
of the penalized variables, or by introducing the rate of change or slew 
rate constraints on control inputs (Cigler et al., 2013b). Definitions and a 
discussion about different types of constraints that can be used for 
tuning the performance of MPC are given in Section 2.3. 

Further reading with detailed overviews, comparisons, and strategies 
for selection of an appropriate objective function and tuning parameters 
for MPC-based building control can be found, e.g. in Afram and Jana-
bi-Sharifi (2014b); O’Dwyer et al. (2017); Rincón, Santoro, and Men-
doza (2016); Serale et al. (2018). Please note that different 
mathematical formulations of the objective function can lead to 
different MPC problem classes with varying solution complexity and 
computational demands, which is further discussed in Section 5. 

2.3. Constraints used in building control 

MPC can handle a wide variety of constraints on state, input or 
output variables (Maciejowski, 2002). In general, there are two types of 
constraints: inequality (control inputs range, comfort zones, etc.) and 
equality (building model dynamics, rate limits, etc.) constraints. Hard 
constraints are those for which satisfaction is mandatory. An example of 
such constraints is the state update equation given by the equality 
constraint (1b), or control action bounds (4), which need to be satisfied 
at every time instant for the whole prediction horizon. 

u ≤ uk ≤ u (4)  

Soft constraints, on the other hand, are those for which violations can 
occur. They are usually relaxed by slack variables sk that are added to 
and penalized in the objective function (1a). Soft constraints commonly 
used in building control are thermal comfort zone inequality constraints 
given by (5), defined by upper yk and lower bounds yk on the controlled 
variable yk. For these types of constraints, the softening may be neces-
sary to avoid infeasibility of the optimization problem during the time 

periods when the comfort constraints will be violated, as can happen in 
practical implementation. In general, soft constraints are preferable due 
to numerical reasons that guarantee the feasibility of the resulting 
optimization problem. 

yk − sk ≤ yk ≤ yk + sk (5)  

Another type of constraints consist of time-varying constraints, which in 
contrast to constant constraints, vary in time. Eq. (5) represents such 
constraints because comfort boundaries are defined as time-varying 
parameters yk and yk. Slew rate constraints penalize the rate of change 
of certain variables, for example Eq. (6) limits the one-step difference of 
the control variable uk. This type of constraint is useful for avoiding 
overshooting and peak behavior. 

Δuk = uk − uk− 1 (6a)  

Δu ≤ Δuk ≤ Δu (6b) 

Move blocking constraints represent a formulation strategy for 
decreasing the computational burden by reducing the number of deci-
sion variables of the resulting optimization problem, as discussed in the 
Section 2.2.8. The basic idea is based on reducing the degrees of freedom 
by fixing the control variables or its derivatives to be constant over a 
defined time-period (Cagienard et al., 2004). See for example Eq. (7). 

uk =

{
uk if k ≤ Nc
uNc otherwise , k ∈ NN− 1

0 (7)  

Terminal constraints penalize the last predicted state to stay within a 
given terminal region: xN ∈ 𝒳N. They are usually used for enforcing the 

Fig. 3. Characteristic features and illustrated behavior of MPC for building temperature control.  

Table 4 
Summary of constraints types used in MPC for buildings, inspired by Serale et al. 
(2018).  

Form Violations Time Math Variables Meaning 

Inequality Soft Varying Linear States Model 
dynamics 

Equality Hard Constant Nonlinear Outputs Ranges    
Mixed- 
integer 

Inputs Slew rate      

Move 
blocking      
Terminal  
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stability and recursive feasibility of the OP (1) with respect to the 
controller model. 

From a practical perspective in building control applications, the 
constraints are most commonly used to enforce selected variables to stay 
within given ranges, e.g., heat fluxes and room temperatures (Picard, 
Drgoňa, Kvasnica, & Helsen, 2017), supply air temperatures (Rehrl & 
Horn, 2011), airflow rates (Huang, 2011), and other HVAC variables 
(Afram & Janabi-Sharifi, 2014b), or for tuning the MPC performance 
via, e.g., slew rate constraints on control variables (Cigler et al., 2013b). 
From a mathematical point of view, the constraints can be further 
classified as linear, nonlinear or mixed-integer. The latter two can lead 
to better performance but also result in an increased complexity of the 
optimization problem. Table 4 compactly summarizes the constraint 
types discussed in this section. The influence of the constraints on the 
type and complexity of the OP is discussed in Section 5 in more detail. 

3. Building models for control 

The main bottleneck in practical implementation of MPC is the 
controller model development (Cigler et al., 2013a). Naturally, the 
quality of the MPC solution relies on the model accuracy, but also the 
overall MPC implementation is affected by the chosen modeling 
approach in a number of ways. Efficient optimization algorithms utilize 
specific model characteristics, like linearity, continuity, or known de-
rivatives. However, the phenomena and processes occurring in buildings 
are often nonlinear and discontinuous, and complex physical models or 
advanced data-driven models are required to model such processes 
accurately. On the other hand, more complex models increase the 
overall computational demand of MPC, not only by increased simulation 
time but also because they are not suitable for efficient optimization 
algorithms and gradient-free algorithms have to be used instead. 
Therefore, a sound trade-off between the model accuracy and simplicity 
is required. This section provides an overview of the building model 
types, three modeling paradigms used in building modeling, as well as 
practical aspects of building modeling. 

3.1. Building model types 

This section elaborates on individual components of a generic 
building model structure, as shown in Fig. 4, and summarized by hybrid 
differential algebraic equations (DAE) with continuous and discrete time 
dynamics (1b)–(1d). These components are the building envelope, 
HVAC system, sources of disturbances such as weather and occupancy, 
and the peripherals represented by sensors and actuators. 

3.1.1. Envelope 
A building envelope consists of the external an internal walls, roofs, 

windows, ground floors, and other partitions separating the indoor 
environment from the outdoor environment, or two indoor thermal 
zones. In general, the building envelope model should take into account 

the heat transfer through conduction, radiation (especially solar gains), 
and convection (especially air infiltration). The conductive heat transfer 
depends on the thermal resistance of the partition and on its thermal 
mass. Heavier materials, e.g. brick or concrete, have higher thermal 
mass (inertia) and can absorb more energy, effectively working as a 
thermal buffer between the indoor and outdoor environments. This 
buffer can be utilized in MPC to shift energy use. Lighter materials, e.g. 
wood or thermal insulations, have low thermal mass resulting in a lower 
potential for accumulating energy. On the other hand, lighter materials 
have lower conductivity and therefore increase the thermal resistance of 
the partition. The radiative heat transfer from solar gains has to be taken 
into account in the case of transparent partitions (windows, curtain 
walls), but is often considered also for opaque partitions (heating 
building thermal mass). The transparent partitions have low thermal 
mass and are often modeled using the steady state heat equation. 

The conduction in building envelopes is typically modeled using the 
1D transient heat equation (Clarke, 2001; Hensen & Lamberts, 2019), 
converted to a system of ordinary differential equations using for 
example the method-of-lines, whereas the radiation and convection 
modeling approaches vary extensively. For example the radiative heat 
transfer can be modeled with anything from a simple solar heat gain 
coefficient to a complex dynamic shading model. In contrast, 
data-driven models typically do not consider the building envelope 
directly. Instead, they model indoor environment as a function of indoor 
and outdoor disturbances, and therefore the effect of building envelope 
is taken into account implicitly (Arendt, Jradi, Shaker, & Veje, 2018a). 

3.1.2. HVAC 
Building HVAC systems vary greatly in designs, however some of the 

commonly used components are as follows: boilers, heat pumps, chillers, 
fans, filters, pumps, dampers, valves, heat exchangers, diffusers, ducts, 
and pipes. There is a vast spectrum of controls regulating the fluid flow, 
supply temperatures, and indoor air conditions. 

HVAC components and controls coupled to building envelope models 
are challenging to simulate while maintaining reasonable computational 
demands (Jorissen, Wetter, & Helsen, 2018d). Fans and pumps have 
nonlinear characteristics (Wetter, 2013), which are coupled to nonlinear 
relations of mass flow rates and pressure differences in the system 
caused by active components such as valves and dampers and static 
components such as ducts and pipes. Excluding computationally 
expensive modeling approaches such as Computational Fluid Dynamics 
(CFD) that may be prohibitive from an MPC point of view, the final 
model structure highly depends on phenomena and processes the model 
has to cover. For example, in some cases MPC does not control all HVAC 
components directly and instead controls high-level setpoints. In such 
cases the model may have to include some embedded controls, which 
also can be nonlinear or even discrete (e.g. on/off), or assume ideal, 
instantaneous control. 

3.1.3. Disturbances 
Disturbances refer to every non-controllable input that has an in-

fluence on the building system. Some examples are weather conditions 
(e.g. outdoor temperature, solar radiation), internal heat gains (e.g. 
occupancy, equipment), and electricity prices. The weather conditions 
are simply inputs to the building simulation and so just an accurate 
forecast is required (no feedback). The easiest way to obtain it is from 
some online weather forecast service (many free and commercial are 
available), typically providing forecasts based on advanced climate 
models. A potential drawback of this approach is that the online weather 
forecast is typically generated based on data from climate stations which 
can be far from the considered building, and may not represent the 
actual weather conditions for the building. Alternatively, machine 
learning models can be employed and trained on the data collected from 
the building site, if available. The machine learning models can be 
especially accurate for short-term predictions, up to several hours ahead 
(Wollsen & Jørgensen, 2015), which is the range typically relevant for Fig. 4. Generic structure of a building model.  
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MPC in buildings. 
The most straightforward approach for including weather forecast in 

the prediction model of MPC is based on a data-driven linear dynamics 
model of the weather variables (Oldewurtel et al., 2012; Prívara, ̌Siroký, 
Ferkl, & Cigler, 2011), representing a cost-effective alternative to so-
phisticated simulation models or costly weather stations (Hedegaard, 
Pedersen, Knudsen, & Petersen, 2018). However, in some cases, linear 
dynamics might not be sufficiently accurate and can result in hampering 
the performance of the predictive controller (Kim, Witmer, Brownson, & 
Braun, 2014). In case of inaccurate disturbance models, stochastic 
(Drgoňa, Kvasnica, Klaučo, & Fikar, 2013; Parisio, Fabietti, Molinari, 
Varagnolo, & Johansson, 2014) or adaptive (Mazar & Rezaeizadeh, 
2020) data-driven methods have been applied for mitigating the un-
certainties associated with the weather forecast errors. For instance, 
(Liu, Paritosh, Awalgaonkar, Bilionis, & Karava, 2018) use a probabi-
listic time-series autoregressive model to quantify solar irradiance un-
certainty. However, the disadvantage of data-driven correction methods 
is that the underlying disturbance distributions are often poorly repre-
sented based purely on historical data. Authors in Darivianakis, Geor-
ghiou, Smith, and Lygeros (2019) address this issue by exploiting the 
historical data to construct families of distributions based on real 
weather data, and construct a first-order model for weather prediction 
error. 

The indoor occupancy can be modeled either as the heat gain profile, 
presence (room empty vs. at least one person in the room), occupant 
count, or occupant count and behavior. The latter approach is the most 
accurate, since building occupants not only generate heat, but also 
interact with the building, sometimes taking actions to adjust the indoor 
environment (window opening, overriding default setpoints). However 
currently, the state-of-the-art occupancy behavior models (e.g. obFMU 
Hong, Sun, Chen, Taylor-Lange, & Yan, 2016 or StROBe Baetens & 
Saelens, 2016) are computationally too expensive to be included in 
MPC. Therefore, less computationally demanding approaches are typi-
cally adopted in the context of MPC, for example models based on 
heuristics (e.g. anticipated schedules) or machine learning. Reviews in 
Balvedi, Ghisi, and Lamberts (2018); Yan et al. (2015) provide in-depth 
discussion on current methods of monitoring and modeling occupant 
behavior suitable for real-time control applications. For more compre-
hensive and systematic literature review of models for occupant 
behavior we refer the reader to (Carlucci et al., 2020). One of the pop-
ular data-drive models for the occupancy behavior are Markov chains 
processes, providing systematic framework for evaluating accurate 
scenarios for human-building interaction suitable for integration in 
scenario-based MPC formulations (Johnson, Starke, Abdelaziz, Jackson, 
& Tolbert, 2014). Sangogboye et al. (2017) presented data-driven oc-
cupancy prediction methods with average errors of 7% and 3% for 
passive infrared (PIR) sensor and stereovision camera training data, 
respectively. Peng, Rysanek, Nagy, and Schlüter (2018) incorporated 
data-driven occupancy models to optimize rule-based control in a real 
building and reported 7–52% energy savings, depending on the room 
type. Capozzoli, Piscitelli, Gorrino, Ballarini, and Corrado (2017) re-
ported 14% energy savings through a pattern-recognition analysis of 
occupants’ displacement. The most accurate occupancy predictions are 
yielded by models trained on dedicated-sensor data (PIR, cameras), 
however occupancy can be also predicted from other sensors, such as 
CO2 or plug power (De Coninck & Helsen, 2016; Jorissen et al., 2017; 
Sangogboye et al., 2017). 

Purely theoretical studies of the building dynamics using detailed 
white-box models can often include dozens sometimes up to a hundred 
of disturbance signals (Picard et al., 2017). However, for most practical 
applications, it is sufficient to take into account only a small subset of 
dynamically dominant disturbances. Authors in Drgoňa et al. (2018) 
used feature extraction based on principal component analysis (PCA) to 
select the most significant disturbances for residential building control, 
selecting the ambient temperature and solar irradiation. Similarly, 
(Lambrichts, 2020) studied the impact of the weather and occupancy 

uncertainties on MPC’s performance, finding that uncertainties associ-
ated with the forecast of ambient temperature, solar irradiance, and 
internal heat gains have the largest impact on the performance of the 
predictive controller. Some intuition on the selection of dynamically 
dominant disturbances in specific cases can be derived from the studies 
above. However, systematic theoretical studies and practical guidelines 
for selecting dominant disturbances in a wide range of building model 
types, climate zones, and types of use are lacking in the current 
literature. 

3.2. Modeling paradigms 

This section provides an introduction to the three modeling para-
digms used in building modeling and discusses their applicability to 
MPC. For a more extensive review on the modeling techniques used in 
HVAC control we refer to Afroz, Shafiullah, Urmee, and Higgins (2018). 
Additionally, a broad comparative study between the different modeling 
paradigms can be found in Boodi, Beddiar, Benamour, Amirat, and 
Benbouzid (2018). 

3.2.1. White-box 
White-box models describe the building dynamics from physical 

knowledge. They are based on the principles of heat transfer and con-
servation of energy and mass. The parameters of these models are 
physically meaningful and are obtained from the building technical 
documentation regarding geometry, material properties, and equipment 
specifications. For a detailed description of the equations that are 
considered in this modeling approach we refer to Jorissen et al. (2018c). 

The main challenge in white-box modeling is the significant effort 
required to describe the building properties. Despite the advances in 
Building Information Modeling (BIM), this process is still largely manual 
and tedious (Gao, Koch, & Wu, 2019). The resulting model typically 
includes hundreds or, more likely, thousands of parameters. Hence, 
there are many potential sources of model inaccuracy, making the 
process of parameter setup difficult. With available measurement data, 
calibration may be used to tune the selected parameters. However, a 
model calibrated based on the overall yearly energy use might be still 
inaccurate for predicting performance on the individual zone level 
(Arendt et al., 2018a) or at smaller timescales. Moreover, the large 
number of equations and their nonlinear nature makes the imple-
mentation of white-box MPC more difficult. 

On the other hand, when the parameters of the white-box models are 
accurate, their physical properties endorse them with highly reliable 
results. They can also track the evolution of physically meaningful 
variables. As a consequence, they are often considered suitable for fault 
detection (Henze, 2013) and building monitoring systems (Jradi et al., 
2018). In addition, detailed building envelope and HVAC models can 
also enable control of the building at a more granular level, since the 
optimization variables may have a direct translation into the signals 
used in the actuators. This direct control skips the development of any 
sub-controller, which can be a cumbersome task, and it also increases 
the overall MPC performance due to direct assessment of HVAC effi-
ciencies. For these reasons, research has been conducted to facilitate the 
implementation of these models into optimal control. As a result, tool-
chains have been developed to define white-box models for buildings 
and couple them with or translate them into an optimization problem. 
Coupling has traditionally taken the form of using a building energy 
simulation program within iterations of a numerical optimization 
technique, such as a scheme that couples EnergyPlus and a particle 
swarm optimization algorithm (Corbin, Henze, & May-Ostendorp, 2012) 
or one that couples TRNSYS and a genetic algorithm (Coffey, Haghighat, 
Morofsky, & Kutrowski, 2010). However, these schemes can be 
computationally expensive, especially as the number of optimization 
variables grows and complexity of the model increases, and prone to 
convergence issues (Wetter, 2004; Wetter & Wright, 2004). Wetter, 
Bonvini, and Nouidui (2016) argued that equation-based languages, 
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such as Modelica, can address some of the limitations of traditional 
building energy modeling software tools, such as EnergyPlus, specif-
ically by (a) enabling symbolical manipulation of model equations and 
by (b) separating the model definition from the numerical solver. For 
instance, some of the most prominent Modelica libraries for building 
modeling are Buildings (Wetter et al., 2014), IDEAS (Baetens et al., 
2015), AixLib Müller, Lauster, Constantin, Fuchs, and Remmen (2016), 
and BuildingSystems (Nytsch-Geusen et al., 2016). Jorissen et al. 
(2018a) implemented and validated an automated toolbox for auto-
matically parsing white-box models written in Modelica into MPC, 
showing the feasibility of this approach. A detailed overview of the 
available software tools is presented in Section 8.1.1. 

3.2.2. Gray-box 
The gray-box category represents a wide spectrum of models 

encompassing simplified physical relationships, but also requiring 
parameter estimation based on measured data. Usually, the physics in 
gray-box models is simplified by means of state space dimensionality 
reduction or linearization. A typical concept in gray-box modeling is the 
RC analogy that defines any model by its affinity with a resistor- 
capacitor electrical circuit as the one shown in Fig. 5. This very simple 
example represents the model of a building envelope where Cz is the 
thermal capacitance of the zone which can be seen as the capacity of a 
zone to store thermal energy. The thermal resistor Rw represents the 
building walls that separate the ambient temperature Ta from the zone 
temperature state Tz. Finally, Q̇h and gAQ̇Sun represent the thermal 
power from the building heating system and the solar irradiation, 
respectively. From this scheme it is possible to derive the equations that 
define the simplified physics of the system. For a one state RC model as 
the one shown in the example, the only equation defining the model is 
shown in Eq. 8. In this way, the model can be represented using state- 
space matrices by carefully grouping the parameters in the elements 
of the matrices for the specified inputs and outputs. An alternative 
formulation, called inverse comprehensive room transfer functions 
(iCRTF), is derived from discretization of the state space formulation 
and creation of linear transfer functions, whose coefficients can be 
identified based on regression (Armstrong, Leeb, & Norford, 2006). Such 
an approach has been used in simulation (Blum, Xu, & Norford, 2016; 
Zakula, Armstrong, & Norford, 2014) and experimental (Gayeski, 
Armstrong, & Norford, 2012) studies. 

Cz
dTz

dt
=

Ta − Tz

Rw
+ Q̇h + gAQ̇Sun (8) 

For buildings, model order reduction has proven to be able to 
maintain the same level of accuracy even when strong simplifications 
are carried out (Picard et al., 2017). This enables the use of more suitable 
models for optimization without any expected loss of controller model 
performance. It is often argued that the gray-box approach can address 
the limitations of both white- and black-box models. First, since some 
knowledge about the modeled system is already hardcoded in the model 
equations, gray-box models are more likely to stay reliable outside the 
calibration range than black-box models (Afroz et al., 2018), they 
require less data for calibration (Arendt et al., 2018a), and there is a 

lower risk of overfitting than in black-box models. Second, the equations 
used in a gray-box model can be more easily adapted to the needs of 
MPC solvers, e.g. by ensuring continuity, linearity or differentiability. 
Finally, gray-box models are found to be easily portable between similar 
systems. For instance, (Reynders, Diriken, & Saelens, 2014) argued that 
only few model types are required to represent the majority of buildings. 
Verhelst (2012) showed low-order models provide similar accuracy to 
higher order models for both building and borehole heat exchanger 
modeling. It was concluded that the quality of the measured data has 
higher impact on the accuracy of the model than the model structure 
itself. A direct comparison of the gray- and white-box approaches for 
their application in MPC can be found in Picard et al. (2016). In this case, 
the white-box MPC resulted in a better thermal comfort and used only 
half of the energy used by the gray-box MPC. 

The main challenge related to gray-box modeling is the need for a 
robust parameter estimation method. The approaches can be divided 
into batch and online estimation. The batch estimation is an offline 
process in which model parameters are found by minimization of the 
model error over a specific time period. The estimation can be per-
formed only once or the models can be periodically recalibrated based 
on more recent data. Typically, the batch estimation leads to a non- 
convex optimization problem with many local and flat optima as 
shown by Arendt, Jradi, Wetter, and Veje (2018b). The complexity of the 
objective function can also bring the parameters to the constraint 
boundaries. Therefore, there is a need for a global optimization strategy, 
either by using evolutionary methods as in Arendt et al. (2018b) or 
multi-start methods as in De Coninck et al. (2016). In addition, an expert 
involvement and cross-validation of the parameter estimation results is 
advised (Verhelst, 2012). The online estimation is usually based on 
methods related to recursive Bayesian estimation, such as sequential 
Monte Carlo Rouchier, Jiménez, and Castaño (2019) or Kalman filtering 
(Shi & O’Brien, 2019). Online parameter estimation forms the basis of 
indirect adaptive MPC approaches, which are covered in more detail in 
Section 7.4. 

Finally, unlike many data-driven models which usually perform 
better when trained on more data, gray-box models often require special 
care regarding the data chosen for training. For example, parameter 
estimation in an RC (resistor-capacitor) thermal network may lead to an 
overestimated thermal mass if the training period is too long and the 
gray-box model cannot find a good fit for the entire period (Arendt et al., 
2018a). Blum et al. (2019b) found that the optimal training period 
length depends on the MPC horizon, suggesting that a periodic 
re-callibration is necessary. 

3.2.3. Black-box 
Black-box models learn the dynamics of the buildings from the 

measured data without making any prior assumptions regarding any 
physical relationships. The main advantages of the black-box approach 
compared to gray- and white-box are that they usually lead to lower 
development cost and that any signal can be used as an input or output, 
as there are no physics involved. On the other hand, black-box models 
require more training data than gray-box models (Afroz et al., 2018) and 
are not reliable outside the training range (Afram & Janabi-Sharifi, 
2014a). 

Linear models The simplest and most intuitive black-box models are 
the parametric linear models. The forecasts of these models are linear in 
the observations and the uncertainty increases with the prediction ho-
rizon. The models that belong to this group are Auto Regressive (AR), 
Auto Regressive with eXogenous inputs (ARX), Auto Regressive with 
Moving average or Box-Jenkins (ARMA or BJ), Auto Regressive with 
Moving Average and eXogenous inputs (ARMAX) and Output Error 
(OE). All these models can be transformed into the general state space 
formulation. A common alternative for estimating the state space pa-
rameters is the Subspace-based State Space System IDentification (4SID) 
(Van Overschee & De Moor, 1996). With this methodology, the state 
sequence and its order are first calculated, and later the state space 

Fig. 5. Example of an RC building envelope model.  
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matrices are estimated just by solving a least squares problem. A com-
parison between subspace identification and an ARMAX model for their 
use within the MPC of a large building was made in Ferkl and Široký 
(2010). The authors concluded that subspace identification is faster, 
easier to implement and more accurate. This conclusion is corroborated 
by Prívara et al. (2011). Finally, a number of MPC relevant identification 
methods exist, which aim to minimize multi-step ahead prediction error 
in relation to the MPC optimization horizon, such as the MRI+PLS 
method introduced by Prívara, Cigler, Váňa, Oldewurtel, and Žáčceková 
(2013b). 

Parametric nonlinear models The parametric nonlinear models pro-
vide a nonlinear relation between the inputs and outputs of the model 
and have a non-monotonous increase of their uncertainty over the pre-
diction period. Artificial Neural Networks (ANN) (Hagan, Demuth, & 
Beale, 1996; Jiang & Wang, 1999; Siegelmann & Sontag, 1995) are 
probably the most renowned models of this type. Some building 
implementation examples of these models can be found in Dodier and 
Henze (2004); Huang, Chen, and Hu (2015); Kusiak and Xu (2012); 
Ruano, Crispim, Conceicao, and Lucio (2006); Tang and Wang (2001). 
Some researchers have shown that these models perform better and 
more accurately than physical models (Arendt et al., 2018a; Ruano et al., 
2006) and other forms of statistical models (Mustafaraj, Lowry, & Chen, 
2011). However, Huang, Chen, and Hu (2014) state that the application 
of ANN for model predictive control on real commercial buildings is still 
challenging because it has a complicated structure, which results in 
non-convex optimization problems that are hard to solve. The latest 
advances in convexification of neural network modeling may provide a 
remedy. The use of convex ANN in optimal control of the building HVAC 
system demonstrated a performance improvement compared with 
classical linear models (Chen, Shi, & Zhang, 2018). 

Nonparametric nonlinear models The nonparametric models, like k- 
Nearest Neighbors (kNN), Support Vector Machines (SVM), Decision 
trees (DT), and Random Forest (RF), do not make strong assumptions 
about the model structure. Therefore, these models can learn generic 
function mapping between inputs and outputs. The main drawbacks of 
these modeling approaches are the larger data requirements and the 
higher risk of overfitting. Control-oriented building models based on 
regression trees and random forests have been presented in Jain, Behl, 
and Mangharam (2017a); Jain, Smarra, and Mangharam (2017b); 
Smarra et al. (2018). 

Gaussian Processes (GP) are particularly powerful nonparametric 
stochastic models, which has been recently used to model building dy-
namics. They capture the model uncertainty directly, providing a dis-
tribution of the predictions of the model, and enable the use of prior 
knowledge in the system identification process. Moreover, a comparison 
of four data-driven methods for building energy prediction concluded 
that GP are accurate and highly flexible (Zhang, O’Neill, Dong, & 
Augenbroe, 2015). Short- and long- term building energy consumption 
forecasts using GP were investigated in Noh and Rajagopal (2013). More 
examples of GP-based models in the building modeling context can be 
found in Abdel-Aziz and Koutsoukos (2017); Ahn, Kim, Kim, Park, and 
Kim (2015); Jain, Nghiem, Morari, and Mangharam (2018); Nghiem and 
Jones (2017). 

3.3. Practical aspects of building modeling 

3.3.1. Data acquisition and processing 
Special care should be taken with data sets used for training data- 

driven models because poor data may not capture the main dynamics 
of the system. The data can be obtained from a detailed model or from 
actual measurements. The first approach is interesting for research 
purposes since different types of excitation signals can be applied at no 
cost. The drawback is that a reliable model is required. The second 
approach is more suitable for real applications. However, when using 
real measurements, the input excitations for obtaining rich training data 
are limited by the technical and operational constraints of the available 

HVAC systems. 
Design of Experiments assesses which excitations provide the most 

useful data. When the objective is to build a model suitable for control, 
the generated inputs do not need to cover the entire frequency domain, 
but rather some control-relevant selection. Therefore, the sampling time 
should be chosen based on the time constants of the building, with a 
typical range for building systems between 5min to 60min. In system 
identification of building systems, usually Pseudo Random Binary Sig-
nals (PRBS) and normal operation (business as usual) signals are used to 
generate the training data sets. The former is probably the most 
appropriate signal to provide rich data (Ljung, 1999), while the latter is 
used to avoid the extra costs of the experiments, as well as the risks of 
discomfort and the need for technical support. Case studies of building 
system identification using PRBS as input signals are (Bacher & Madsen, 
2011; Hazyuk, Ghiaus, & Penhouet, 2012; Madsen & Holst, 1995; Prí-
vara et al., 2011; Royer, Thil, Talbert, & Polit, 2014), while examples of 
cases that used normal operation are (Berthou, Stabat, Salvazet, & 
Marchio, 2014; Ferkl & Široký, 2010; Reynders et al., 2014; Verhelst, 
2012). Although a lot of system identification studies have already used 
data from normal operation, this data is usually insufficiently informa-
tive to reliably estimate a model (Prívara et al., 2013). This is because 
during normal operation only a small part of the possible HVAC range is 
used. Consequently, the other operating conditions remain unexplored 
in the data and cannot be learned. Jain et al. (2018) proposed a method 
for optimal experiment design based on maximizing information gain or 
variance with a faster learning rate than using uniform random sampling 
or PRBS. This method reduced the required training period up to 50%, 
but was tailored for black-box Gaussian Processes. 

There exist different indicators to check the quality of the obtained 
data. The most commonly used are the signal-to-noise ratio. This ratio is 
proportional to the amplitude of the response of the output to the excited 
input, and inversely proportional to the amplitude of the response to 
modeled disturbances and to measurement noise. The measurement 
length is also important and it should be at least larger than the largest 
time constant of the system. The minimum sampling time period should 
be defined by the Nyquist criterion, but in practice, a smaller sampling 
time is advised. Obviously, missing data-points should be avoided, 
although it is a common issue in building management systems. Filtering 
and re-sampling the data can not only overcome this threat, but can also 
help in the modeling process by smoothing the data to get rid of the 
measurement errors and other fast dynamics that may be blurring the 
main dynamics. 

3.3.2. Model validation 
The main purpose of the validation process is to ensure that the 

identified model is reliable not only within the training conditions, but 
also beyond. For this purpose, the data is normally divided into two sets: 
1) a training set and 2) a validation or test set. The training set is used to 
tune the parameters of the model, while the test set simulates the trained 
model to check whether it captures the real behavior of the building 
when using different data than that used in the training. 

There exist different statistical tests to validate a model. One 
example is the analysis of the residuals which are defined as the dif-
ferences between the measurements and the outputs of the model given 
as ek = yk − mk. Here, ek, yk and mk are the residual, the model output 
and the measurement at time k, respectively. These residuals should be 
white-noise in the training data to ensure that all systematic dynamics 
are captured within the model. Any correlation in the residuals would 
indicate that the model can be improved further. Another option to test 
the performance of a model are the typical t-tests for checking the sig-
nificance of the parameters, and the maximum likelihood tests for 
comparing the goodness of fit of two statistical models. 

Many statistical indicators exist, such as the n-step ahead prediction 
error, the Root Mean Square Error (RMSE), the Continuous Ranked 
Probability Score (CRPS), the Expected Error Percentage (EEP), the 
Coefficient of Variation (CV), the Mean Biased Error (MBE) or the R2 
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(also called coefficient of determination or fit). However, these in-
dicators do not provide information about the control performance of 
the model, but instead about the simulation errors. Therefore, their 
interpretation has to be taken carefully. The statistical indicator choice 
depends on the desired highlights to put forward when analyzing the 
model. The RMSE, for instance, provides a symmetric and absolute score 
for model error over a period of time facilitating the comparison of 
different models. The CRPS is used for stochastic models and is defined 
as the mean root squared value of the difference between the cumulative 
distribution function of the forecast and the cumulative distribution 
function of the observations. The CRPS in probabilistic forecasting is the 
analogous key performance indicator to the RMSE in deterministic 
forecasting. In some cases, mainly for tuning purposes, it may be 
interesting to investigate the direction of the bias of the model. In such 
cases, metrics that indicate the direction of the bias like the MBE should 
be used. Alternatively, a box-plot with the n-step ahead prediction error 
can be used. Finally, the CV, EEP and R-squared indicators show relative 
values for the evaluation of the residuals. 

3.4. Concluding remarks of building modeling 

Modeling is one of the main bottlenecks for implementing MPC in 
buildings. White-, gray- and black-box modeling are three different 
paradigms used in practice. The choice of a particular paradigm mainly 
depends on the available resources and possibly on additional re-
quirements, such as transferability between buildings and systems, high 
accuracy, smoothness (required by some optimization solvers), or reli-
ability (generalization capabilities) (Fig. 6). If detailed technical docu-
mentation and physics-based modeling expertise are available, then it 
may be preferable to follow the white-box approach, as it leads to reli-
able and interpretable models with little requirements on the sensor data 
amount and quality (Afroz et al., 2018). On the other hand, if extensive 
reliable measurement data is available, the black-box approach provides 
models which are often more accurate and easily transferable to 
different buildings and systems, reducing the implementation time 
(Afroz et al., 2018). In industry, there is a trend towards data-driven 
modeling approaches as they can be more easily automated. Finally, if 
information about the building and HVAC design is available as well as 
some historical measurements, the gray-box approach may be the most 
convenient, as it shares many features of white- and black-box para-
digms (Afroz et al., 2018). In any case, it is strongly recommended to 
carry out an exhaustive model validation to ensure good MPC 
performance. 

Table 5 shows some examples of building modeling applications for 
optimal control that have been classified by the building system size, 
real implementation, modeling paradigm, the excitation input signal in 
the training data, the training data period, the modeling tool used to 
estimate the model parameters, and the model complexity regarding the 
number of thermal zones and the number of states in the model. BaU 

stands for business as usual and refers to the standard operation of the 
building without any additional excitation. Finally, the hyphens indicate 
that the attribute does not apply to that type of model or that such 
characteristic is not specified in the reference. Notice that a more 
elaborate list of modeling tools is provided in Section 8. 

4. MPC algorithms and methods 

After building modeling and MPC problem formulation, designing 
and tuning the algorithmic implementation is the next step to take on the 
path towards real life operation of the building. This section sumarizes 
key algorithmic principles and methodologies which are being used to 
implement and solve MPC problems in practice. 

4.1. Receding horizon control 

Typically, the MPC algorithms are being implemented in closed-loop 
using the principle of receding horizon control (RHC), defined by Algo-
rithm 1. Here, the prediction horizon N keeps being shifted forward, 
with the controller implementing only the first step of the computed 
control strategy and discarding the rest, as described in Step 3. The al-
gorithm introduces feedback into the system in the first step of Algo-
rithm 1, where, at each time step, it corrects the deviations of the 
prediction from reality by updating the initial conditions of the system 
with measurements or estimates of the system parameters. 

4.2. State estimation 

Successful application of MPC relies on accurate information about 
the state variables to be used by the controller model for predictions. 
However, in most of the building control applications, measuring all 
state variables is not possible and state estimation algorithms need to be 
used as an integral part of the MPC system. By definition, the state 
estimator is an algorithm that provides an estimate of the internal states 
of a real system, from the measurements of its inputs and outputs. There 
are many distinct state estimation algorithms. The suitability and per-
formance of each depends on the type of the observed system, nature of 
the disturbances, and availability and accuracy of the prediction model. 
A comprehensive review of the different state estimators in the context 
of process control can be found in Ali, Hoang, Hussain, and Dochain 
(2015). 

The nature of the building’s dynamics allows us to use several as-
sumptions to simplify the selection and design of the appropriate state 
estimator. First, the building envelope model can be accurately 
described by the linear dynamics (9): 

xk+1 = Axk + Buk + Edk + wk, (9a)  

yk = Cxk + Duk + vk, (9b) 

Fig. 6. Summary of the often cited features of the three modeling paradigms (based on Afram and Janabi-Sharifi (2014a); Afroz et al. (2018)).  
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where xk, uk and dk are states, inputs and disturbances at the k-th time 
step, respectively. The model is subject to uncertainties, where model 
uncertainty is represented by the process noise variable wk and mea-
surement uncertainty is defined by the measurement noise vk. Second, 
the HVAC dynamics can be decoupled from the building envelope 
model. Third, the statistical properties of the measurement noise vk can 
be induced from the data, and the nature of model uncertainty described 
by the process noise wk can be induced from the model accuracy by 
verifying it with real data. Therefore, we focus only on the class of 
Bayesian estimators. They use the accurate mathematical model of the 
building and update its predictions by measurements in a feedback 
fashion with estimator gain L or by solving an online optimization 
problem. The probabilistic distributions of the process and measurement 
noise act as tuning factors, similarly to the weighting factors in the MPC 
objective function. The linear dynamics of the prediction model make 
linear Bayesian estimators the most straightforward choice. In partic-
ular, the Kalman filter (KF) family, for which, based on the nature of the 
estimator gain L, computation can come in stationary (SKF) or time- 
varying (TVKF) form. A more advanced optimization-based algorithm 
is moving horizon estimation (MHE), which is an extension of the KF 
framework capable of handling constraints over an arbitrary estimation 
horizon. When the prediction model is nonlinear, classical linear esti-
mators do not guarantee satisfactory performance. In such a case, one 
can use nonlinear estimators, most notably extended (EKF) or unscented 

(UKF) Kalman filters. 
For the complete picture, we provide here the equations for SKF as a 

most straightforward example. In general, a KF consists of two stages 
executed at every sampling instant: update and prediction. The predic-
tion stage, represented by Eq. (10b), predicts the state at the next time 
step k + 1 based on the current state and the mathematical model of the 
building. In the update stage represented by Eq. (10a), the measurement 
ym

k is used to refine the predicted state estimate from the previous time 
step by introducing feedback into the system. 

x̂k|k = x̂k|k− 1 + L

(

ym
k − ŷk|k− 1

)

(10a)  

x̂k+1|k = Ax̂k|k + Buk + Edk (10b) 

A compact overview of selected works with a focus on state esti-
mators applied to building control can be found in Table 6. For more 
technical details and performance comparison of the linear estimators 
using white-box building models, we refer the reader to Cupeiro, 
Drgoňa, Abdollahpouri, Picard, and Helsen (2018). 

4.3. Optimal control solution methods 

In general, optimal control problems (OCP) are traditionally solved 
via numerical methods which can be classified into three categories. For 

Table 5 
Sample of building modeling applications for optimal control categorized by building size, real implementation, modeling paradigm, modeling tool, input data, 
training period, number of zones and number of states.  

Ref. Building 
size [m2] 

Real 
impl. 

Modeling 
paradigm 

Modeling tool Input 
data 

Training 
period [days] 

#Zones #States 

May-Ostendorp, Henze, Corbin, 
Rajagopalan, and Felsmann 
(2011) 

1750 – White EnergyPlus (Crawley et al., 2001) – – 11 – 

Corbin et al. (2012) 46,320 – White EnergyPlus (Crawley et al., 2001) – – 15 – 
Drgoňa et al. (2020) 3760 – White Modelica Lin. (Picard et al., 2015) – – 12 700 
Picard and Helsen (2018) 10,135 – White Modelica Lin. (Picard et al., 2015) – – 10–20 941 
Jorissen and Helsen (2019) 150 – White Modelica (Baetens et al., 2015; Wetter 

et al., 2014) 
– – 9 330 

Jorissen et al. (2018b) 2232 – White Modelica (Baetens et al., 2015; Wetter 
et al., 2014) 

– – 27 1262 

Jorissen (2018) 10,000 – White Modelica (Baetens et al., 2015; Wetter 
et al., 2014) 

– – 32 1151 

Li et al. (2015) 6982 – White TRNSYS (Beckman et al., 1994) – – 10 – 
Bengea et al. (2011) – – Gray RLS MATLAB (Jiménez et al., 2008) Monte- 

Carlo 
2 5 15 

Sourbron et al. (2013b) 24 – Gray TRNSYS (Beckman et al., 1994) Step, 
BaUa 

4 1 2–4 

Bacher and Madsen (2011) 120 – Gray CTSM-R (Kristensen et al., 2004a) PRBS 6 1 2–4 
Reynders et al. (2014) 136 – Gray CTSM-R (Kristensen et al., 2004a) BaUa 7–28 1 3–5 
Madsen and Holst (1995) 60 – Gray CTSM-R (Kristensen et al., 2004a) PRBS 4 1 2 
De Coninck and Helsen (2016) 960 • Gray Modelica (Baetens et al., 2015), GB tbx ( 

De Coninck et al., 2016) 
BaU 18 1 4 

Arroyo, van der Heijde, Spiessens, 
and Helsen (2018) 

109 – Gray Modelica (Wetter et al., 2014), GB tbx (De 
Coninck et al., 2016) 

BaUa 14 9 23 

Blum and Wetter (2017) 37 – Gray Modelica (Wetter et al., 2014), MPCpy ( 
Blum & Wetter, 2017) 

BaUa 3 3 10 

Blum et al. (2019b) 48 – Gray Modelica (Wetter et al., 2014), MPCpy ( 
Blum & Wetter, 2017), ModestPy (Arendt 
et al., 2018b) 

BaUa 1–21 1 1–4 

Blum et al. (2016) 4982 – Gray MATLAB (The MathWorks, 2000) Pulsesa 5 18 72 
Li et al. (2015) 6982 • Black MATLAB (The MathWorks, 2000) BaUa 2 10  
Hilliard, Swan, Kavgic, Qin, and 

Lingras (2016) 
27,000 • Black Rand forest R (Liaw & Wiener, 2001) BaUa 6570 32 – 

Hilliard, Swan, and Qin (2017) 10,000 • Black Rand forest R (Liaw & Wiener, 2001) Pulses, 
BaUa 

– 40 – 

Ma, Qin, and Salsbury (2014) – • Black MATLAB (The MathWorks, 2000) PRBSa 9 5 – 
Royer et al. (2014) 515 – Black MATLAB (The MathWorks, 2000) PRBSa 24 5 – 
Kusiak and Xu (2012) – • Black Neural network – 22 4 – 
Mustafaraj et al. (2011) 260 – Black MATLAB (The MathWorks, 2000) BaU 5 1 – 
Smarra et al. (2018) 210 – Black Rand forest MATLAB (The MathWorks, 

2000) 
BaU 46 4 –  

a Simulation model used to generate training data. 
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more details, see (Binder et al., 2001; Kelly, 2017; Rao, 2019): Direct 
methods These approaches are based on the translation of the OCP (1) to 
the corresponding optimization problem (OP) and solution via optimi-
zation algorithms. Their efficiency and versatility make direct methods 
most popular for the solution of the OCP in practice today. They are 
discussed into more detail in Section 4.4. Indirect methods These ap-
proaches are based on the calculus of variations and Pontryagin’s 
maximum (minimum) principle. Here, the OCP (1) is reformulated as a 
boundary value problem and the optimal solution is obtained by maxi-
mization (minimization) of the control Hamiltonian, which is the 
function incorporating the stage cost and costate equations. This prob-
lem can be solved by several types of numerical methods, namely, 
gradient-based, multiple shooting and collocation methods. Indirect 
methods carry, however, several practical drawbacks: difficult formu-
lation of the problem in a numerically suitable way, problems with 
handling the active constraints, the need for an accurate initial guess, 
and difficulties with including changes in the problem formulation, such 
as re-parameterization of the constraints. Dynamic programming (DP) 
methods These approaches provide a globally optimal control policy via 
recursive solution of the Hamilton-Jacobi-Bellman (HJB) equations as a 
single step optimization problem. The main disadvantage of this 
approach is the so-called curse of dimensionality, which restricts the so-
lutions to very small state dimensions. However, this disadvantage is 
reduced with the concept of approximate dynamic programming (ADP), 
which is also known as reinforcement learning (RL) in the machine 
learning community. These algorithms are based on simple principles of 
reward and punishment to facilitate the learning of approximate control 
policies and/or value functions by interacting with the controlled sys-
tem. Advances in RL research in recent years may provide an interesting 
framework for solution of the building climate control tasks (Liu & 
Henze, 2007). 

Recently, there has been given a substantial research effort into new 
optimal control (OC) solution methods emerging from various fields. To 
give the reader a broad overview of the complexity and various possi-
bilities in solving OCP, we refer to Fig. 7, which captures an approximate 
taxonomy of the classical and alternative OC solution methods relevant 
for the field of building control and MPC in general. 

Due to the before-mentioned claims on the dominance of direct 
methods in today’s practice, the scope of this paper will focus on direct 
methods only. Further, in Section 5, we define basic MPC problem 
classes which differ in the type of the resulting OP, and in Section 6, we 
define thee solution paradigms based on direct methods. 

4.4. Direct methods 

Direct methods are based on translation of the OCP into an OP and 
obtain its solution via numeric optimization methods. In general, there 
are two distinct strategies for the translation (Binder et al., 2001): 

Sequential simulation and optimization: In every time step, the 
model equations (1b) are solved via numerical integration for the 
current control variables. 
Simultaneous simulation and optimization: The model equations 
(1b) are represented in the OP as equality constraints that can be 

violated during the optimization process and need to be satisfied at 
the solution. 

The particular methods are: Single shooting This method is also called 
dense formulation, or state condensing method. It is a sequential approach, 
which solves a boundary value problem by reducing it to the solution of 
an initial value problem. It ’shoots’ the candidate trajectories in 
different directions until it finds the one which satisfies the boundary 
conditions. The OCP is rewritten into a smaller, but denser OP form, 
eliminating the states from the vector of optimization variables. This 
approach is recommended for systems with computationally cheap nu-
merical integration, such as linear systems. The underlying principle of 
this strategy is illustrated in Fig. 8a. Multiple shooting This method is also 
called sparse formulation. It is a hybrid method because it divides the 
solution interval into smaller intervals, for each of which an initial value 
problem is being solved with additional conditions that match the so-
lution on the whole interval. In this formulation, each input uk and each 
state xk are considered as optimization variables, forming a large, but 
sparse OP form. The efficiency of many advanced optimization solvers 
tailored to solve OCP is based on exploiting the sparsity of the problem. 
This approach is usually faster than single shooting for systems with 
nonlinear dynamics. The underlying principle of this strategy is illus-
trated in Fig. 8b. Collocation This method is a simultaneous approach, 
which selects a finite-dimensional space of candidate solutions and set of 
collocation points in the parametric domain, and chooses the solution 
which satisfies the given equations at these collocation points. In this 
formulation, the set of optimization variables consists of all inputs uk, 
states xk, and collocation points xc

k,j, where index j corresponds to the j-th 
collocation point for each state xk. Therefore, the resulting OP is even 
larger, but also sparser, than in multiple shooting approach. Collocation 
may bring improved speed and performance for systems with highly 
nonlinear dynamics. The underlying principle of this strategy is illus-
trated in Fig. 8c. 

5. MPC problem classes 

In this section, we recall the most notable MPC problem classes 
which differ in the type and structure of the corresponding optimization 
problem to be solved via direct methods. 

5.1. Linear MPC 

We speak about linear MPC (LMPC) when the objective function (1a) 
is either linear or quadratic and the prediction model (1b) is linear as 
given by Eq. (9). Then, the OCP (1) can be translated to a Linear Pro-
gramming (LP) or Quadratic Programming (QP) problem, depending on 
whether the objective function is linear or quadratic. The main advan-
tage of linear systems is that they can be integrated in a straightforward 
manner via dense formulation by recursive substitution of consecutive 
state variables. The complexity of such dense LP becomes ℴ(N3n3

u), with 
N the control horizon, and nu the number of inputs. Usually, because of a 
large number of states, the condensing method is appropriate for linear 
building control applications. On the other hand, the computation cost 
of sparse LP is ℴ(N3(nx + nu)

3
), where nx is the number of states (Frison 

1. At time t, measure, estimate, or forecast the plant’s parameters ξ, i.e. states x̂(t), references r(t), . . . , r(t + (N − 1)Ts) and distur-
bances d(t), . . . , d(t + (N − 1)Ts).

2. Compute the optimal sequence of control inputs U∗Nc(ξ) = {u∗0, . . . , u∗Nc )} by solving the problem (1).
3. Select only the first element of the control signals sequence, i.e., u∗(t) = u∗0.
4. Implement the selected control signal over a pre-defined time interval, called sampling time Ts.
5. Time advances to the next interval t + Ts, and the procedure is repeated from step 1 with updated parameters ξ, using values of
x̂(t + Ts), r(t + Ts), . . . , r(t + NTs) and d(t + Ts), . . . , d(t + NTs).

Algorithm 1. Receding horizon control.  
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& Jorgensen, 2013). If the solver makes use of the sparsity of the 
problem, the complexity of the problem becomes ℴ(N(nx + nu)

3
). 

Today, LMPC is a well-studied and established technology in many 
industries, with efficient online implementation scalable even to prob-
lems with hundreds of thousands of parameters and optimization vari-
ables (Muske & Rawlings, 1993). Due to this fact, and also because the 
thermal dynamics of the building envelope can be linearized with high 
accuracy (Picard, Jorissen, & Helsen, 2015b), LMPC is considered to be a 
mature technique for building climate control (Rehrl & Horn, 2011; 
Sourbron, Verhelst, & Helsen, 2013b). 

5.2. Nonlinear MPC 

Nonlinear MPC (NMPC) emerges when either the objective function 
(1a) or the prediction model (1b) is nonlinear. Then, the translation of 
the OCP (1) yields a Nonlinear Programming (NLP) problem. In general, 
for nonlinear dynamic equations, multiple shooting and direct colloca-
tion methods are numerically more efficient. This is due to the available 
solvers’ capabilities of exploiting the sparsity of the corresponding NLP. 
However, in general, nonlinearities in building models can be decoupled 
from the linear dynamics and represented by Hammerstein-Wiener 
models. These models are composed of linear dynamical equations 
representing the building envelope, and nonlinear static algebraic 
equations representing the HVAC and effects of disturbances. In this 
case, single shooting is more efficient than multiple shooting and 
collocation due to cheaper numerical integration of linear dynamic 
equations. 

NLPs can be efficiently solved even on larger scales by using algo-
rithms such as sequential quadratic programming algorithms (SQP) 
(Gill, Murray, & Saunders, 2005b), or newton-based methods (Wächter 
& Biegler, 2006). A more detailed discussion about solutions for NMPC 

can be found in Binder et al. (2001). NMPC has a large potential in the 
building sector due to more accurate predictions of nonlinear models 
(HVAC models in particular) and higher flexibility in the formulation of 
the OCP (1). Several studies and real applications of NMPC for buildings 
have already been reported (Castilla et al., 2014; Jorissen, Picard, 
Cupeiro Figueroa, Boydens, & Helsen, 2018b; Santos, Zong, Sousa, 
Mendonca, & Thavlov, 2016; Touretzky & Baldea, 2014), and we can 
expect more of them to come in the years to come. 

5.3. Hybrid MPC 

When the dynamical model of the system (1b) employs switching 
dynamics, binary or integer control variables, logic states or constraints, 
then we speak about hybrid MPC (HMPC). If the hybrid dynamic model 
is piecewise linear 

xk+1 = Aixk + Biuk + Eidk, if (xk, uk, dk) ∈ ℛi, (11)  

the corresponding optimization problem to be solved is either a Mixed- 
Integer Linear Programming (MILP) or Mixed-Integer Quadratic Pro-
gramming (MIQP) problem, depending on the objective function being 
linear or quadratic. On the other hand, when the hybrid dynamical 
model incorporates nonlinearities, we end up with an extremely difficult 
Mixed-Integer Nonlinear Programming (MINLP) problem. 

There exist three main frameworks for modeling of HMPC: 

Mixed logical dynamical (MLD) systems: This framework in-
corporates both continuous and binary variables by means of mixed- 
integer linear equalities and inequalities and auxiliary binary vari-
ables (Bemporad & Morari, 1999a). 
Big-M approach: This approach translates the hybrid model into a set 
of if-then-else conditions which are subsequently translated into 
corresponding mixed-integer equalities and inequalities by using 
auxiliary binary variables and large positive values of the constant 
parameters (Williams, 1993). 
Generalized Disjunctive Programming (GDP): This method repre-
sents discrete decisions in the continuous space via logical disjunc-
tions and uses logical propositions to denote algebraic constraints in 
the discrete space (Castro & Grossmann, 2012; Grossmann & Ruiz, 
2012). Compared to traditional MIP, the inherent logic structure in 
GDP yields tighter relaxations that are exploited by the global branch 
and bound algorithms to improve solution quality (Bhattacharya, 
Ma, & Vrabie, 2020). 

In general, Mixed-Integer Programming (MIP) problems are NP- 
complete problems and thus are hard to solve. However, there are 
several state-of-the-art optimization solvers capable of solving these 
problems even on larger scales (Bemporad, 2006). From a practical point 
of view, HMPC based on MIP optimization is a powerful tool for control 
of buildings employing discrete decision variables (e.g., shadings posi-
tions, on-off valves, etc.) (Le, Bourdais, & Gueguen, 2014), switching 
dynamics (e.g., operating modes of the heat pump) (Mayer, Killian, & 
Kozek, 2015), or for the formulation of supervisory HMPC optimizing 

Table 6 
Selective summary of state estimators applied to building control.  

Reference SKF TVKF EKF UKF MHE 

Picard et al. (2017) • – – – – 
Zong et al. (2017) • – – – – 
Cupeiro et al. (2018) • • – – •

Li, O’Neill, and Braun (2013); Li et al. 
(2015) 

– • – – – 

Chandan and Alleyne (2014) – • – – – 
O’Neill, Narayanan, and Brahme (2010) – – • – – 
Fux et al. (2014) – – • – – 
Chen, Wang, and Srebric (2015) – – • – – 
Maasoumy et al. (2013, 2014) – – • • – 
Baldi, Yuan, Endel, and Holub (2016) – – • • – 
Radecki and Hencey (2012) – – – • – 
Bonvini, Sohn, Granderson, Wetter, and 

Piette (2014) 
– – – • – 

Ferhatbegović, Zucker, and Palensky 
(2012) 

– – – • – 

Fielsch, Grunert, Stursberg, and Kummert 
(2017) 

– – – • – 

Vande Cavey et al. (2014) – – – • •

Fig. 7. Approximate taxonomy of optimal control solution methods.  

J. Drgoňa et al.                                                                                                                                                                                                                                  



Annual Reviews in Control 50 (2020) 190–232

206

the performance of relay-based thermostats (Drgoňa, Klaučo, & Kvasn-
ica, 2015). The first use of GDP in the context of building control and its 
comparison with classical MIP method was reported in (Bhattacharya 
et al., 2020). 

6. MPC problem solutions 

In this section, we recall three distinct solution paradigms based on 
direct methods which can be used to obtain solutions to the MPC prob-
lems described in the previous section. 

6.1. Implicit MPC 

In the case of implicit MPC, the optimal control sequence U*
N for a 

particular choice of parameters ξ is obtained by solving online the cor-
responding optimization problem (1). Computational complexity of 
obtaining such a sequence depends on the type of the prediction model 
(1b) and the choice of the cost function (1a), as discussed in the previous 
section. Depending on the problem type and solver used, the solution of 
such OP usually requires a relatively powerful computing platform, and 
in practice it is performed most often via desktop or industrial com-
puters. However, recent advances in dedicated solvers for fast MPC 
allow us to implement the online MPC algorithms also on embedded 
hardware with limited computing power and memory storage (Wang & 
Boyd, 2010). An overview of the most notable optimization solvers for 
each class of problems is provided in Section 8.3. 

As mentioned in Section 2.2, buildings are inherently slow dynamic 
systems, which allow sufficiently large time windows for the solution of 
a large-scale OP. Such problems are emerging from MPC formulations 
with long prediction horizons and a larger number of parameters, which 
are typical for building control applications. Hence, there is no surprise 
that most of the building MPC applications reported in a survey (Afram 
& Janabi-Sharifi, 2014b) have been implemented in an online fashion 
via implicit MPC. 

6.2. Explicit MPC 

The development of explicit MPC was driven by the motivation to 
overcome the primary drawback of implicit MPC, which is the need to 
compute the optimal control law online at every sampling instant by 
solving the corresponding OP. Instead, explicit MPC employs parametric 
programming (Bemporad, M., Dua, & Pistikopoulos, 2002; Borrelli, 2003) 
to pre-calculate the optimal control law for all admissible values of pa-
rameters ξ. Hence, the explicit representation of the optimizer is con-
structed offline as a function of the MPC parameters given as u =
fMPC(ξ). Then, the online identification of the optimal control action 
boils down to mere function evaluations for particular measurements. 
This significantly reduces computational requirements of the 

implementation. From a mathematical point of view, the problems to be 
solved in the case of linear MPC are multi-parametric linear programs 
(mpLP) or multi-parametric quadratic programs (mpQP), respectively. 

The fundamental limitation of explicit MPC solution is, however, 
that the complexity of the computed explicit control law grows expo-
nentially with the dimensionality of the parametric space imposed by 
the number of constraints of the problem, which grow with higher 
prediction horizon and number of parameters. Therefore, it can only be 
used for small-scale systems with up to 10 parameters (Mayne, 2014). 
Also, the memory storage capacity of the hardware should be large 
enough to accommodate the pre-computed explicit control law (Bem-
porad, 2006). One possible remedy to overcome this large memory 
footprint drawback is to employ the recently introduced approach of 
so-called region-free explicit MPC (Kvasnica, Takécs, Holaza, & Cairano, 
2015b). The solution complexity of this approach no longer depends on 
the number of parameters ξ, but rather on the number of optimization 
variables u, for instance up to 20. This still limits the problem complexity 
mainly with respect to the prediction horizon length and number of 
decision variables. In both cases, these restrictions are usually not a 
realistic assumption for complex building control problems with several 
thousands of parameters and hundreds of optimization variables. Thus, 
only a few applications of explicit MPC with simplified building models 
have been reported (Drgoňa et al., 2013; Parisio et al., 2014). 

6.3. Approximate MPC 

The idea behind this solution approach is to train machine learning 
(ML) models such that they mimic the behavior of MPC. This concept is 
also known as imitation learning, where MPC is acting as a teacher and 
generates the training data for an ML model. The training data are 
generated in closed-loop simulations by implicit MPC, as defined in 
Section 6.1. Then, the ML model represents an approximation of the 
MPC control law, also called control policy. 

The parametric solution of problem (1) represents a mapping of the 
parametric space to the space of control variables, i.e. fMPC : Rnξ →Rnu . 
For this task, state-of-the-art supervised learning algorithms can be used 
to approximate MPC policies with an arbitrary type of cost functions and 
constraints. Regression algorithms can be used for problems with 
continuous control variables, while classification algorithms can be used 
for problems with discrete control variables. Consider a set of m training 
data1{(ξ(1), u(1)), …, (ξ(m), u(m))}, with ξ(i) ∈ Rnξ and u(i) ∈ Rnu generated 
by an implicit MPC approach acting as an expert teacher for an ML al-
gorithm. The objective is to devise a regression/classification function 
fΘ : Rnξ →Rnu , which predicts the values of control variables u (often 
called the response or target variable) that correspond to the parameters ξ 

Fig. 8. Visual comparison of discretization principles behind different translation methods. Actions uk (red) are discretized at each sampling interval to control the 
state trajectories xk (green). Green dots represent the values of state variables, or their initial guess in the case of multiple shooting and collocation, while blue dots 
correspond to collocation points. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 

1 Here, ξ(i) ∈ Rnξ denotes the ith sample of a vector ξ. 
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(representing the feature vector) as accurately as possible. During online 
evaluation, the implicit MPC described in Section 6.1 is replaced by an 
approximate control policy u = fΘ(ξ). 

The advantage over implicit MPC is that the solution of the optimi-
zation is replaced by a computationally cheap function evaluation 
similar to the case of explicit MPC. The main advantage over the explicit 
MPC approach, however, is that the ML approach is not limited to lower- 
dimensional parametric spaces, which allows for construction of the 
approximated explicit control laws with a low memory footprint for 
large-scale problems with many parameters. The drawback of the ML 
approach is that the control policy is suboptimal with respect to the 
solution of the MPC problem (1), and that a larger amount of informa-
tive training data is needed to learn well-performing control policies. 
Additionally, in a standard imitation learning setup, the learned 
controller does not provide any guarantees on stability and constraints 
handling. 

Generic approaches dealing with imitation learning of MPC control 
laws have been recently proposed in Chen, Wang, Atanasov, Kumar, and 
Morari (2019b); Hertneck, Köhler, Trimpe, and Allgöwer (2018); Lucia, 
Navarro, Karg, Sarnago, and Lucía (2018); Maddalena, Moraes, Wal-
trich, and Jones (2019); Zhang, Bujarbaruah, and Borrelli (2019). One of 
the first attempts to generate MPC laws for building control problems in 
the form of look-up tables was introduced by Coffey (2013). Other re-
searchers used classification algorithms for extracting decision rules 
from hybrid MPC closed-loop behavior (Domahidi et al., 2014; Le, 
Bourdais, & Guéguen, 2014b; May-Ostendorp, Henze, Corbin, Rajago-
palan, & Felsmann, 2011b). Approaches for the more challenging task of 
approximating the continuous control laws are also available. For 
example, they are based on a piecewise linear mixing architecture 
(Baldi, Michailidis, Ravanis, & Kosmatopoulos, 2015), regression trees 
with piecewise linear approximations (Klaučo, Drgoňa, Kvasnica, & Di 
Cairano, 2014), nonlinear regression (Žáčeková et al., 2015), or deep 
learning models (Drgoňa et al., 2018). 

7. Dealing with uncertainties in MPC 

The real-world implementation of the model-based control strategies 
suffers from the plant-model mismatch and inaccurate or corrupted 
measurements. This section aims to present an overview of methods 
used to mitigage the effect of uncertainties on the performance and 
safety indicators of MPC, such as constraints handling and stability 
guarantees. In general, we face two classes of uncertainties modeled by 
following parameters: 

Parametric uncertainty: q ∈ Rnq originates directly in neglected dy-
namics of the plant, so-called plant-model mismatch. 
Non-parametric uncertainty: also called additive is caused by 
external disturbances, in particular measurement noise vk ∈ Rny , and 
process noise wk ∈ Rnx . 

Lets consider following uncertain linear system: 

xk+1 = A(q)xk + B(q)uk + E(q)dk + wk, (12a)  

yk = C(q)xk + D(q)uk + vk. (12b) 

From the building perspective, the most common parametric un-
certainties arise from the modeling errors caused by unknown parame-
ters, inaccurate equations, or components not working according to 
specifications. Most common non-parametric uncertainties are associ-
ated with measurements and predictions of ambient temperature, solar 
irradiation, temperature sensors inaccuracy, or by a limited number of 
sensors, and unmeasured disturbances, such as windows opening. In 
principle, implementation of MPC in RHC approach implicitly reduces 
the plant-model mismatch due to the presence of feedback. However, for 
higher degrees of uncertainties, it is often not sufficient by itself and 
more advanced techniques need to be adopted to ensure the desired 

control performance. 

7.1. Offset-free MPC 

The purpose of this popular technique is to compensate the effect of 
uncertainties via prediction model augmentation by extra states p rep-
resenting unmeasured disturbances (Muske & Badgwell, 2002). These 
disturbances p are estimated by Kalman Filters or moving horizon esti-
mation (MHE), and their effect is subsequently compensated by the MPC 
via predictions. One extra state with a constant dynamic is added per 
each output or state of the prediction model (Pannocchia & Rawlings, 
2003). This approach is also called active disturbance rejection control 
and allows us to consider a simpler controller model, because the 
modeling error is compensated for in real time (Picard et al., 2017). For 
a linear system, the disturbance augmented prediction model repre-
sented by matrices Ã, B̃, Ẽ, C̃, D̃ is given as: 
[

x̂k+1

p̂k+1

]

⏟̅̅̅⏞⏞̅̅̅⏟

x̃k+1
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[
A0

0I

]

⏟̅̅⏞⏞̅̅⏟

Ã

[
x̂k

p̂k

]
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x̃k

+

[
B

0

]

⏟̅⏞⏞̅⏟
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uk +

[
E

0

]

⏟̅⏞⏞̅⏟

Ẽ

dk,
(13a)  

ŷk = [ CF ]
⏟̅⏞⏞̅⏟

C̃

[
x̂k
p̂k

]

+

[
D

0

]

⏟̅⏞⏞̅⏟

D̃

uk. (13b)  

where the output disturbance matrix F was chosen as a full column rank 
identity matrix and all other matrices are the same as in Eq. 9. 

Variants of OSF-MPC A linear offset-free MPC (OSF-MPC) for refer-
ence tracking formulation was studied in Maeder, Borrelli, and Morari 
(2009). A comprehensive overview of OSF-MPC for the linear and 
nonlinear discrete-time system together with economic MPC formula-
tion was presented in Pannocchia, Gabiccini, and Artoni (2015). A 
disturbance modeling and estimator design were systematically studied 
for different formulations of state-space process models in Tatjewski 
(2011). The design and tuning of OSF-MPC based on the black-box ARX 
model was discussed in Huusom, Poulsen, Jørgensen, and Jørgensen 
(2010). Authors in Huang, Biegler, and Patwardhan (2010b) presented 
an approach for reduction of the computational burden associated with 
the online computation of nonlinear OSF-MPC with MHE. 

OSF-MPC for Buildings In the context of building control, the OSF- 
MPC formulation for a white-box heat pump model developed in Mod-
elica was given (Wallace, Mhaskar, House, & Salsbury, 2014). A 
multi-zone heat pump model developed in Modelica was augmented 
with a disturbance offset of the measured outputs for the design of 
centralized linear OSF-MPC (Krupa et al., 2019). A simulation study of 
an OSF-MPC for energy-efficient operation of the hotel’s central chiller 
plant in a tropical climate was presented in Lara, Molina, Yanes, and 
Borroto (2016). Systematic analysis with varying order of the building 
envelope model for three variations of the residential houses showed 
that state augmentation can reduce the modeling errors and improve the 
overall control performance in terms of energy use and comfort con-
straints satisfaction (Picard et al., 2017). 

7.2. Robust MPC 

In case the impact of uncertainties significantly decreases the control 
performance, or even endangers the closed-loop system stability, we 
introduce the robust MPC policy, see (Bemporad & Morari, 1999b) and 
references therein. Robust MPC strategy is also suitable if we need to 
certify the designed MPC w.r.t. the impact of the bounded uncertainties. 
As the values of uncertain parameters vary, there are various scenarios 
of the future behavior of the plant. Therefore, the crucial task of robust 
MPC is to design a control law that guarantees the closed-loop system 
stability of the plant subject to all the admissible evolution scenarios of 
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the uncertain system. As a consequence, the robust MPC strategy is 
usually conservative. This means that the robust control policy ensures 
the constraints satisfaction by creating an energy buffer (in the case of 
energy minimization) to be able to mitigate the impact of some unex-
pected disturbances. More generally, the robust MPC creates reserves for 
potentially difficult times in the future, the quantity of which is deter-
mined based on the estimates of the worst-case scenario and robust 
control design method. 

Complexity of RMPC The robust MPC assumes the impact of the 
bounded disturbance. Consider a linear state-space system in (12) 
affected by bounded uncertainty q ∈ 𝒬nq , where 𝒬nq ⊂Rnq is the nq- 
dimensional set of uncertain parameters. Consider constraints given by 
(1f), where 𝒰, 𝒳 are polytopes including origin in their strict interior. 
Then, the closed-loop system is robustly stable if and only if all the 
vertices of the constraints parametrized by uncertainty q are simulta-
neously stable. In other words, although the uncertainty set 𝒬 includes 
an infinite number of a possible realization of q, the system is stable 
within all constraints on the feasible region under bounded uncertainty 
q by checking 2nq the system vertices. Total number of uncertain system 
vertices 2nq originates in the enumeration of hyper-box vertices defined 
in nq− dimensional space, e.g., see (Kothare, Balakrishnan, & Morari, 
1996). The main drawback is that the number of investigated vertices 
increases exponentially with a prediction horizon N, i.e., 2nq × N. The 
complexity is high because the controller evaluates all scenarios w.r.t. 
all combinations of uncertain parameters. Therefore, the dominant term 
of the complexity evaluation is determined by the number of uncertain 
parameters nq. 

Min-max RMPC In general, robust optimal values of the manipulated 
variables are computed either (i) directly as a sequence of the control 
actions, or (ii) by designing the linear/affine state-feedback control laws, 
see (Langson, Chryssochoos, Raković, & Mayne, 2004). Various ap-
proaches are considered to keep the optimization problem tractable, 
mostly considering the worst-case, i.e., so-called MIN-MAX optimization 
(Campo & Morari, 1987). In this approach, only the worst-case scenario 
is evaluated and used for the robust controller design. 

LMI-based RMPC Another popular approach in tackling the expo-
nential complexity is based on linear matrix inequalities (LMIs), see 
(Boyd, El Ghaoui, Feron, & Balakrishnan, 1994). The advantage of LMIs 
lies in the possibility of transforming non-convex optimization problem 
into the convex form. The original problem could also have infinity 
many decision variables, but introducing LMIs enables to transform it 
into a tractable optimization problem with modest complexity. The idea 
of LMIs is to optimize the control performance by minimizing the ei-
genvalues of the matrices. For instance, the aim is to optimize the tra-
jectories of the controlled variables, e.g., zone temperatures, subject to 
the influence of uncertain parameters. The solution of the optimization 
problem shapes the set of admissible values of the controlled variables, i. 
e., defines their limit values. In the case of LMIs, the resulting optimal set 
has the shape of ellipsoid ε and contains the setpoint values in its center. 
The volume of this set is minimized in each control step to keep the 
controlled variables closer to the setpoint value. This strategy is pio-
neered by Kothare et al. (1996) and refined by many later works, see 
Oravec, Pakšiová, Bakošová, and Fikar (2017); Zhang, Wang, and Wang 
(2014) and references therein. 

SDP in RMPC From a technical point of view, the problem is trans-
formed into the form of semidefinite programming (SDP) (Vandenberghe 
& Boyd, 1996) that has a convex (usually linear) objective function and 
the constraints have the form of LMIs. For the class of SDP problems, 
various tailored solvers are available, for instance, SeDuMi, MOSEK, to 
list some, while a more extensive list is provided in Table 13. The online 
computational complexity of SDPs can be further reduced by replacing 
them by QPs w.r.t. the construction of the maximal robust positive 
invariant sets (Blanchini, 1999), forward and backward reachable sets 
(Borrelli, Bemporad, & Morari, 2017). Once the system state enters the 
invariant set, it is trapped inside this set also in the future. As a conse-
quence, the states will not diverge into infinity/instability. For instance, 

life sentence in a prison is an invariant set. Analogously, the reachable 
sets limit the future behavior of the states. In control theory, the 
reachability for a dynamical system means that a certain state is 
reachable from a given initial state within a given cost threshold (Allen, 
Clark, Starek, & Pavone, 2014). We can think of it as a formal reality 
check, answering questions of a type: ”Can we reach the thermal comfort 
zone from a given room temperature within an hour by using a given 
amount of energy?”. Therefore, these properties are crucial tools to 
guarantee/certify the closed-loop system stability and performance. 

Explicit and tube-based RMPC The explicit solution of the robust MPC 
problem was proposed in Kvasnica, Takács, Holaza, and Ingole (2015). 
However, from a computational viewpoint, it is limited by the modest 
complexity of the optimization problem, i.e., a number of constraints. 
So-called tube-based robust MPC addresses the problem of the conser-
vatives minimization of robust MPC policy by reducing the exponential 
evolution of the predicted states, see pioneer work (Langson et al., 
2004), or more recent papers (Yadbantung & Bumroongsri, 2018; Zei-
linger, Raimondo, Domahidi, Morari, & Jones, 2014), and references 
therein. The “tube” refers to the shape of the bounded set of admissible 
evolutions of the controlled variable. 

RMPC for buildings The detail analysis of the sources of the uncertain 
parameters and the origins of the imperfect models in building energy 
assessment is provided in Tian et al. (2018). From building control 
perspective, the robust MPC based on offline precomputed LMIs for 
temperature control of variable-air-volume air-handling units was 
designed in Huang, Wang, and Xu (2010a), Xu, Wang, and Huang 
(2010). Simulation results show robust control performance and con-
straints satisfaction. A robust MPC framework based on the input 
disturbance feedback for building HVAC systems was proposed in 
Maasoumy, Razmara, Shahbakhti, and Vincentelli (2014); Maasoumy 
and Sangiovanni-Vincentelli (2012). A novel robust adaptive MPC 
strategy reducing the conservativeness of the uncertainty handling was 
presented in Tanaskovic, Sturzenegger, Smith, and Morari (2017). The 
simulation results show improved control performance in contrast to 
non-robust adaptive MPC. in Antonov and Helsen (2016), robustness 
analysis of the designed MPC was performed. Satisfaction of the 
robustness conditions subject to the uncertain prediction of the system 
states was investigated a posteriori to prevent evaluation of computa-
tionally demanding robust MPC design procedure. The classification of 
various Robust MPC approaches to building control is given in Table 7. 

7.3. Stochastic MPC 

Stochastic MPC (SMPC) is a framework for systems affected by 
probabilistic uncertainty. A key feature of SMPC are chance constraints 
(CC), which enable a systematic trade-off between control performance 
and probability of constraints violations (Heirung, Paulson, OĹeary, & 
Mesbah, 2018). Chance constraints, for example on state variables, are 
given in the form: 

Pr(xk ∈ 𝒳) ≥ 1 − α, k ∈ NN− 1
0 (14)  

where Pr(xk ∈ 𝒳) denotes the probability of satisfaction of the constraint 
xk ∈ 𝒳 , and 1 − α specifies the value of that probability for α ∈ [0, 1]. 
Unfortunately, these types of constraints are in general non-convex and 
extremely computationally demanding for optimization. Hence, for any 
practical implementation of SMPC, a computationally tractable refor-
mulation of CC needs to be derived. For this task, there are several ap-
proaches which are based on solving convex realizations of chance 
constrained optimization problems. 

An overview of linear SMPC with CC classifying alternative ap-
proaches in terms of the system model, the objective function, the 
meaning and management of the chance constraints, and their feasibility 
and convergence properties was given in Farina, Giulioni, and Scattolini 
(2016a). The connection to stochastic dynamic programming as well as 
Bayesian estimation of SMPC problem in the dual control paradigm was 
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reviewed (Mesbah, 2018). Authors in Lorenzen, Müller, and Allgöwer 
(2017d) provide assumptions that are sufficient to establish closed-loop 
stability for various approximations of CC used in SMPC methods. For 
the purposes of this paper, we classify the alternative SMPC methods 
into three principal groups based on Mesbah (2016), namely 
scenario-based approaches, chance constraints approximations, and 
disturbance feedback control law parametrizations. The conceptual 
difference of the latter two approaches compared to scenario approaches 
is that no samples need to be generated. Instead, some prior knowledge 
of the system or the past realization of the uncertainties is exploited to 
derive the accurate approximations of chance constraints. 

Scenario-based approaches Sampling-based techniques replace the CC 
with a finite number of deterministic constraints generated by the 
various realizations of the stochastic variables. Sampling density is 
chosen as a trade-off between computational demands and violation 
probability. A larger number of samples decreases the violations but 
usually leads to increased computational burden (Zhang, Schildbach, 
Sturzenegger, & Morari, 2013). Another concern of SMPC is safety in 
terms of closed-loop stability and constraint handling capabilities. Sto-
chastic stability and recursive feasibility can be enforced through linear 
matrix inequality (LMI) for linear problems (Bernardini & Bemporad, 
2009). An alternative approach uses an offline sampling of probabilistic 
constraints realizations to guarantee recursive feasibility and asymptotic 
stability of linear SMPC (Lorenzen, Allgöwer, Dabbene, & Tempo, 
2015). Additionally, it has been shown that bounds on closed-loop 
constraint violations can be provided for linear SMPC formulations 
(Schildbach, Fagiano, Frei, & Morari, 2014). Modern approaches 
involve machine learning methods in the design of SMPC, for instance, 
using Gaussian processes GP (Bradford, Imsland, Zhang, & del Rio 
Chanona, 2019), or Support Vector Clustering (SVC) for learning an 
uncertainty set directly from available data (Shang & You, 2019). 

Chance constraints approximations Sometimes also referred to as sto-
chastic tube approaches, these approximations are based on replacing 
CC with deterministic constraints by tightly bounding the disturbances. 
A convexity of chance-constrained SMPC for linear systems was studied 
in Cinquemani, Agarwal, Chatterjee, and Lygeros (2011). An extension 
of CC-based SMPC to nonlinear dynamics was presented in Xie, Li, and 
Wozny (2007). Of the latest approaches, CC defined as a discounted sum 
of violation probabilities on an infinite horizon guarantees the recursive 
feasibility without an assumption of boundedness of the disturbance 
(Yan, Goulart, & Cannon, 2018). Authors in Lorenzen, Dabbene, Tempo, 
and Allgöwer (2017c) propose a constraint tightening to 
non-conservatively guarantee recursive feasibility and stability of 
CC-based SMPC. 

Control law parametrizations Set of techniques directly mapping the 
influence of the disturbances onto control actions, for instance by 
expressing the feedback control law as an affine function of the past 
disturbances. Authors in Oldewurtel, Jones, and Morari (2008) pre-
sented a tractable approximation of CC based on affine disturbance 
feedback for linear systems. An alternative approach with affine 
parametrization of the control law capable of handling possibly un-
bounded stochastic disturbances via solving convex second-order cone 
program (SOCP) was given in Paulson, Buehler, Braatz, and Mesbah 
(2017). 

SMPC for buildings Table 8 summarizes numerous applications of 
SMPC in the building control context and classifies them based on the 
principal method used. Please note that the domain of SMPC is far more 
complex and used methods are more numerous and branched as those 
presented here. For more detailed overviews and fundamentals on SMPC 
we refer the interested reader to the following publications (Farina, 
Giulioni, & Scattolini, 2016b; Heirung et al., 2018; Mayne, 2016; Mes-
bah, 2016). 

7.4. Adaptive MPC 

The essential idea of adaptive control is online update of the 

controller or the prediction model parameters, such that the systems 
with time-varying dynamics can be handled using the adaptive strategy, 
see (Åstrom & Wittenmark, 2008) and references therein. On the other 
hand, standard receding-horizon MPC addresses real-time computation 
of the optimal control actions subject to the fixed structure and pa-
rameters of the system model. The control law itself is static, but the 
control actions are parametrized by system states, references, and dis-
turbances. Adaptive MPC merges the benefits of both, i.e., introduces the 
model updates in the context of MPC. The uncertainties are then cor-
rected not only via feedback of the control law parameters, but also with 
updates of the model parameters. The parameters updates are typically 
obtained from autoregressive models, recursive least squares (RLS), 
Kalman Filters, or other maximum likelihood parameter estimation al-
gorithms. Adaptive model updates allow the MPC to potentially cope 
with time-varying disturbances and correct plant-model mismatch over 
longer prediction horizon, as opposed to static disturbance correction 
terms of the offset-free MPC. 

Challenges and approaches Except for the closed-loop system stability 
and recursive feasibility, the crucial challenges lie in (i) handling MIMO 
systems (Maniar, Shah, Fisher, & Muthas, 1997); (ii) design control 
action subject to constraints (Tanaskovic, F., Smith, & Morari, 2014); 
and (iii) considering the impact of the uncertain parameters (Lorenzen, 
Allgöwer, & Cannon, 2017; Tanaskovic et al., 2017). A compact over-
view of adaptive MPC challenges was given in Kim (2010). As pointed 
out in Qin and Badgwell (2003), only a few adaptive MPC algorithms 
have been used in practice, despite the strong market incentive for a 
self-tuning MPC controller. Moreover, due to the above-mentioned 
challenges, this status quo is likely to be maintained in the near future. 

Adaptive MPC remains an active area of research, and it is out of the 
scope of this paper to provide a complete survey and classification of 
different approaches. Instead, we mention only a few occurring themes. 
For increased robustness, an adaptive MPC is often combined with sto-
chastic and robust MPC principles such as set membership identification 
(Adetola, Guay, 2011; DeHaan, Adetola, & Guay, 2007; Fagiano, 
Schildbach, Tanaskovic, & Morari, 2015; Lorenzen, Allgöwer, & Can-
non, 2017b). An adaptive strategy based on multiple linear models was 
introduced in Dougherty and Cooper (2003). A novel approach of dual 
adaptive MPC reformulates the original nonlinear deterministic problem 
into the tractable problem of convex optimization (Heirung, Ydstie, & 
Foss, 2017; Kumar, Heirung, Patwardhan, & Foss, 2015). The literature 
on simultaneous state and parameter estimation is complimentarily 
focused on aspects such as estimation error, and signal excitation 
(Kamalapurkar, 2017; Rangegowda, Valluru, Patwardhan, & Mukho-
padhyay, 2018). In recent years, the principles of adaptive MPC are 
being revised and combined with various machine learning-based 
methods and are often labeled as learning-based MPC, which is 
covered separately in the following section. 

Adaptive MPC for buildings Adaptive MPC of the HVAC system based 
on self-adapting building models was investigated in Herzog, Atabay, 
Jungwirth, and Mikulovic (2013) using simulation. The self-adaptive 
model for buildings enabling correction of the prediction errors of 
pre-defined models using a dynamic Kalman filter-bank was proposed in 
Killian, Leitner, Goldgruber, and Kozek (2017). Robust adaptive MPC for 
building climate control was proposed in Tanaskovic et al. (2017), 
where the uncertainty set was recursively updated based on the system 
identification procedure. Authors in Lauro, Longobardi, and Panzieri 
(2014) studied an adaptive distributed MPC scheme for multi-zone 
building temperature control and its comparison with a decentralized 
approach. Adaptive MPC based on multiple linear regression for the 
control of a low-temperature thermo-active building system was 
designed in Schmelas, Feldmann, and Bollin (2017). A self-adaptive 
MPC based on EKF improved the model prediction accuracy for a pas-
sive house (Fux, Ashouri, Benz, & Guzzella, 2014). An adaptive MPC 
mechanism proposing recursive estimation and updating approach for 
electronic expansion valves with adjustable setpoint for evaporator su-
perheat minimization was addressed in Tesfay, Alsaleem, Arunasalam, 
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and Rao (2018). An online simultaneous state and parameter estimation 
for building predictive control using extended and unscented Kalman 
Filters have been proposed in Maasoumy, Moridian, Razmara, Shah-
bakhti, and Sangiovanni-Vincentelli (2013); Maasoumy et al. (2014). 

7.5. Learning-based MPC 

In recent years the intersection of the areas of control and learning 
has been rapidly expanding with the emerging concept of learning-based 
MPC (LBMPC). However, due to the ubiquitous use, the label LBMPC has 
an ambiguous meaning. Moreover, LBMPC is an active area of research 
with rapidly emerging new concepts and applications. The most recent 
review (Hewing, Wabersich, Menner, & Zeilinger, 2020) classifies 
LBMPC approaches into three categories, (i) learning of the prediction 
model from data with uncertainty quantification, (ii) learning the 
controller design, i.e., learning the constraints and cost function terms, 
(iii) MPC for safe learning to derive safety guarantees for learning-based 
controllers. The comprehensive overview of the method is beyond the 
scope of this paper. Instead, we refer the interested reader to Hewing 
et al. (2020) and references therein. 

Uncertainty-aware LBMPC The first category of LBMPC approaches is 
the most numerous. The case of learning a static model with uncertainty 
quantification is directly related to some of the gray- and black-box 
modeling approaches, discussed in Section 3.2.3. The concept of 
LBMPC in the context of robust and safe control with data-driven models 
and online updates was first introduced by (Aswani, Gonzalez, Sastry, & 
Tomlin, 2013). The main insight of LBMPC is that performance and 
safety can be decoupled by using reachability analysis (Asarin, Bournez, 
Dang, & Maler, 2000; Rakovic, Kerrigan, Mayne, & Lygeros, 2006), 
making the approach tractable and practical. In general, LBMPC is 
considered to be a generalization of robust adaptive MPC, which is 
typically restricted to specific types of model structures and learning 
algorithms. Instead, LBMPC uses statistical learning methods to improve 
the model of the system dynamics, while using robust MPC techniques to 
ensure stability and constraints handling (Aswani, Bouffard, Zhang, & 
Tomlin, 2014). Alternative methods in this category, include, formula-
tion of robust MPC with state-dependent uncertainty for data-driven 

linear models (Soloperto, Müller, Trimpe, & Allgöwer, 2018), or an 
iterative model updates for linear systems with bounded additive un-
certainty and robust guarantees on all feasible offsets (Bujarbaruah, 
Zhang, Rosolia, & Borrelli, 2018). 

Learning-based controller design and updates Approaches falling in the 
second category are represented, e.g., by control methods updating 
time-varying dynamics, constraints, and stage cost based on closed-loop 
data for period tasks (Scianca, Rosolia, & Borrelli, 2019). An inverse 
optimization is a more challenging task dealing with an inference of 
unknown parameters of an optimization problem based on knowledge of 
its optimal solutions (Aswani, Shen, & Siddiq, 2015). In this context, 
pivotal research without performance guarantees on learning of the 
MPC parameters from available closed-loop data was recently proposed 
by differentiable MPC (Amos, Rodriguez, Sacks, Boots, & Kolter, 2018). 
It is important to mention that inverse optimal control approaches are 
closely linked with imitation learning and approximate MPC solutions 
discussed in Section 6.3. The difference is that approximate MPC deals 
with parameterizing an explicit control law based on given samples of 
closed-loop behavior of the expert controller, as opposed to finding 
parameters of a given MPC formulation matching the data. 

MPC safety certificates for learning-based control The methods in the 
third category represent new research avenues and are primarily con-
cerned with employing robust or stochastic MPC in conjunction with 
data-driven controllers for safety certificates (Muntwiler, Wabersich, 
Carron, & Zeilinger, 2019) or safe exploration (Koller, Berkenkamp, 
Turchetta, & Krause, 2018), aspects particularly important for rein-
forcement learning (RL) approaches. 

LBMPC for buildings One of the first experimental results of LBMPC 
applied to the office building in the US with significant energy savings 
was reported in Aswani et al. (2012), where learning refers to model 
updates of the gray-box hybrid system model. In the building control 
literature there is a multitude of learning-based, data-driven, 
data-enabled, or data predictive approaches representing an ambiguous 
set of methods, which primary concern is learning of the prediction 
model. Those methods are often not dealing with uncertainty quantifi-
cation in the sense of original LBMPC (Aswani et al., 2013). Hence some 
of them may not provide robust performance guarantees or uncertainty 

Table 7 
Classification of the publications reporting Robust MPC for building control.  

Reference Robust constraints 
satisfaction 

Min-Max 
approach 

LMI-based 
approach 

Offline 
optimization 

Control law 
parametrization 

Huang et al. (2010a); Xu et al. (2010) • • • • - – 
Tanaskovic et al. (2017) • – – – - – 
Ma et al. (2012b); Ma, Borrelli, Hencey, Packard, and 

Bortoff (2009) 
• – – – - – 

Maasoumy et al. (2014); Maasoumy and 
Sangiovanni-Vincentelli (2012) 

• • – – •

Yang, Wan, Chen, Ng, and Zhai (2019) • • – – •

L. Chen and Hu (2016) • • – – - – 
Antonov and Helsen (2016) – – • – - –  

Table 8 
Classification of the publications reporting SMPC for building control based on their principal methods.  

Reference Offline 
optimization 

Scenario-based 
approach 

Chance constraints 
approximation 

Control law 
parametrization 

Oldewurtel et al. (2008); Oldewurtel, Jones, Parisio, and Morari (2014);  
Oldewurtel et al. (2010) 

– – • •

Ma, Matusko, and Borrelli (2015); Ma, Vichik, and Borrelli (2012c) – – • – 
Zhang, Grammatico, Schildbach, Goulart, and Lygeros (2014); Zhang 

et al. (2013) 
– • – – 

Long, Liu, Xie, and Johansson (2014) – • – – 
Tanner and Henze (2014) – • – – 
Garifi, Baker, Touri, and Christensen (2018) – • – – 
Kumar et al. (2020) – • – – 
Drgoňa et al. (2013) • • – – 
Parisio et al. (2014) • • – –  

J. Drgoňa et al.                                                                                                                                                                                                                                  



Annual Reviews in Control 50 (2020) 190–232

211

quantification. Of those methods, authors in Jain et al. (2017b); Smarra 
et al. (2018) successfully implemented random forest and regression 
trees for optimal buildings control in different scenarios. However, they 
showed that in some cases, these models suffered from limitations due to 
overfitting. These so-called data-predictive controllers (DPC) can ach-
ieve comparable performance to MPC while avoiding the cost and effort 
associated with constructing a gray/white-box model of the building 
(Jain et al., 2017a). An experimental validation of the DPC method 
based on random forests applied to the room temperature control re-
ported significant energy savings and thermal comfort improvement 
compared to baseline rule-based controller (Bünning, Huber, Heer, 
Aboudonia, & Lygeros, 2020). Another popular approach is the use of 
gaussian process (GP) models for real-time receding horizon control 
with probabilistic guarantees on constraint satisfaction applied to 
closed-loop simulations of large-scale building models (Jain et al., 
2018). The authors showed how this approach could provide the desired 
load curtailment in the context of demand response with high confi-
dence. Data-driven MPC based on GP models of the building’s power 
demand compensating the uncertainty was presented in Nghiem and 
Jones (2017). A preliminary experimental result on the use of differ-
entiable linear MPC trained offline on the RBC data with online rein-
forcement learning-based updates was presented in Chen, Cai, and 
Bergés (2019a). 

8. Software tools for building modeling, simulation and control 

This section aims to provide an extensive overview and high-level 
comparison of tools for the modeling, simulation, and control of build-
ings in the context of MPC. The inspiration and some information were 
obtained from online directories listing available software tools for 
modeling, analysis, optimization, and simulation for buildings (EUROSI, 
2020; Berkeley Lab, 2020; Nghiem, 2011; US Department of Energy, 
2020). 

8.1. Building modeling and simulation tools 

8.1.1. Building energy simulation tools 
Building energy simulation (BES) programs are software tools that 

simulate energy, mass, and contaminant flows in buildings. This in-
cludes the interaction between the building envelope and its surround-
ings (i.e., weather, radiation heat losses, etc.), internal loads (i.e. 
occupants, lighting, equipment), and HVAC systems. A number of soft-
ware modeling tools for buildings are available, which usually consider 
detailed models of building components. Typically, these tools are built 
and used for building design purposes. However, as discussed previously 
in Section 3.2.1, these tools may also be used to implement white-box 
models for MPC. In addition, these tools are often used to develop dig-
ital twins of real buildings (also called emulators), which can be used in 
simulation case studies to assess the performance of MPC algorithms. 

BES tools can be divided into two main subgroups (Wetter et al., 
2016). First, traditional imperative languages which declare the 
sequence of commands to be executed and are usually defined in 
function-based format. In this approach, the modeling is interconnected 
with the solver with a primary purpose of building performance evalu-
ation. An advantage here is that the execution of the simulation can be 
relatively fast. However, the main disadvantage is that these programs 
are difficult to extend to support new use cases, such as modeling of 
controls, reformulation of model equations into optimal control prob-
lems or integration with electric grid simulation tools. The second group 
represents equation-based, object-oriented, declarative languages such 
as Modelica. The principal difference of this paradigm of modeling in 
contrast to the imperative paradigm is that instead of giving the 
sequence of instructions which define the way how the program should 
behave, they provide a higher-level abstraction in the form of hybrid 
differential algebraic systems of equations. These equations can then be 
encapsulated into graphical components and organized into hierarchical 

libraries in an object-oriented fashion, which makes them highly reus-
able and modular. In addition, this type of implementation allows for the 
explicit definition of state initial conditions as well as symbolic differ-
entiation for efficient numerical integration. Finally, these equations, 
and their derivatives, can be used for generation of an optimal control 
problem for MPC, or more easily be integrated with modeling tools from 
other domains. 

A compact summary of BES tools which have been used to replace 
real buildings for testing MPC algorithms using co-simulation is given in 
Table 9. Besides programming language paradigm type, the last column 
indicates whether it is possible to model the control systems with these 
tools directly. The mentioned programs, however, represent only a 
subset of all BES tools. For a more comprehensive overview of building 
and HVAC system modeling and simulation tools, we refer to (Clarke, 
2001; Hensen & Lamberts, 2019; Trcka & Hensen, 2010; Zhou, Hong, & 
Yan, 2013). More comprehensive comparisons and discussions about 
BES programs can be found in (Nageler et al., 2018; Sousa, 2012; Wetter, 
2011; Wetter et al., 2016; Wetter & Haugstetter, 2006). 

8.1.2. Co-simulation tools and interfaces 
BES programs are typically not directly suitable for design, synthesis, 

and testing of optimal controllers. To deal with this issue, middleware 
software and interface protocols were designed for making communi-
cation bridges between BES programs and control-oriented tools and 
programming languages like MATLAB or Python. Table 10 provides a 
summary of selected interface tools and standards relevant to building 
simulation and control. FMI here stands for Functional Mock-up Inter-
face, which is an interface standard for general modeling and simulation 
tools not only pertaining to buildings (Blochwitz et al., 2011). For an 
in-depth overview and comparison of co-simulation technology we refer 
to (Trcka, Hensen, & Wetter, 2009). 

8.1.3. Control-oriented building modeling tools 
Obtaining models that are accurate enough and at the same time not 

too complex for optimal control represents one of the bottlenecks which 
prevents wider adoption of MPC in practice. The main reasons are, first, 
that models generated by BES programs described in previous sections 
are often too complex for use in the subsequent optimization problems. 
Second, they compute numerical approximations to cost functions that 
are not differentiable (Polak & Wetter, 2006; Wetter & Polak, 2004). 
Third, there is a substantial shortage of user-friendly and freely available 
tools for accurate control-oriented modeling of the buildings. Luckily, in 
recent years, there has been some progress in this direction, and several 
tools have emerged to help create the models for MPC. Table 11 provides 
an overview of such tools. However, it is important to note that most of 
the tools in this list still either require substantial multi-disciplinary 
expertise or are only available as a research tool. 

Tools exist for the linearization of Modelica models (Picard, Jorissen, 
& Helsen, 2015), returning a state space formulation of the model. This 
allows for direct integration within the optimal control problem. The 
linearization methodology has proven to have a high level of accuracy. 
Moreover, Modelica models can be exported as a Functional Mockup 
Unit, which allows accessing directional derivatives as needed to solve 
optimal control problems (Blochwitz et al., 2011). Another white-box 
control-oriented modeling approach for multi-zone buildings was 
developed based on the Simspace library in Matlab/Simulink environ-
ment (Lapusan, Balan, Hancu, & Plesa, 2016). The emphasis lies on easy 
modeling with a modular framework based on a set of pre-defined 
blocks. The popularity of gray-box models extends to toolboxes for 
parameter estimation and application of the derived models into MPC. 
The Grey-Box Toolbox (De Coninck et al., 2016), for instance, allows 
parameter estimation of Modelica models using the JModelica (Mod-
elon, 2017) platform with a front end in Python. The toolbox has been 
extended for the direct application of the obtained models into MPC 
(Vande Cavey, De Coninck, & Helsen, 2014). MPCPy (Blum & Wetter, 
2017) is another toolbox using reduced order grey-box models and 
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relying on JModelica (Modelon, 2017) for both parameter estimation 
and solving MPC problems, with the parameter estimation and optimi-
zation problems automatically generated based on specification of a 
Modelica model and high-level input parameters in Python. The 
modeling environment (ME) for MPC (Zakula et al., 2014) is based on 
TRNSYS and its coupling with MATLAB to obtain a simplified inverse 
thermal response model in the form of an inverse comprehensive room 
transfer functions (iCRTF). The Building Resistance-Capacitance 
Modeling (BRCM) toolbox (Sturzenegger, Gyalistras, Semeraro, Mor-
ari, & Smith, 2014) facilitates physical modeling of buildings for MPC 
via generation of control-oriented linear RC models from EnergyPlus 
models. OpenBuild (Gorecki, Qureshi, & Jones, 2015) provides an in-
tegrated simulation environment for building control in MATLAB. Like 
BRCM, it generates the RC models from EnergyPlus. In both tools, 
co-simulation of MATLAB with EnergyPlus is built on BCVTB (Wetter & 
Haves, 2008) and MLE+ (Bernal, Behl, Nghiem, & Mangharam, 2012). 
Another Matlab toolbox BLDG (Kircher & Zhang, 2016) provides users 
with a standalone building model based on simplified PDE equations 
with a small number of parameters, along with system identification and 
parameter estimation functionality. IDENT (Jiménez, Madsen, & 
Andersen, 2008) provides a graphical user interface in MATLAB to es-
timate the RC models of building envelopes from the measurement data. 
BASBenchmarks (Cauchi & Abate, 2018) represents a modular model 
library for building automation systems covering physical components 
as well as digital control strategies. The software package LORD 
(Gutschker, 2008) performs a combination of two different methods 
alternatively for parameter estimation. One is the Downhill Simplex 
Method, and the other is a specially adopted Monte Carlo procedure. 
LORD also offers a graphical user interface for creating the RC model 
structures based on nodes and connections. CTSM-R (Kristensen, Mad-
sen, & Jørgensen, 2004a) and MoCaVa (Bohlin, 2003) feature maximum 
likelihood and maximum a posteriori estimation of stochastic grey-box 
models. The former is accessed through the programming language R, 
while the latter runs under Matlab. A comparison between MoCaVa and 
CTSM was studied in Kristensen, Madsen, and Jørgensen (2004b). It 
shows that CTSM has better performance in terms of quality of estimates 
for nonlinear systems with significant diffusion and in terms of repro-
ducibility. In particular, CTSM provides more consistent estimates of the 
diffusion term parameters. Finally, there exist more generic tools that 
can be used to calibrate simulation models that do not make any as-
sumptions regarding the model (language, paradigm) except the inter-
face. For example, ModestPy (Arendt et al., 2018b) is a parameter 
estimation Python package for FMI-compliant models, mostly used with 
gray-box models as in Arendt et al. (2018a), while GenOpt (Wetter, 
2001) is an optimization software that can be used for parameter esti-
mation in any model that can be interfaced through text files, e.g. 
EnergyPlus, TRNSYS. 

8.2. MPC design tools 

Table 12 provides an overview of the most important software tools 
which can be used or are particularly dedicated to modeling, simulation, 
evaluation, deployment and code generation of MPC controllers. Most 
advanced and widely popular tools are based on MATLAB, Modelica or 
Python languages and come with a free license. These modeling lan-
guages allow for high-level modeling of the optimization problems and 
provide an interface to a wide variety of optimization solvers in an 
automated way. This reduces the engineering burden of error-prone and 
time-consuming manual translation of the OCP (1) to the OP form 
required by a particular solver. 

OpenBuild (Gorecki et al., 2015) supports the design and simulation 
of the state observer and MPC using an RC model generated based on an 
EnergyPlus model. BRCM toolbox (Sturzenegger et al., 2014) offers the 
generation of the cost and constraint matrices for MPC based on the 
generated RC model from EnergyPlus. However, it does not provide the 
environment for simulation, tuning, and analysis of MPC. EHCM 
toolbox (Darivianakis, Georghiou, Smith, & Lygeros, 2020) is an 
extension of BRCM providing a framework for controlling the operation 
of the energy hub with multiple interconnected buildings in a cooper-
ative manner. BLDG (Kircher & Zhang, 2016) provides functionality for 
state and parameter estimation, and MPC based on the identified 
simplified RC model. BeSim (Drgoňa, 2019) provides functionality for 
fast development, tuning, and simulation of model order reduction, state 
estimation and MPC based on linearized white-box building models 
from Modelica (Picard et al., 2015) and optimization toolbox Yalmip 
(Löfberg, 2004). Modeling environment (ME) (Zakula et al., 2014) is a 
modular simulation tool for buildings that employs MPC based on 
TRNSYS for virtual building modeling and Matlab for MPC imple-
mentation. TACO (Jorissen et al., 2018a) automates the process of 
setting up an MPC from a white-box model in Modelica. The nonlinear 
MPC is formulated using the CasADi (Andersson, Gillis, Horn, Rawlings, 
& Diehl, 2018) framework and solved with the JModelica (Modelon, 
2017) optimizer. 

8.3. MPC solvers 

Today, dozens of optimization solvers are available, both commer-
cially and free, for a wide variety of problems. Tables 13 and 14 provide 
an overview of the most significant solvers suitable to solve MPC 
problems on desktop and embedded platforms, respectively. The used 
acronyms stand for Linear Programming (LP), Quadratic Programming 
(QP), Mixed-Integer Linear Programming (MILP), Mixed-Integer 
Quadratic Programming (MIQP), Mixed-Integer Nonlinear Program-
ming (MINLP), Nonlinear Programming (NLP), Second Order Cone 
Programming (SOCP), Semi Definite Programming (SDP), Multi- 
Parametric Linear Programming (mpLP), and Multi Parametric 
Quadratic Programming (mpQP), respectively. 

Progress in the solution techniques and an increase in the compu-
tational power of the desktop platforms allow us to efficiently solve 
large-scale optimization problems with up to hundreds of thousands of 
variables. In the case of embedded platforms, several tools have auto-
mated and optimized code generation features supporting different 
languages (e.g., C, C++ or Python) for rapid development and deploy-
ment of the MPC controllers in real-world applications. These embedded 
applications are, however, mostly suitable for small, fast dynamic sys-
tems, which are different from the large and slow dynamics of the 
buildings. Nevertheless, their efficiency and cheap computational power 
could be harnessed in large buildings for local control loops, or small- 
scale residential applications of MPC. 

In the case of data-driven approximate MPC, the machine learning 
models can be trained by solving a wide variety of optimization prob-
lems offline. The type of OP to be solved depends on the used models (e. 
g., neural networks, regression trees, etc.) and their specification. While 
dedicated algorithms also exist to train more complex and specific ML 

Table 9 
Summary of the selected BES programs used to emulate the buildings for testing 
MPC in co-simulation.  

BES Tool Free Equation- 
based 

Imperative Explicit 
controls 
modeling 

ESP-r (Yahiaoui, Hensen, 
& Soethout, 2003) 

• – • •

EnergyPlus (Crawley 
et al., 2001) 

• – • – 

TRNSYS (Beckman et al., 
1994) 

– – • – 

Modelica (Baetens et al., 
2015; Wetter et al., 
2014) 

• • – •
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models (Sra, Nowozin, & Wright, 2011), most of the problems in this 
domain are solved via gradient descent algorithms. However, they can 
also be solved by using general purpose solvers listed in Table 13. 

9. Practical implementation of MPC in buildings 

The ambition of this section is to provide a complete overview of the 

key components and nuances of practical implementation of MPC in 
buildings. A schematic representation of the presented framework cor-
responding to the structure of this section is given in Fig. 9. The three 
key elements are: the control configuration discussed in Section 9.1, the 
SCADA architecture presented in Section 9.2, and the communication 
infrastructure described in Section 9.3. Section 9.4 concludes the topic 
and provides experience-based practical guidelines for MPC 

Table 10 
Summary of the co-simulation tools and interface standards to bridge BES programs with other simulation platforms and control-oriented programming languages.  

Co-simulation tool or interface standard Free Interface for    

ESP-r EnergyPlus TRNSYS Modelica MATLAB Python 

BCVTB (Wetter & Haves, 2008) • • • • • • – 
MLE+ (Bernal et al., 2012) • – • – – • – 
OpenBuild (Gorecki et al., 2015) • – • – – • – 
FMI (Broman et al., 2013; Pang et al., 2016) • – • • • • •

Table 11 
Summary of selected control-oriented building modeling tools. The acronyms are explained in the text.  

Tool Free Language Paradigm   

Modelica MATLAB Python TRNSYS R White Grey Black 

Modelica Linearization (Picard et al., 2015) • • – – – – • – – 
Simscape Library (Lapusan et al., 2016) • – • – – – • – – 
ME for MPC (Zakula et al., 2014) – – • – • – – • – 
OpenBuild (Gorecki et al., 2015) • – • – – – – • – 
IDENT (Jiménez et al., 2008) • – • – – – – • – 
BRCM Toolbox (Sturzenegger et al., 2014) • – • – – – – • – 
BLDG (Kircher & Zhang, 2016) • – • – – – – • – 
BASBenchmarks (Cauchi & Abate, 2018) • – • – – – – • – 
Grey-box Toolbox (De Coninck et al., 2016) • • – • – – – • – 
MPCPy (Blum & Wetter, 2017) • • – • – – – • – 
LORD (Gutschker, 2008) • – – – – – – • – 
CTSM-R (Kristensen et al., 2004a) • – – – – • – • – 
MoCaVa (Bohlin, 2003) – – • – – – – – •

System Identification Toolbox (Ljung, 2006) – – • – – – – – •

Table 12 
Overview of the modeling software for optimization problems suitable for formulating and solving MPC problems.  

Tool Free MATLAB Python Julia Modelica C/C+ Java Tool-specific language 

Yalmip (Löfberg, 2004) • • – – – – – – 
CVX (Grant & Boyd, 2014) • • – – – – – – 
MPC Toolbox™ (Mathworks, 2020) – • – – – – – – 
MPC Tools Package (Amrit, 2008) • • – – – – – – 
Hybrid Toolbox (Bemporad, 2004) • • – – – – – – 
MPT3 (Herceg, Kvasnica, Jones, & Morari, 2013) • • – – – – – – 
NMPC Tools (Rawlings & Amrit, 2008) • • – – – – – – 
ACADO (Houska, Ferreau, & Diehl, 2011) • • – – – • – – 
ACADOS (Verschueren et al., 2019) • • • – – • – – 
CasADi (Andersson et al., 2018) • • • – – • – – 
APMonitor (Hedengren, Shishavan, Powell, & Edgar, 2014) • • • • – – – – 
HPMPC (Frison, Sørensen, Dammann, & Jørgensen, 2014) • – – – – • – – 
CVXPY (Diamond & Boyd, 2016) • – • – – – – – 
Pyomo (Hart et al., 2017) • – • – – – – – 
Picos (Sagnol & Stahlberg, 2018) • – • – – – – – 
OpenModelica (Fritzson et al., 2018) • – • – • • – – 
JModelica.org (Modelon, 2017) • – • – • • • – 
JuMP (Dunning, Huchette, & Lubin, 2017) • – – • – – – – 
AMPL (Fourer, Gay, & Kernighan, 2002) – – – – – – – •

GAMS (Rosenthal, 1988) – – – – – – – •

Building control oriented         
OpenBuild (Gorecki et al., 2015) • • – – – – – – 
BRCM toolbox (Sturzenegger et al., 2014) • • – – – – – – 
EHCM toolbox (Darivianakis, 2020) • • – – – – – – 
BLDG (Kircher & Zhang, 2016) • • – – – – – – 
BeSim (Drgoňa, 2019) • • – – • – – – 
FastSim (Arroyo et al., 2018) • – • – • – – – 
MPCPy (Blum & Wetter, 2017) • – • – • – – – 
GenOpt (Coffey et al., 2010) • – – – – – • – 
ME for MPC (Zakula et al., 2014) – • – – – – – – 
TACO (Jorissen et al., 2018a) – – – – • • – –  
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implementation in real buildings. 

9.1. Control configuration 

The following terminology is used in this section for networked 
control systems. See Fig. 10 for conceptual diagrams. 

Centralized control: a centralized agent (or controller) regulates an 
entire system. 
Decentralized control: each agent controls its own subsystem 
without communicating with neighbors. 
Distributed control: multiple agents are distributed horizontally over 
a whole system. There is no central agent. 
Hierarchical control: multiple agents are arranged in a hierarchical 
tree to control an entire system. 

Centralized MPC The centralized MPC scheme solves a plant-wise 
optimization problem in a central computer and has been the primary 
method in the building sector. However, for buildings which are 
composed of a large number of dynamic subsystems composing a com-
plex topological network, applying centralized MPC could be chal-
lenging due to increased computational complexity and reliability issues 
(Jamshidi, 1996). In this case, it is favorable to decompose a large 
centralized optimization problem into smaller multiple subproblems, 
which motivates configurations of decentralized, distributed and hier-
archical MPCs. 

Decentralized MPC In the decentralized MPC scheme, each local 
controller is designed as MPC and optimizes its own performance index 
without considering costs and dynamic influences of the others. There-
fore, overall performance could be quite poor, especially for strongly 
coupled systems, though the communication overhead is minimal 
(Rawlings & Mayne, 2009). 

Distributed MPC In the distributed MPC approach, each local 
controller which regulates its own subsystem solves a subproblem and 
communicates with others in order to improve the entire system per-
formance. The information exchange consist of predicted state or control 
inputs so that any local controller can predict better by considering in-
fluences of neighboring systems. The communication can occur only 
once at each sampling time (non-iterative algorithms), i.e. only after 
each local optimization problem is solved, or many times within the 
sampling time (iterative algorithms) (Scattolini, 2009). Iterative algo-
rithms could show better performance in terms of convergence and 
closed loop stability, but have higher communication burdens, causing 
concerns about communication delays, overloads and transmission 
package losses (Camponogara, Jia, Krogh, & Talukdar, 2002). 

In the literature of process control, the non-cooperative and coop-

erative MPCs (Rawlings & Mayne, 2009; Venkat, Rawlings, & Wright, 
2005) are the most popular distributed MPC methods. Both of them 
optimize control inputs to minimize a global index in the form of 
∑N− 1

k=0
∑S

i=1ℓi(xi
k, u

i
k) +

∑S
i=1ℓi(xi

N) where ℓi is the stage cost for the ith 
subsystem. Note that the cost function is not separable2 when control 
inputs are the only optimization variables (because of dynamic cou-
plings between subsystems), although separable with respect to the state 
and control inputs. During the optimization phase, each MPC predicts 
the state evolution considering dynamic couplings to neighbors 
assuming that input profiles received from neighbors are fixed. The key 
difference between the non-cooperative and cooperative MPCs is that 
local controllers of the cooperative MPC tend to minimize the same 
global cost function, while those of non-cooperative MPC tend to 
minimize individual cost functions, i.e. the ith MPC minimizes 
∑N− 1

k=0 ℓi(xi
k, u

i
k) + ℓi(xi

N) (Moroşan, Bourdais, Dumur, & Buisson, 2011). 
In cooperative control, the distributed optimization problems are 
equivalent to the centralized MPC problem and are solved iteratively. 
Therefore, the cooperative control guarantees global performance, such 
as constraint feasibility, convergence, optimality and closed loop sta-
bility. See (Stewart, Venkat, Rawlings, Wright, & Pannocchia, 2010) for 
detailed proofs. 

Hierarchical MPC The hierarchical control configuration is particu-
larly useful when coordination between local controllers is needed in 
order to improve overall performance, or control actions for different 
time scales need to be decided (Scattolini, 2009), e.g. an upper layer 
computes optimal temperature setpoints in an economic sense while 
lower layers focus on setpoint tracking. 

To design a coordinator (upper-level) and local MPCs (lower-level), 
the dual decomposition method (Jamshidi, 1996) or the Alternating 
Direction Method of Multipliers (ADMM) (Boyd et al., 2011) can be 
employed. Both methods solve a global optimization problem indirectly 
by solving the Lagrangian dual problem and adopt the dual ascent 
method (Bazaraa, Sherali, & Shetty, 2013). The key to decomposing the 
primal MPC problem is that coupled dynamic equations can be sepa-
rated in the Lagrangian function when the primal objective function is 
separable. If the dynamics are linear and the objective function is convex 
on a convex compact set, the dual and primal problems are equivalent 
(the strong duality theorem (Boyd & Vandenberghe, 2004)). In the hi-
erarchical control scheme, the upper-level controller represents the dual 
ascent step, and hence vertical communication between the upper and 
all lower-level controllers are necessary. For the ADMM, 

Table 13 
Overview of the most notable optimization solvers suitable to solve MPC problems on a desktop platforms.  

Solver Free LP QP MILP MIQP MINLP NLP SOCP SDP 

CPLEX (ILOG, 2007) – • • • • – – • – 
Gurobi (Gurobi Optimization, 2012) – • • • • – – • – 
MOSEK (Andersen & Andersen, 2000) – • • • • – – • •

XPRESS (Berthold, Farmer, Heinz, & Perregaard, 2018) – • • • • – – • – 
SeDuMi (Sturm, 2003) • • • – – – – • •

SDPT3 (Toh, Todd, & Tütüncü, 1999) • • • – – – – • •

CVXOPT (Andersen & Vandenberghe, 2018) • • • – – – – • •

GLPK (Makhorin, 2012) • • – • – – – – – 
IPOPT (Wächter & Biegler, 2006) • • • – – – • – – 
ALGLIB (Bochkanov, 2019) • • • – – – • – – 
Artelys Kitro (Byrd, Nocedal, & Waltz, 2006) – • • – – – • – – 
SNOPT (Gill, Murray, & Saunders, 2005a) – • • – – – • – – 
APOPT (APOPT, 2020) – • • • • • • – – 
BARON (Sahinidis, 2017) – • • • • • • – – 
Bonmin (Bonami et al., 2005) • • • • • • • – – 
WORHP (Büskens & Wassel, 2013) • • • • • • • – – 
GenOpt (Wetter, 2001) • – – – – • • – –  

2 An objective function, f(x1, ⋅⋅⋅, xS), is called separable, if f can be expressed 
as a sum of functions of the individual variables of x1, ⋅⋅⋅, xS, i.e. f(x1,⋯,xS) =
∑S

i=1fi(xi)
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communications between lower-level MPCs which represents the 
Gauss-Seidel algorithm is additionally required. Note that the 
upper-level controller is not MPC since it does not predict future 
behaviors. 

When both short-term and long-term behaviors of a system are 
concerned, a hierarchical control system can be designed so that an 
upper layer regulator acts on lower frequencies and computes a control 
action concerning a long-term effect, while lower layer controller(s) act 
on higher frequencies and are responsible for short-term behavior(s) 
(Scattolini & Colaneri, 2007). This approach is related to cascade con-
trols in which the inner and outer control loops are associated to faster 
and slow dynamics, respectively. One of the most significant advantages 
of this control approach is that it can substantially improve control 
performance under disturbances and nonlinearities associated with the 
inner loop, and that control designs can be separated when the upper 
layer works on a sufficiently low frequency range, say a factor of five or 
more in terms of inner close-loop system (Skogestad & Postlethwaite, 
2007). 

9.1.1. Review of applied MPC architectures for HVAC systems 
Centralized MPC in buildings In the building control domain, the 

majority of the theoretical work and simulation-based case studies 
consider centralized MPC architecture. However, there are not many 
truly centralized MPC solutions that have been considered for applica-
tion in practice. The main reason is non-standardized use of the 
communication protocols preventing straightforward access to the field 
layer of the SCADA architecture, which will be discussed in the 
following Section 9.2. Moreover, keeping the low-level RBC and PID 
loops intact may improve the operational robustness of the hierarchical 
MPC implementation by avoiding a single point of failure in the control 
system. Despite this fact, the paper (Jorissen et al., 2018b) presents an 
implementation strategy of centralized high-fidelity MPC for the real 
office building in Belgium. 

Decentralized MPC in buildings The design of decentralized MPC for 
thermal control of buildings based on reduced order models and state 
observers was studied in Chandan and Alleyne (2014). A methodology 
determining an appropriate decentralized architectures, which provide 
a satisfactory trade-off between control performance and robustness for 
building control was proposed in Chandan and Alleyne (2013). An 
agent-based approach for distributed monitoring and model-based 
control of an office building was presented in Davidsson and Boman 
(2005). A graph theory-based approach and consensus protocols applied 
to thermal modeling of buildings was presented in Moore, Vincent, 
Lashhab, and Liu (2011). However, all of the aforementioned decen-
tralized studies on building modeling and control remain in the simu-
lation domain. 

Distributed MPC in buildings An application of non-cooperative MPC 
can be found in Ferrarini, Mantovani, and Costanzo (2014); Moroşan, 
Bourdais, Dumur, and Buisson (2010) and those of cooperative MPC-like 
schemes3 are found in Moroşan et al. (2011); Putta, Zhu, Kim, Hu, and 
Braun (2012); Putta, Kim, Cai, Hu, and Braun (2014). For those studies, 
the objectives are to distribute multi-zone building loads to multiple 
units in an optimal way. The dynamic interactions are due to thermal 
couplings between zones through convective or conductive heat trans-
fer. More precisely, in Putta et al. (2012), the case study building has two 
coupled zones and each zone is served by a separate air handling unit 
(AHU). Two local MPCs were designed to control the individual AHUs 
targeting to reduce operating costs for the entire system. in Putta et al. 
(2014), a nine-zone building served by one AHU is considered. Ten local 
MPCs were designed, where nine of them control air flow rates of in-
dividual variable air volume boxes (VAVs) to regulate nine zone air 
temperatures. The remaining MPC optimizes the supply air temperature 
setpoint. Similarly, in Moroşan et al. (2011), four distributed MPCs were 
designed where three of them manipulate their own local electric 
heaters while the remaining one controls a central heating system in 
order to optimally reduce the electricity cost while meeting individual 
zonal heating loads. For the last two cases, the control configurations are 
not purely distributed MPC and modifications of the cooperative MPC 
were necessary since there is a global variable which influences all 
subsystems, i.e. the supply air temperature of the central heating unit, 
resulting in a different cost structure compared to that of the cooperative 
MPC. The proposed MPCs have two-level pyramid structures where the 
upper-level controller optimizes the global variable based on informa-
tion from lower-level controllers, while multiple lower-level controllers 
solve their own problems in a cooperative-MPC approach using the 
optimized global variable. 

Hierarchical MPC in buildings In the literature of the building control, 
many applications adopt traditional hierarchical control architectures as 
discussed in previous section. Examples of such applications can be 
found in Abreu, Bourdais, and Guéguen (2018); Kim and Braun (2018); 
Ma, Anderson, and Borrelli (2011). in Ma et al. (2011), a three-zone 
building served by a VAV AHU system is considered. A standard dual 
decomposition method (Jamshidi, 1996) for decomposing MPC prob-
lems was adopted to design a hierarchical control system where 
lower-level MPCs regulate individual zone air temperatures in an eco-
nomic way while the upper-level optimizer coordinates possible con-
flicts in local decisions. in Kim and Braun (2018), the hierarchical MPC 
system was designed for optimal demand response for a building served 
by multiple on-off stage HVAC units. The upper layer MPC predicts 
longer-term performance (about a day) and optimizes thermostat tem-
perature setpoints to shift building loads in response to a utility price 
signal, while the lower layer MPC predicts short-term performance 

Table 14 
Overview of the most notable optimization software tools suitable to solve MPC problems on embedded platforms.  

Solver Free Code generation LP QP mpLP/mpQP MILP/MIQP NLP 

OOQP (Gertz & Wright, 2003) • – • • – – – 
qpOASES (Ferreau, Kirches, Potschka, Bock, & Diehl, 2014) • – • • – – – 
ECOS (Domahidi, Chu, & Boyd, 2013) • – • • – – – 
CVXGEN (Mattingley & Boyd, 2012) • • • • – – – 
FiOrdOs (Ullmann, 2011) • • • • – – – 
FORCES PRO (Embotech, 2020) – • • • – – – 
Falcopt (Torrisi et al., 2017) • • • • – – •

Toolbox        
ACADO (Houska et al., 2011) • • • • – – •

Hybrid Toolbox (Bemporad, 2004) • • • • • • – 
MPT3 (Herceg et al., 2013) • • • • • • •

MPC Toolbox™ (Mathworks, 2020) – • • • • • •

3 It means that each local MPC has a shared objective function and considers 
influences of neighbors like the cooperative MPC, although decomposition 
methods and implementation details are different. 
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(about an hour) and supervises multiple units to prevent simultaneous 
unit activation during a precooling period, which could cause an un-
necessarily higher demand charge. in Abreu et al. (2018), the upper 
layer MPC optimizes the setpoint while the lower layer MPCs track the 
setpoint. Recently, studies of applying ADMM to decompose MPC or 
general optimization problems for buildings become popular and are 
found in Cai, Braun, Kim, and Hu (2016a,b); Cai, Kim, Putta, Braun, and 
Hu (2015); Gupta, Kar, Mishra, and Wen (2015); Hou, Xiao, Cai, Hu, and 
Braun (2017); Moroşan et al. (2011); Xiao, Hou, Cai, and Hu (2018). 

Concluding remarks on MPC architecture in buildings Despite a large 
number of MPC studies, distributed or hierarchical-distributed MPC 
schemes got relatively little attention from the building HVAC control 
field. This may be due to lack of practical needs of distributing 
computational loads. In other words, many MPC problems in building 
HVAC systems could be handled in a centralized way. In addition, the 
sufficient conditions for convergence, i.e. convex functions for objective 
and inequality constraints and a linear structure for equality constraints, 
make it difficult to use distributed algorithms for practical building 
controls where HVAC systems exhibit nonlinear and non-convex char-
acteristics and constitute nonlinear equality constraints. However, 

because building systems need to be integrated with renewable energy 
resources, energy storage systems and networks (electric, thermal, gas), 
and because the study of convex approximations is progressing, e.g. 
(Atam & Helsen, 2015), in the near future it is expected that there are 
more opportunities of applying distributed and/or hierarchical MPCs for 
building controls. 

9.2. SCADA architecture 

Supervisory control and data acquisition (SCADA) is a standard ar-
chitecture to define the different layers of hierarchical control systems. 
SCADA systems are widely used in various fields, such as process con-
trol, energy, and power systems operation, and have recently gained a 
lot of importance for the control and data acquisition of the so-called 
Building Automation Systems (BAS). One of the main advantages of 
using a SCADA configuration is that the different layers of control and 
communication flows can be depicted sequentially, in a much more 
structured and organized way. Another advantage is that other auto-
mated systems used in the building can be integrated into one single 
platform (i.e. HVAC, security, lighting or gas automation systems), 

Fig. 9. General framework for the MPC implementation in buildings.  

Fig. 10. Schematic of a centralized (a), hierarchical (b), distributed (c) and decentralized (d) MPC control configuration. Extension of figure given in Serale 
et al. (2018). 
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which makes the management of the whole installation more effective 
(Figueiredo & Costa, 2012). A SCADA system for building control and 
operation typically consists of four different layers (see Fig. 11): 

Supervisory layer: the highest layer of the control architecture, 
where MPC is normally executed. It also includes all clients that 
interact with the system for the purpose of top-management activ-
ities. For example, supervisory control or data-analysis by means of 
visual interfaces used to monitor the whole building’s performance. 
Management layer: includes one or several servers that allow the 
interaction between the higher and the lower layers of the control 
architecture. It is also used to conduct preliminary monitoring and 
preprocessing of information, as well as to store data by means of 
local or online databases. This layer includes all Building Manage-
ment Systems (BMS) that are normally used to manage and control 
modern building installations. 
Automation layer: integrates all local controllers that allow the 
execution of primary plant control by using conventional control 
strategies, like PID and RBC. All different modules collecting the 
measurements from the building process downstream are also 
included in this layer. 
Field layer: the lowest layer of the control architecture. It includes all 
physical components, sensors and actuators. 

It is important to outline that the division between layers of control 
can be apparent in software, hardware or a combination of both. This 
will depend on the communication infrastructure which is tackled in the 
next section. 

9.3. Communication infrastructure 

Communication is yet another crucial element of any practical con-
trol implementation. The importance can be emphasized if we would put 
the whole building control concept it into a human body analogy. The 
building envelope would then be the torso, heating/cooling capacities 
the digestive system, air handling units (AHU) the respiratory system, 
piping the blood vessels, and pumps the heart. The SCADA infrastructure 
would be the nervous system, control configuration the wiring of the 
brain, and the MPC formulation its mental program. The communication 
infrastructure would represent the electrochemical signals traveling 
throughout the pathways of the nervous system, carrying the informa-
tion from the subconscious level of low-level control to the conscious 
level of supervisory applications, while storing the data in the memory 
represented by a database. 

9.3.1. MPC deployment 
In SCADA-based control systems, the interaction between MPC and 

the building is implemented in a client-server model. A client can be 
defined as a device or computer program that executes the MPC 
formulation and accesses the building by means of a server; which can be 
seen as a device or computer program that acts as a bridge of commu-
nication between MPC and the rest of the building installation. There are 
two main configurations and networking typologies for the imple-
mentation of MPC in a client-server model: local and remote 
configuration. 

Local: The MPC algorithm is executed in the same building instal-
lation where the control is performed. Hence, the division between 
client and server is only apparent in software (Afram & 
Janabi-Sharifi, 2017; Skeledzija et al., 2014). Local configurations, 
however, lack flexibility, since MPC developers need to be present in 
the building during the commissioning phase. Moreover, any modi-
fications in the controller’s formulation will have to be applied 
locally to the building, which might result in a quite tedious and 
ineffective process. 

Remote: The MPC algorithm is executed remotely from the building 
installation where the control is performed. The division between 
client and server is apparent in software but also in hardware, as two 
separate devices are normally implemented. Internet or other wire-
less communications are used to interact with the building, see e.g. 
(Gwerder, Gyalistras, Sagerschnig, Smith, & Sturzenegger, 2013; Ma, 
2012). Remote configurations have several advantages, such as 
increased flexibility and interoperability from multiple platforms 
and devices. However, the disadvantage is the need for secure and 
stable communication channels. 

Regarding MPC solvers, for practical installations, they are being 
deployed using several programming languages, such as C++, Python, 
Julia, or even JavaScript. In the research domain, however, the MPC 
algorithm can often run in MATLAB, with limited industrial applicability 
due to the associated software costs. 

9.3.2. Communication protocols 
In general we can differentiate between two levels of communication 

and their corresponding protocols, bottom and upper-level: 

Bottom level: communication on the lowest layers of control, for 
example local controllers and HVAC actuators. 
Upper level: communication on the highest layers between MPC and 
the local controllers of the building by means of a server. Servers can 
be understood as ’interpreters’ that translate all inputs coming from 
the MPC into a language that local controllers can understand, and 
vice-versa (Nyvlt, 2011). 

In recent years, plenty of communication protocols have been 
developed for the purpose of Building Automation Systems (BAS). They 
can be grouped into two main categories: closed and open protocols. 

Closed protocols: based on proprietary communication structures 
developed by each manufacturer separately, usually tailored to 
particular applications, hence they often lack versatility and flexi-
bility (Bovet, Ridi, & Hennebert, 2014). 

Fig. 11. SCADA-based control architecture for building control and operation 
using MPC. 
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Open protocols: based on standard specifications which leads to clear 
advantages, such as greater flexibility of implementation and inter-
operability of devices from hundreds of different vendors (Nyvlt, 
2011). 

Table 15 provides a compact overview and classification of selected 
communication protocols specifically designed or reported to be used in 
building control applications. 

The communication challenges in real buildings proliferate with the 
scale, use of multi-vendor devices, different protocols, and geographical 
distribution of the units. In recent years, modern communication plat-
forms for distributed sensing and control systems have been under 
development to mitigate those challenges. Examples of such platforms 
are the commercial Niagara Framework® (Tridium, 2019) developed by 
Tridium’s Inc. belonging to the Honeywell group, or open-source Volt-
tron™ (Akyol et al., 2016) developed by Pacific Northwest National 
Laboratory. 

9.3.3. Supervisory applications 
Supervisory applications are implemented by means of Human Ma-

chine Interfaces (HMIs), which allow monitoring the MPC performance 
using visual and graphical interfaces. In a SCADA-based architecture, 
HMIs act as clients that connect to the building server. They can be 
divided into two groups: desktop, and web-based applications. 

Desktop applications: stand-alone software tailored to one particular 
computer, which only can be accessed by a restricted number of 
users. They offer more privacy, security, and usually also better 
performance than web-applications, but they lack the portability, 
scalability, and flexibility of implementation (Pop, 2008), which are 
crucial for integration with other automation systems, using the 
same BMS. 
Web-based applications: accessed through the network by multiple 
clients and devices simultaneously, exploiting the use of internet and 
web-services. They are much more flexible because they are 
platform-independent and are not tailored to one specific device. 
Moreover, they are more scalable and can be easily integrated into 
the whole BMS of the building. For obvious reasons, they are more 
suitable in a remote configuration. Some disadvantages of using web- 
applications are slower performance, internet-dependency, or secu-
rity risks compared to a desktop application (Pop, 2008). 

9.3.4. Data storage 
The storage of data has significant importance for the implementa-

tion of MPC in buildings. MPC developers make use of historical data for 
three main purposes: (i) to develop and calibrate the building model 
used by MPC; (ii) to keep track of variables that are used as parameters 
in the MPC formulation (i.e. weather-data, electricity prices, etc.); (iii) 
and to analyze the performance of the controller. Regarding their 
implementation, databases can be classified into local and cloud 
dtabased. 

Local databases: stored in a dedicated device or computer and can 
only be accessed by a limited number of applications. 
Cloud databases: make use of a web-server to store data, which is 
connected to the Internet and can be accessed remotely by multiple 
applications. 

For MPC implementations cloud databases are usually preferred 
above local databases due to their flexibility of operation and less 
tedious setting-up phase. Moreover, a common practice today is to 
outsource the storage of data using an external server from a third-party, 
normally referred to as a cloud provider. As a result, cloud services 
provide a reduction in the creation and maintenance costs of the data-
base, better scalability, and more safety towards losing backups (Li, Li, 
Vrabie, Bengea, & Mijanovic, 2014). The downsides of the cloud-based 

solutions are potential cyber-security issues, which may often impose 
more secure local implementation. 

Regarding the model they implement, databases can be classified 
into relational and non-relational databases (Gyorodi, Gyorodi, & Sotoc, 
2015). 

Relational databases: are based on a Structure Query Language (SQL) 
to store and retrieve data from the database in a really organized way 
using tables. They count on rigid schemes that need to be designed 
before data is stored and are quite difficult to change afterward. 
Non-relational databases: do not use relational management systems, 
hence data is not stored using tables, nor rigid schemes. They offer 
big advantages compared to relational databases, such as superior 
performance, better scalability and more flexibility of 
implementation. 

Relational databases are widely implemented for all kinds of appli-
cations showing a pretty good performance. However, recent studies 
have proven that they present some limitations, especially when dealing 
with large amounts of data and transaction (Gyorodi et al., 2015). Thus, 
big-data organizations (e.g. Google, Amazon or Facebook) are starting to 
use non-relational databases to store their data. However, this is still yet 
a relatively new direction and the majority of MPC implementations 
reported in the literature opted for the relational databases, see. e.g. 
(Fabietti, 2014; Skeledzija et al., 2014). However, for the future 
implementation of MPC, non-relational databases seem to be a better 
candidate, since the controller is expected to deal with big volumes of 
data, especially in large-scale buildings where a central database might 
be used for the whole installation. 

9.4. Practical guidelines 

This section summarizes practical aspects discussed in detailed in 
previous sections and extracts step by step guidelines for developing and 
implementing a successful MPC application for a real building. A general 
methodology is systematically shown in Fig. 12 covering the high-level 
workflow, starting with setting up the communication infrastructure, 
followed by control-oriented modeling, control configuration with MPC 
design and tuning, finalized by MPC deployment as a supervisory 
application in modern SCADA systems and closing the loop with 
communication setup in case of necessary modifications. 

A more detailed and practically oriented flowchart is presented in 
Fig. 13. It encompasses the necessary actions and decisions of the whole 
MPC workflow from scratch to implementation in a real building. The 
preliminary phase starts with a feasibility analysis which should be 
based on controllability and measurability of the building via the 

Table 15 
Summary and classification of selected communication protocols used in 
building control.  

Protocol Standard Bottom 
level 

Upper 
level 

Closed Open BAS 
oriented 

Nikobus  • – • – – 
iNels  • – • – •

BACnet ISO 
16484-5 

• – – • •

KNX ISO/IEC 
14,543 

• – – • •

Modbus  • – – • •

LonWorks ANSI/ 
CEA-709.1 

• – – • •

M-bus EN 13,757 • – – • •

OPC  • • – • – 
TCP/IP IETF – • – • – 
UDP RFC 768 – • – • – 
FTP RFC 2428 – • – • – 
HTTP/ 

HTTPS 
RFC 7230 – • – • –  
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installed building automation system (BAS). The second step is to 
evaluate the economic potential for a building of interest via return on 
investment analysis. 

The design phase starts with the third step of the flowchart by setting 
up the real-time communication between the BAS and the supervisory 
computer for automated data logging and storage, as summarized in 
Section 9.3. This automated communication functionality is a must for 
any real-time dynamic optimization scheme such as MPC, while his-
torical data stored in databases serve for modeling and tuning purposes. 
Necessary data points need to be selected based on the design of the 
model and control architecture. However, today, such functionality still 
represents a bottleneck due to the large variety of used protocols, in-
terfaces and BAS vendors with closed solutions. 

The fourth step consists of modeling, as elaborated in Section 3. First, 
engineers need to define the objectives, constraints and key performance 
indicators (KPIs) for performance assessment of the models and control 
strategies. Subsequently, a control-oriented model needs to be devel-
oped via dedicated software tools partially listed in Section 8.1.3 and 
evaluated with respect to selected performance measures. 

After construction of a sufficiently accurate model, a control 
configuration needs to be defined in the fifth step. If the selected 
configuration is realizable within the current communication infra-
structure, then we proceed to the next step, else either control config-
uration is modified, or a list of available data points is extended. 

In the sixth step, a control engineer initiates MPC design by formu-
lating the optimal control problem, identifying the problem class and 
selecting the solution paradigm as described in Sections 2, 5, and 6, 
respectively. Subsequently, appropriate design tools and solvers are 
selected, e.g. based on the lists given in Sections 8.2, and 8.3, respec-
tively. The implementation of MPC algorithms presented in Section 4 
follows. 

After tuning and performance evaluation in closed-loop simulation 
studies, controllers with acceptable quality are selected for deployment 
in the seventh step of the workflow. MPC solvers need to be installed 
either locally or on a remote computational platform and integrated in 
the SCADA system of the building (see Section 9.2). The deployment 
phase consists of functionality tests, and installation of the user interface 
and backup solutions, such as watchdog timers, alarms and automatic 
fallback controller for recovering operation after failures. Only after 
this, the operation phase can be initiated in the final eighth step. The 
installed applications continuously monitor MPC functionality and if 
error handling logic is triggered, the operation autonomously switches 
to the fallback control strategy, typically represented by simple RBC 
logic or PID loops. Each operational failure is typically accompanied 
with alarm messages to the building operators. 

10. Comparison and performance assessment 

Comparison and performance assessment of MPC approaches are 
important to identify the most promising approaches and guide transi-
tion of MPC strategies from research to industry. However, a number of 
challenges exist that make such comparisons difficult. Therefore, this 
section outlines these challenges, reviews the literature on studies that 
have compared MPC approaches, and suggests the needs of a more 
unifying framework for such assessment. 

10.1. Challenges 

An initial challenge of comparing MPC approaches is the large 
variation any implementation can take compared to another. As pre-
sented in this paper, there are a number of factors and methods to 
consider for each of the many components of the MPC, creating a very 
large solution space. In addition, each application, whether it be a single 
zone, building, campus, or neighborhood, presents its own set of design 
and operation characteristics that may promote the use of one method 
over another. These include architectural design and construction, 

climate, HVAC and lighting system design, occupancy and usage, system 
controllability, available measurements, data management, and control 
objective. 

A second challenge of comparing MPC approaches is the relatively 
small number of field tests available, compared to the solution space of 
available approaches and applications. In such field tests reported in 
literature, it is common to document the performance of a single 
implementation for a particular application to demonstrate performance 
advantages over a more conventional method of control. It is important 
to point out that the choice and tuning of the benchmark controller has a 
direct influence on the improvements calculated for MPC. It is uncom-
mon to consider and compare a range of methods. In addition, the real 
implementations are often not long-term studies, lasting weeks to 
months and not years, limiting the insight on how MPC strategies 
perform during all seasons, holidays, and other specialty types of days, 
as well as how much maintenance is required over time. Moreover, few 
studies report on or discuss implementation costs and payback periods. 

A final challenge is defining the grounds for comparison. Common 
metrics are used in the literature associated with energy savings, oper-
ating costs savings, and occupant comfort improvement. However, other 
important bases of comparison of implementation and performance 
include computer hardware and software requirements, computation 
time, robustness to changing conditions, sensitivity to model and fore-
cast uncertainty, data requirements, implementation effort, and installer 
expertise. Such a broad range of factors makes objective comparison 
difficult. 

10.2. Literature 

Studies that have compared specific MPC formulations are summa-
rized in Table 16. All studies were performed using simulation and the 
baseline for comparison tended to be a centralized, linear, deterministic 
MPC implementation, except for one study that compared the use of two 
different nonlinear optimization solver algorithms. Each study utilized 
metrics related to energy use or cost and thermal comfort, while some 
other metrics included computational burden and setpoint tracking 
error. The results of each study were consistent with the hypotheses 
presented for each test implementation. For instance, stochastic and 
robust MPC can significantly improve the handling of disturbance or 
model uncertainty with respect to maintaining comfort compared to 
deterministic MPC, with only a small loss in energy savings potential. 
Another example is that distributed MPC can lessen the computational 
burden and communication requirements of a centralized MPC, with 
only small losses in energy savings potential and comfort. Differences in 
the studies, however, make it difficult to compare the implementations 
among each other and to evaluate the scalability of each technique in 
practice. First, each study considered a different building design, con-
struction, climate, and HVAC system. In addition, each study considered 
different periods of operation, ranging from one hour to one year. 

Other studies have focused on comparing various factors and tech-
niques related to thermal envelope model development for the MPC. In 
(Blum et al., 2019b) seven factors affecting the accuracy of thermal 
envelope models were identified and their subsequent effect on MPC 
performance was tested, including building design, model structure, 
model order, identification data set, identification data quality, identi-
fication algorithm, and software tool-chain. The study showed that 
model order and initial parameter guesses during identification have 
strong influences. In (Sourbron et al., 2013b) the effects of model order 
and training data on final MPC performance for a concrete core acti-
vated HVAC system were studied. Studies in Picard et al. (2017, 2016) 
showed that linearizing detailed models, rather than building grey-box 
models, is a technique that works well. Other authors Harb, Boyanov, 
Hernandez, Streblow, and Müller (2016); Reynders et al. (2014) studied 
the effect of building and HVAC system type, training data, model order, 
noise, and measured inputs on parameter identification accuracy. Study 
in Reynders et al. (2014) found that a fourth order model was 
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acceptable, while Harb et al. (2016) found that a second order model 
was acceptable, though neither tested these models in an MPC 
controller. Finally, (Vande Cavey et al., 2014) compared MPC perfor-
mance with and without proper state estimation, showing the impor-
tance of using a well-tuned state estimator. Similar to the studies 
comparing specific MPC formulations, these studies suffer from not 
utilizing the same building cases or evaluation periods, making 
inter-study comparison difficult. 

In addition to academic studies, Zurich (2020) and Cigler, Tomáško, 
and Široký (2013c) present tools developed to assess the performance of 
MPC. The BACTool (Zurich, 2020) represents a web-based tool that 
utilizes a large number of pre-calculated, yearly building energy simu-
lation results to display performance indicators using MPC and one of 
two rule-based controllers. Users can build cases to compare from a 
number of inputs, including among them building construction, orien-
tation, climate, HVAC system, and control type. Performance metrics 
that can be compared include energy use [kWh/m2], comfort [K-h], and 
peak demand [W/m2], as well as timeseries of indoor temperature, 
illuminance, blind position, and power demand of HVAC and lighting 
system components. In this way, users can evaluate the potential ben-
efits of using MPC over rule-based control in a similar building project. 
Cigler et al. (2013c) presents BuildingLAB, a tool for illustrative and 
educational purposes related to MPC control in buildings. Users can 
change parameters such as prediction horizon, initial conditions, con-
straints, and objective function weights (e.g. of operating cost and 
discomfort) and execute simulations of building control using MPC, with 
optimal control results calculated upon execution using the given pa-
rameters. In this way, users can see the differences that result from 
changing parameters and gain intuition on expected performance. 

10.3. Framework development 

While the literature review presents a number of studies that 
compare two or more MPC formulation and modeling methods as well as 
tools that were designed to compare MPC performance among various 
conditions and parameter settings, performance and assessment of MPC 
lacks a unified framework designed to tackle the challenges outlined in 
the previous section. The literature studies are limited to the specific 
implementations and conditions under which they were compared, 
while the tools are limited to the building models and MPC approaches 
implemented by the tool designers. Instead, the framework needs to 
provide representative, yet bounded, testing conditions and scenarios 
which any control developer can use to test his/her individual approach. 
Such a framework is similar to the BESTEST (American Society of 
Heating Refrigerating & Air Conditioning Engineers, 2008), a set of 
building specifications and operating scenarios developed for bench-
marking and comparison of building energy simulation tools. This can 
be implemented in the form of reference building models and simulation 
scenarios that represent a range of building and system types, are 

implemented with the necessary dynamics for controls design and 
testing represented, are available for use by all MPC researchers and 
control developers regardless of expertise in building simulation 
modeling, can be simulated within a controlled, yet distributable, 
computing environment, and are independent from the control imple-
mentation. In addition, the framework needs a reference set of perfor-
mance indicators to objectively compare MPC controllers with respect to 
all or a chosen subset of these metrics. The metrics should include 
operational performance, such as energy, cost, and comfort, as well as 
implementation metrics, such as computational requirements and data 
needs. In this way, as MPC developers use such a common framework to 
test their implementations, true comparison and assessment can be done 
relative to other approaches, and development of high-performing, 
cost-effective MPC approaches can be accelerated. 

While development of such a simulation framework presents its own 
set of challenges, the task is being undertaken in Blum et al. (2019a), 
presenting a BOPTEST framework (Building Operation Performance 
Test) consisting of various building types and software platform for the 
testing of advanced control strategies. The approach is similar to an 
existing platform called Alfalfa (National Renewable Energy Labora-
tory, 2020), which utilizes OpenStudio models for building simulation, 
implements a Project Haystack (2020) API to connect with potential test 
controllers and other data analytics platforms, and is designed to be a 
scalable web-service. The BOPTEST framework differs in that it utilizes 
FMI and Modelica for building simulation, will have an API for also 
providing disturbance forecasts to MPC controllers, utilizes a 
controller-blocked synchronization scheme rather than a real-time 
synchronization scheme, and also produces reports on key perfor-
mance indicators. In the future, the BOPTEST framework aims to 
leverage the Alfalfa architecture to provide an industrial-strength tool 
for controls testing that provides the functionality of BOPTEST with the 
scalable architecture of Alfalfa. 

11. Conclusions 

This paper provides a complete overview and unified framework of 
MPC for building climate control applications. 

MPC theory and problem classification The process of MPC formulation 
starts with the definition of control loop variables and its in-
terconnections via constraints, objective functions, and a control- 
oriented building model. The theory behind this process is compactly 
summarized at the start of this paper. The paper presents three algo-
rithmic principles behind MPC which are essential for real-time imple-
mentation. In particular, we talk about receding horizon control (RHC), 
state estimation, and optimal control solution methods. The details of 
the particular case, such as building model type (e.g., linear, nonlinear), 
comfort index (e.g., comfort zone, PMV), and other factors penalized in 
the objective function, together with imposed constraints are the key 
building blocks of the MPC formulation. Based on these features, MPC 

Fig. 12. A general methodology for modeling, design, and implementation of MPC in buildings based on (Drgoňa, Picard, & Helsen, 2020).  
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problems are classified into three important problem classes (linear, 
nonlinear, hybrid). Moreover, translation methods for direct optimal 
control and its use in association with each MPC class are discussed. A 
linear MPC formulation is computationally least demanding and thus 
easiest to implement. Many modeling tools support linear MPC with a 

wide variety of examples and tutorials. Even though it has certain lim-
itations regarding the formulation flexibility, it is the most commonly 
used MPC class in the building sector, mainly because the building en-
velope can be accurately approximated by linear dynamics. Nonlinear 
MPC provides us with higher flexibility in formulation and possibly 
increased performance, due to the incorporation of the nonlinear HVAC 
model. On the other hand, this comes with the cost of more elaborate 
modeling and increased computational demands for implementation. 
Hybrid MPC is useful when one needs to deal with integer decision 
variables or switching dynamics like heat pump modes, etc., a situation 
very common in building applications. For the cost of increased 
computational demands, it can provide increased performance 
compared to the more straightforward linear case. 

Algorithmic solutions of MPC Three MPC solution techniques based on 
direct methods, i.e., implicit, explicit, and approximate MPC, have been 
discussed with their pros and cons. MPC approaches have been further 
differentiated based on their problem class, solution approach, and 
dimensionality of the problem defining the computational complexity of 
the optimization problem, and thus determining the feasibility, as well 
as hardware and software requirements for real implementation. 
Building climate control applications have specific characteristics, such 
as a large number of state variables and slow dynamics resulting in 
longer sampling times. For these reasons, and increased availability of 
computation power, in recent years, MPC is most often being imple-
mented by solving a corresponding optimization problem online in an 
implicit way. The drawback of this approach is the necessity of available 
computation power and software dependencies associated with dedi-
cated optimization solvers. Such a method is universally applicable, 
with the biggest return of investment potential associated with larger 
tertiary buildings due to the smaller ratio on the investment cost 
compared to the overall construction or renovation costs. Explicit MPC 
has been proven to be feasible so far only for small case studies, limiting 
its applicability in practice in multi-zone building control problems. The 
potential use of this approach is within low-level control tasks or 
decentralized single-zone control strategies, e.g. for individual apart-
ments within a block or small residential houses. Approximate explicit 
MPC solutions appear to be a promising alternative also for large-scale 
problems providing memory-based control policies with low computa-
tional footprints. The main strength of this approach is its numerically 
robust operation due to lightweight computation requirements with 
minimal software dependencies and its applicability even on lower-level 
hardware. The main drawback of such an approach, however, is the 
requirement of the original MPC and the need for larger training data-
sets, which can be computationally demanding and hence time- 
consuming to generate. The theoretical part of the paper is finalized 
by the formalism of uncertainties in the MPC problem and methods 
conventionally used for their mitigation. In particular, these methods 
are offset-free MPC via state augmentation, robust MPC, stochastic MPC, 
adaptive MPC, and learning-based MPC. 

Software tools for building modeling and control For all types of MPC 
formulations and implementation approaches, a wide variety of 
modeling and design tools and solvers are available. The wide variety of 
used modeling tools reflects the lack of understanding of what model 
formulation and level of detail is best suited for MPC in buildings. The 
practical part of this paper summarizes an extensive overview and 
conceptual comparison of dedicated software tools used for building 
modeling, (co-)simulation, MPC design tools, and available optimization 
solvers for both desktop as well as embedded platforms. The aim of this 
overview is to help the reader with a selection of the most appropriate 
tool from the broad range of options. 

Practical deployment of MPC in buildings To facilitate a faster transfer 
of the technology into practice, a whole section is dedicated to key 
building blocks and aspects of practical implementation. The underlying 
implementation framework is defined consisting of the MPC configu-
ration, SCADA architecture, and communication infrastructure. Four 
conceptual types of MPC configuration are considered, namely 

Fig. 13. Flowchart of MPC implementation in real buildings.  
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centralized, decentralized, distributed, and hierarchical configurations, 
and their usability is discussed. Centralized MPC controls an entire 
system and is currently the most commonly used configuration in 
building applications. Decentralized configurations with multiple local 
MPCs are less favorable for buildings due to the loss of dynamic coupling 
between controlled subsystems. Distributed MPC represents a more 
favorable configuration and is based on solving a decoupled problem by 
communicating the local solutions to other sub-controllers to improve 
the entire system performance. Meanwhile, hierarchical configurations 
improve the overall performance when controlling the system over 
different time scales and including the subsystems with notable differ-
ences in their time constants. Examples of such systems are demand 
response control or long-term behavior of a ground source heat 
exchanger coupled to the short-term behavior of the building. The 
SCADA architecture defines the standards for modern industrial hier-
archical control systems with four basic levels, which are widely adop-
ted in modern buildings. In practice, this functionality is provided by the 
building automation systems (BAS) via commercial vendors like Hon-
eywell, Johnson Controls, Priva, Siemens, Schneider Electric, ABB, or 
Delta Controls, to name the most prominent ones. A functional, auto-
mated, and full-scale communication outside the commercial BAS ap-
pears to be currently one of the tedious tasks of real MPC 
implementation. Although they can be built mostly on open standards, 
the problem lies in a large number of used communication protocols, 
closed commercial BAS software solutions, and lack of standardized 
interfaces which make the integration of hardware components from 
different vendors a real challenge. With practical cases in mind, clear 
guidelines and a flowchart for MPC implementation are provided for 

researchers and early adopters of the technology. The fundamental steps 
of any successful application are based on preliminary feasibility and 
economic studies guiding the decision of whether to implement the MPC 
for a particular case or not. The design phase consists of setting up the 
communication, followed by control-oriented building modeling, con-
trol configuration selection, and MPC design and tuning. The operation 
phase consists of testing and deployment of the MPC algorithm with 
backup solutions. 

Performance assessment of MPC in buildings Comparison and perfor-
mance assessment of MPC in buildings plays an important role during 
the selection of an appropriate strategy for a particular application. 
However, due to the large solution space, there remain a number of 
challenges to be tackled on the roadmap towards generalized perfor-
mance assessment methodology and tools. First initiatives are being 
taken to standardize this process in a scalable framework built upon 
next-generation building energy modeling tools that emulate the 
response of the building system to the MPC controller, using predefined 
performance indicators and application programming interfaces, all 
brought together in the BOPTEST. 

Market potential and future of MPC in buildings The practical aspects of 
integration of MPC algorithms with contemporary BAS create an op-
portunity for startup companies to deliver customized MPC solutions 
backed by universal SCADA platforms with multi-protocol, multi- 
manufacturer compatibility. Examples of such companies are e.g. Del-
taQ, IES, BuildingIQ, Feramat Cybernetics, Energocentrum with their 
Mervis control as a service platform, or QCoefficient, Inc. which suc-
cessfully operates cloud-based real-time white box MPC based on 
EnergyPlus models in a number of large commercial office buildings in 

Table 16 
Studies comparing two or more MPC formulations.  

Ref MPC comparison Case Metric(s) Result 

Oldewurtel et al. (2012) Stochastic (SMPC) vs. 
Deterministic (DMPC) 

Single room with six variants of 
HVAC system, European 
locations, and building 
construction. Simulation period 
is one year. 

Energy use [kWh/m2/y] and comfort 
violations [Kh] 

SMPC had comparable energy use (slightly 
higher) and comfort violations to best case 
DMPC. 

Drgoňa et al. (2013) Stochastic (SMPC) vs. 
Deterministic (DMPC) 

Single room with simple heating 
and cooling. Simulation period is 
nine days. 

Energy use [kWh] and comfort 
violations [% Simulation Samples] 

SMPC had comparable energy use (slightly 
higher) and comfort violations to best case 
DMPC. 

Ma et al. (2015) Stochastic (SMPC) vs. 
Deterministic (DMPC) 

Multizone VAV HVAC system in 
Berkeley, CA, USA. Simulation 
period is 55 days. 

Energy savings compared to rule- 
based control [%], comfort 
improvement compared to rule-based 
control [%], thermal efficiency of 
HVAC system [− ] 

SMPC had comparable energy savings 
(slightly less) and comfort improvement 
over rule-based control to best case DMPC. 

Maasoumy et al. (2014) Robust (RMPC) vs. 
Deterministic (DMPC) 

Single room in Houghton, 
Michigan, USA with ground- 
source heat-pump heating 
system. Simulation period is one 
day. 

Energy use [kWh] and comfort 
violations [∘C-h] 

For intermediate levels of model 
uncertainty, RMPC outperformed DMPC, 
while DMPC is preferred for low levels of 
model uncertainty. If model uncertainty is 
very high, rule-based control is preferred. 

Scherer et al. (2014) Distributed (DisMPC) vs. 
Centralized (CenMPC) 

Multiple zones each served by fan 
coil units served by common hot 
and chilled water central plants. 
Simulation period is one hour. 

Integral of squared setpoint error 
[∘C2] 

DisMPC was able to have similar setpoint 
tracking performance to CenMPC when 
central plant resources are limited. 

Walker, Lombardi, 
Lesecq, and 
Roshany-Yamchi 
(2017) 

Distributed (DisMPC) vs. 
Centralized (CenMPC) 

Three-zone open office in Cork, 
Ireland where each zone has 
radiator and window operation. 
Simulation period is nine hours. 

Energy use [kWh], temperature and 
CO2 setpoint tracking (visually in 
plots), and normalized computational 
time [− ]. 

DisMPC had comparable energy use to 
CenMPC (slightly higer) and similar 
temperature and CO2 tracking with less 
computational burden on each local 
controller. 

Pcolka, Zacekova, 
Robinett, Celikovsky, 
and Sebek (2014) 

Nonlinear (NLMPC) vs. 
Linear (LMPC) 

One zone building with radiant 
ceiling HVAC system in Prague, 
Czech Republic. Simulation 
period is three months. 

Energy cost [Euro], maximal comfort 
violation [∘C], and hours of comfort 
violation larger than 0.2 ∘C [h]. 

NLMPC outperforms LMPC by using less 
energy, having less maximum comfort 
violation, and having less total hours of 
discomfort. 

Putta, Zhu, Kim, Hu, 
and Braun (2013) 

Affine Quadratic Regulator 
(AQR) vs. Sequential 
Quadratic Programming 
(SQP) 

Single room in Indiana, USA with 
VAV AHU and cooling plant. 

Energy cost [$/day], discomfort cost 
[$/occupant/day, and computational 
time [s/decision] 

AQR saved significantly on discomfort 
costs compared to SQP due to SQP 
sensitivity to initial guesses and local 
minima. 

Drgoňa and Kvasnica 
(2013) 

Setpoint Tracking (ST) vs. 
Comfort Tracking (CT) vs. 
Number Comfort Violation 
Min (CM) 

Single room with simple heating 
and cooling. 

Energy use [kWh], energy savings 
compared to rule-based control [%], 
and comfort violations [% Simulation 
Samples] 

ST used most energy with good comfort 
control. CT used less energy with worse 
comfort control. CM used least energy with 
good comfort control.  
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the US. 
A big leap forward in MPC market penetration can also be made by 

implementing MPC applications into integrated software platforms, 
enabling the communication management and control of diverse sys-
tems regardless of manufacturer or protocol. The most notable of such 
communication platforms are the commercial Niagara Framework®, or 
the open-source Volttron™. It is very hard to make predictions, espe-
cially about the future. However, based on the advanced stage of basic 
research tackling the current bottlenecks of MPC, several pilot case 
studies, emerging startups, and awareness of the major companies in the 
field of building controls, the large-scale market penetration of MPC 
technology for newly built buildings can be optimistically expected to 
happen within the next decade. 
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Cigler, J., Prívara, S., Váňa, Z., Žáčeková, E., & Ferkl, L. (2012). Optimization of 
predicted mean vote index within model predictive control framework: 
Computationally tractable solution. Energy and Buildings, 52, 39–49. 
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Ferkl, L., & Široký, J. (2010). Ceiling radiant cooling: Comparison of ARMAX and 
subspace identification modelling methods. Building and Environment, 45(1), 
205–212. https://doi.org/10.1016/j.buildenv.2009.06.004. 

Ferrarini, L., Mantovani, G., & Costanzo, G. T. (2014). A distributed model predictive 
control approach for the integration of flexible loads, storage and renewables. 2014 
IEEE 23rd international symposium on industrial electronics (ISIE) (pp. 1700–1705). 
https://doi.org/10.1109/ISIE.2014.6864871. 

Ferreau, H. J., Kirches, C., Potschka, A., Bock, H. G., & Diehl, M. (2014). qpOASES: A 
parametric active-set algorithm for quadratic programming. Mathematical 
Programming Computation, 6, 327–363. 

Fielsch, S., Grunert, T., Stursberg, M., & Kummert, A. (2017). Model predictive control 
for hydronic heating systems in residential buildings. IFAC-PapersOnLine, 50(1), 
4216–4221. 

Figueiredo, J., & Costa, J. S.d. (2012). A SCADA system for energy management in 
intelligent buildings. Energy and Buildings, 49, 85–98. https://doi.org/10.1016/j. 
enbuild.2012.01.041.http://www.sciencedirect.com/science/article/pii/S0378 
778812000722 

Fourer, R., Gay, D. M., & Kernighan, B. W. (2002). AMPL: A modeling language for 
mathematical programming (2nd ed.). Duxbury Press.  

Freire, R., Oliveira, G., & Mendes, N. (2005). Thermal comfort based predictive 
controllers for building heating systems. Proc. of the 16th IFAC world congress, Prague, 
Czech Republic. 

Freire, R. Z., Oliveira, G. H. C., & Mendes, N. (2008). Predictive controllers for thermal 
comfort optimization and energy savings. Energy and buildings, 40(7), 1353–1365. 

Frison, G., & Jorgensen, J. B. (2013). A fast condensing method for solution of linear- 
quadratic control problems. Proceedings of 52nd IEEE conference on decision and 
control, Florence, Italy (pp. 7715–7720). 

Frison, G., Sørensen, H. H. B., Dammann, B., & Jørgensen, J. B. (2014). High- 
performance small-scale solvers for linear model predictive control. 2014 european 
control conference (ECC), Strasbourg, France (pp. 128–133). https://doi.org/10.1109/ 
ECC.2014.6862490. 

Fritzson, P., Pop, A., Asghar, A., Bachmann, B., Braun, W., Braun, R., … Östlund, P. 
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Kvasnica, M., Takécs, B., Holaza, J., & Cairano, S. D. (2015b). On region-free explicit 
model predictive control. 2015 54th IEEE conference on decision and control (CDC) 
(pp. 3669–3674). https://doi.org/10.1109/CDC.2015.7402788. 
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Langson, W., Chryssochoos, I., Raković, S. V., & Mayne, D. Q. (2004). Robust model 
predictive control using tubes. Automatica, 40, 125–133. 

Lapusan, C., Balan, R., Hancu, O., & Plesa, A. (2016). Development of a multi-room 
building thermodynamic model using simscape library. Energy Procedia, 85, 
320–328. https://doi.org/10.1016/j.egypro.2015.12.258.EENVIRO-YRC 2015 - 
Bucharest 

Lara, B. G. V., Molina, L. M. C., Yanes, J. P. M., & Borroto, M. A. R. (2016). Offset-free 
model predictive control for an energy efficient tropical island hotel. Energy and 
Buildings, 119, 283–292. https://doi.org/10.1016/j.enbuild.2016.03.040. 

Lauro, F., Longobardi, L., & Panzieri, S. (2014). An adaptive distributed predictive 
control strategy for temperature regulation in a multizone office building. 2014 IEEE 
international workshop on intelligent energy systems (IWIES) (pp. 32–37). https://doi. 
org/10.1109/IWIES.2014.6957043. 

Lazos, D., Sproul, A. B., & Kay, M. (2014). Optimisation of energy management in 
commercial buildings with weather forecasting inputs: A review. Renewable and 
Sustainable Energy Reviews, 39, 587–603. https://doi.org/10.1016/j. 
rser.2014.07.053. 

Le, K., Bourdais, R., & Gueguen, H. (2014). Optimal control of shading system using 
hybrid model predictive control. European control conference (ECC), 2014, Strasbourg, 
France (pp. 134–139). https://doi.org/10.1109/ECC.2014.6862492. 
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Picard, D., Drgoňa, J., Kvasnica, M., & Helsen, L. (2017). Impact of the controller model 
complexity on model predictive control performance for buildings. Energy and 
Buildings, 152, 739–751. https://doi.org/10.1016/j.enbuild.2017.07.027. 

Picard, D., & Helsen, L. (2018). MPC performance for hybrid GEOTABS buildings. Purdue 
conferences - 5th international high performance building conference, West Lafayette, IN, 
USA.Purdue University, West Lafayette, IN, USA 

Picard, D., Jorissen, F., & Helsen, L. (2015). Methodology for obtaining linear state space 
building energy simulation models. Proceedings of the 11th international modelica 
conference, Paris, France (pp. 51–58). 

Picard, D., Jorissen, F., & Helsen, L. (2015b). Methodology for obtaining linear state 
space building energy simulation models. 11th international modelica conference (pp. 
51–58).Paris 

Picard, D., Sourbron, M., Jorissen, F., Cigler, J., Ferkl, L., & Helsen, L. (2016). 
Comparison of model predictive control performance using grey-box and white-box 
controller models. Proceedings of the 4th international high performance buildings 
conference, West Lafayette, IN, USA (pp. 1–10).West-Lafayette, Indiana, USA 

Polak, E., & Wetter, M. (2006). Precision control for generalized pattern search 
algorithms with adaptive precision function evaluations. SIAM Journal on 
Optimization, 16(3), 650–669. https://doi.org/10.1137/040605527. 

Pop, P. (2008). Comparing web applications with desktop applications: An empirical 
study. Technical report. Linköing University, Sweden.  
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a b s t r a c t

This paper analyses control performance and energy savings reached by application of four robust
control approaches implemented on the laboratory plate heat exchanger. The output temperature of the
cold medium is the controlled variable and the flow rate of the hot medium is the manipulated variable.
Closed-loop control of the heat exchanger aims to ensure offset-free setpoint temperature tracking. First,
the computationally demanding robust model predictive control (RMPC) strategy is investigated. Im-
provements ensured by implementing three modifications of the convex-lifting-based robust control
methods are analysed. These modifications are based on the (i) non-tunable, (ii) tunable, and (iii)
multiple tunable robust positive invariant (RPI) sets. Designed robust control approaches significantly
improved control performance. For considered control setup, the settling time was reduced up to 70%.
Energy savings were increased by 82%, when compared to RMPC. Moreover, the considered methods are
proper for real-time implementation as they significantly reduce computational demands. The designed
robust convex-lifting-based methods are suitable for industrial hardware with limited computational
requirements.

© 2020 Elsevier Ltd. All rights reserved.

1. Introduction

Efficiency of energy supply plays an important role in achieving
objectives as the health of economies, sustainable industry, and
others. Minimizing energy waste is the cornerstone of these ob-
jectives. In these days, over 80 % of energy utilization comprises
some form of the heat transfer process [1]. Therefore, importance of
enhanced heat transfer, thermal process modelling, and integration
are significant. Recent developments in applied thermal engineer-
ing are listed in Ref. [2].

One of the areas with high energy saving potential is the control
system design for heat exchangers. These devices are a major
energy-intensive part of the industry. Control performance of these
systems is a relevant indicator of process economic efficiency [3]. It
is necessary to ensure simultaneously controllability and economy
of heat exchanger operation, e.g., see Ref. [4]. Improvement of
control performance is often associated with the application of
more advanced control approaches.

One of advanced control strategies is themodel predictive control
(MPC). It is a model-based control strategy, that computes optimal
control action subject to various control requirements and con-
straints, see Ref. [5]. MPC and its numerous variations have a great
potential to optimize the control performance of heat exchangers.
Infinite-horizon-based MPC design taking into account the eco-
nomic objectives was verified on a heat-exchanger network in
Ref. [6]. In Ref. [7], the economic nonlinear MPC was designed to
improve the waste heat recovery of Organic Rankine Cycle. MPC
designed for the thermal energy storage applied for large central
cooling systems ensures energy savings as it is shown in work [8].
The approach based on the neural network and predictive control
was designed for the heat exchangers in Ref. [9]. The energy effi-
ciency of the designed approach was compared to the PID con-
trollers. Balance-Based Adaptive Control methodology was used for
controller synthesis in Ref. [10]. The practical implementation was
addressed and the proposed controller was implemented using
widely-used industrial Programmable Logic Controllers (PLCs).

The precise mathematical model of a heat exchanger is complex
and it has nonlinear and asymmetric behaviour. Moreover, the in-
dustrial operation is influenced by various uncertain parameters,
e.g., measurement noise, etc. Fouling also significantly affects the
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mathematical modeling [11], its reliability [12], and energy-
efficient control of heat exchangers [13]. To overcome these ob-
stacles the robustmodel predictive control (RMPC) was introduced,
see Ref. [14]. Advanced RMPC method was designed for the shell-
and-tube heat exchangers in Ref. [15]. This approach was
compared with conventional PID control. RMPC outperformed the
conventional PID controllers almost by factor 2 and ensured sig-
nificant energy savings. The robust control for a plate heat
exchanger was designed in Ref. [16] and validated by the experi-
mental case study. The energy savings ensured by RMPC designed
for a heat exchanger were analysed in Ref. [17]. The implementation
of the soft-constraints improved overall control performance and
increased energy savings. However, RMPC is quite computationally
demanding. The controller design requires efficient hardware to
compute complex optimization problems using the linear matrix
inequalities, see Ref. [18]. This fact limits RMPC from being imple-
mented using PLCs or other embedded hardware platforms, that
are frequently used in the industry.

Recently, in the control theory, the convex lifting is employed in
threemajor areas: (i) design of simplified explicit MPC policies, that
still ensure optimality and stability [19,20]; (ii) reduction of the tail
of the predicted control sequences by solving an inverse parametric
program [21,22]; (iii) design of robust control strategies [23e25]. In
Ref. [23], the output feedback control for discrete-time linear sys-
tems affected by bounded additive state and output disturbances
was designed using the convex lifting. The linear model predictive
control deployed on an 8-bit micro-controller unit via convex lift-
ing was designed in Ref. [19]. The 8-bit micro-controller represents
a low-cost embedded platform, which is built into mass-produced
devices. Therefore, convex-lifting-based approaches could become
widely implementable and still provide optimal and stable control
performance.

The novel convex-lifting-based robust control approach was
introduced in Ref. [24]. Compared to the conventional RMPC, the
convex-lifting-based robust control design minimizes computa-
tional demand of real-time control. This approach preserves the
main benefits of RMPC, i.e., optimizes the control performancew.r.t.
the constraints on the manipulated variables and the controlled
variables. Compared to conventional RMPC, convex-lifting-based
robust control minimizes computational demand. Nevertheless, it
can still respect constraints and compute optimal control action
similar to RMPC. The control performance is determined by the
properties of the so-called robust positive invariant (RPI) set. This
approach was modified in Ref. [25] to explicitly take into account
the MPC-like quality criteria. It leads to the possibility of tuning the
properties of the RPI set. Moreover, the multiple RPI sets were
designed to improve the control performance.

The main contribution of this paper is the experimental inves-
tigation of several robust control strategies implemented on the
laboratory plate heat exchanger. This paper directly extends the
results presented in Ref. [26], where the convex-lifting-based
robust control was designed for the plate heat exchanger. The nu-
merical simulation of the closed-loop control indicated the high
potential to ensure significant energy savings. Compared to
Refs. [26], this paper presents the experimental results. Three
modifications of robust control methods were implemented and
the control performance was analysed. The obtained results were
compared to the RMPCmethod. Particularly, this paper analyses the
control performance and energy savings of the following convex-
lifting-based robust control method: (i) non-tunable approach
introduced in Refs. [24], (ii) tunable approach with a single RPI set,
and (iii) multiple tunable approach with two RPI sets [25]. The
obtained results were compared to the conventional RMPC applied
for the same heat exchanger in Ref. [17].

The paper is structured as follows: the considered laboratory

plate heat exchanger is described in Section 2. Section 3 introduces
the proposed robust controller design methods. Section 4 in-
vestigates the measured results and is followed by the main con-
clusions summarized in Section 5.

2. Plate heat exchanger

This section describes in the detail the plant and its mathe-
matical model considered in the experimental case study. The un-
certain mathematical model is introduced. This model of the plate
heat exchanger is augmented for applying integral control action to
remove the steady-state control error.

2.1. Description of the heat exchanger

Plate heat exchangers are nonlinear and asymmetric plants
widely used in all fields of industry. Effective control of these de-
vices saves energy, resources, and production costs. The plant
behaviour and energy efficiency of the heat exchangers differ ac-
cording to the size of the setpoint change or its initial conditions.
However, themain differences occur between negative and positive
changes of the setpoint. Applying robust control strategy to a
complex plant ensures satisfying control performance for each
change of the setpoint, regardless of the initial conditions or size of
the step.

A laboratory plate heat exchanger was considered to investigate
the energy efficiency of the proposed robust control strategy. The
used heat exchanger is shown in Fig. 1. The liquid-liquid plate heat
exchanger was manufactured by Armfield, specifically labelled as
Armfield Process Control Trainer PCT23, see Ref. [27]. The three-
stage plate heat exchanger (Fig. 1, device (I)) provides both, i.e.,
cooling or heating of the leaking liquid. In this experimental case
study, the heating part was considered. The heated medium was
cold water stored in two tanks (Fig. 1, device (II)). Hot medium, the
hot water, was heated to a constant temperature Thot ¼ 70+ C in a
retention tank with a heating coil (Fig. 1, device (III)). The constant
temperature of the hotmediumwas ensured by an auxiliary closed-
loopwith a simple PID controller. Both, hot and coldmediawere fed
to the plate heat exchanger by peristaltic pumps (Fig. 1, device (IV),
device (V)).

The operational task was to heat the cold medium to a setpoint
temperature Tref . From the control viewpoint, the aim of control
was to ensure offset-free setpoint tracking. The output temperature
of the heated medium T was the controlled variable (CV). As the

Fig. 1. The controlled plant e plate heat exchanger (I), tanks for cold medium (II), tank
for hot medium with heating system (III), peristaltic pump used for cold medium (IV),
peristaltic pump used for hot medium (V).
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temperature of the heatingmediumwas constant Thot ¼ 70+ C, the
temperature of the heated medium T depended on the flow of the
heatingmedium. Therefore, the manipulated variable (MV) was the
volumetric flow rate of hot medium q. The actuator was the peri-
staltic pump for feeding the hot medium (Fig. 1, device (V)) and the
sensor was the K-type thermocouple, see Ref. [27].

2.2. Mathematical model of the plate heat exchanger

To implement the robust control strategy to the heat exchanger,
we need a sufficiently precise mathematical model of the
controlled plant in a proper form. The convex-lifting-based robust
control requires a discrete-time state-space model that describes
also the effect of interval and additive uncertainties. In order to
obtain the minimum and maximum values of the interval un-
certainties, the set of multiple-step responses was measured in
various working conditions. The step-response-based method of
identification described in Ref. [28] was applied to identify the
parameters of the transfer function in the following form:

GðsÞ¼ Z
tsþ 1

e�Ds; (1)

where s represents a complex number frequency parameter of
Laplace transform, Z is the gain, t stands for the time constant, and
D stands for the time delay. Uncertain parameters were expressed
using intervals bounded byminimum andmaximumvalues of each
system parameter, i.e., the gains Zmin, Zmax, the time constants tmin,
tmax. The time delays were not considered as their values were not
significant. Using the minimum and maximum values of gains and
time constants 4 vertex systems were created. These vertex sys-
tems were transformed into state-space models in discrete-time
domain.

xðkþ1Þ¼AðlÞ xðkÞþBðlÞ uðkÞ þwðkÞ; (2a)

yðkÞ¼C xðkÞ; (2b)

xð0Þ¼ x0; (2c)

½AðlÞ;BðlÞ�2A; (2d)

A¼ convhull
��
AðvÞ;BðvÞ

�
;cv

�
; (2e)

ymin3 yðkÞ 3 ymax; (2f)

umin3 uðkÞ 3umax; (2g)

where k stands for the discrete time instant, xðkÞ2Rnx are the
system states with initial conditions x0, uðkÞ2Rnu is the manipu-
lated variable, and yðkÞ2Rny is the controlled variable. The mea-
surement noise wðkÞ2W3Rnx was considered as an additive
disturbance determined as the maximum amplitude of the ther-
mocouple measurement noise. The parameters ymin; ymax are lower
and upper bounds of the output variable yðkÞ, and umin;umax are
lower and upper bounds of the manipulated variable uðkÞ,
respectively.

The state, input, and output matrices of the system in (2) are
respectively represented by: AðlÞ2Rnx�nx , BðlÞ2Rnx�nu having
form

AðlÞ¼
Xnv

v¼1

lvAðvÞ; BðlÞ ¼
Xnv

v¼1

lvBðvÞ; (3)

where the parameter v represents the v-th vertex of the polytopic
uncertain system, and parameter 03 lv31 represents the
parameter in the convex combination of the uncertain system
vertices, see Refs. [25]. Parameter v ¼ 1;2;…; nv, where nv is the
total number of the uncertain system vertices.

2.3. Augmented mathematical model of the plate heat exchanger

The controllers designed for industrial implementation are
often expected to ensure offset-free setpoint tracking. To remove
the steady-state control error, the mathematical representation of
the plant was augmented by the term needed for adding the inte-
gral action to the controller. Considered augmented vector of the
system states bx is as follows:

bxðkÞ¼
264 xðkÞXk

j¼0

eðjÞ

375; (4)

where eðkÞ is the control error given by

eðkÞ¼ rðkÞ � yðkÞ (5)

and rðkÞ2Rny stands for the setpoint value at the given time
instance k.

The augmented matrices of the state space model in (2) are
defined as follows:

ÂðvÞ ¼
�
AðvÞ 0
�tsC I

�
; B̂ðvÞ ¼

�
BðvÞ
0

�
; Ĉ ðvÞ ¼ �CðvÞ 0

�
; (6)

where ts is the sampling time and the state, output and input
matrices respectively are:

ÂðvÞ ¼
�

0:6649±0:1470 0
�2:6475±2:4183 1

�
; (7a)

bBðvÞ ¼
�
4:0886±0:4249

0

�
; (7b)

Ĉ ðvÞ ¼ ½1 0 � (7c)

Further technical details regarding the identification of the plant
were discussed in Ref. [29].

3. Convex-lifting-based robust control

The convex-lifting-based robust control was designed in two
phases: (i) offline phase focused on the construction of the
controller; and (ii) online phase that represents the real-time
control.

In the offline phase, the controller is constructed based on the
solution of the complex parametric optimization problem, see
Ref. [30]. The advantage of solving the complex offline phase was to
pre-compute the robust control law. The solution of this optimi-
zation problem lead to the construction of two types of sets: (i) RPI
sets Xrpi; and (ii) convex lifting sets Xlift.

The construction of the RPI set Xrpi is the crucial part of the
proposed approach. We considered three different approaches of
RPI set construction that are introduced in detail in Sections
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3.1e3.3.
The convex lifting set Xlift was constructed by solving the

following optimization problem of multi-parametric linear pro-
gramming (mpLP):

[ðxÞ¼min
z

z (8a)

s:t: : x2Xlift; (8b)

�
x
z

�
2P; (8c)

where the decision variable is z2R1 and the parameters are the
system states x2Rnx . The polytopic set P2Rðnxþ1Þ is the convex
hull of RPI set vertices and vertices of convex lifting setXlift. Further
technical details are in Ref. [24].

In the online phase, the optimal value of manipulated variable u
is evaluated based on the pre-computed sets, i.e., either the convex
lifting set Xlift or RPI set Xrpi. If the current measurement of the
controlled variable y transformed into the system states x lies in the
convex lifting set Xlift, then the optimal value of manipulated var-
iable u is computed by solving the following linear programming
(LP):�

g+

uðkÞ+
�
¼ arg min

g;uðkÞ
g (9a)

s:t: : aui
�
Aj xðkÞþBj uðkÞþw

�þ bi � g [ðxðkÞÞ; (9b)

g�0; uðkÞ2U; cw2W; ci ¼ 1;2;…;nP; (9c)

c
�
Aj;Bj

�
2V

�
Xrpi

�
; (9d)

where V ðXrpiÞ represents set of vertices of RPI set Xrpi, [ is the
lifting value, ai, bi determine polytopes defined above the convex
lifting set Xlift, and nP is the total number of these polytopes.
Technical details are described in Ref. [24].

On the other hand, if the system states x lie in RPI set Xrpi, then
the optimal value of manipulated variable u is computed by linear
control law in the form:

uðkÞ¼K xðkÞ; (10)

where K2Rnu�nx is the gain matrix of the controller.
Three convex-lifting-based robust control strategies were

investigated in the paper: (i) non-tunable approach; (ii) tunable
approach; (iii) multiple tunable approach.

The considered control strategies differ in the construction of
RPI sets Xrpi. Non-tunable approach was originally proposed in
Ref. [24]. This control strategy does not take into account explicit
requirements on control performance. Tunable approach was pre-
sented in Ref. [25]. The RPI set is constructed subject to the MPC-
like weighting matrices. Therefore, the requirements on the con-
trol performance are implemented into the design of the RPI set.
Finally, the multiple tunable approach was also introduced in
Ref. [25]. This control method considered the construction of
multiple RPI sets. Usually, two RPI sets are considered to optimize
the control performance. The non-aggressive RPI set maximizes its
volume to minimize the necessity to solve LP problems. Simulta-
neously, aggressive RPI set optimizes the convergence of the
controlled variable into the setpoint. Each RPI set is designed
subject to the associated pair of MPC-like weighting matrices.

3.1. Non-tunable approach

The construction of RPI set Xrpi2Rnx�nx is crucial to determine
control performance. The RPI set Xrpi ¼ X0 is constructed by
solving the optimization problem of semidefinite programming
(SDP), see Ref. [31]. SDPs have convex objective function, usually
linear, and the constraints have the form of the linear matrix in-
equalities (LMIs), see Ref. [32].

The original non-tunable approach does not take into account
explicit control performance criteria [24]. The control law in (10) is
based on the solution of the following SDP:

min
X0;Y

� log detðX0Þ (11a)

s:t: :
�

X0 +
AjX0 þ BjY X0

�
_0; (11b)

where X0 is the inverted Lyapunov matrix, Y2Rnu�nx is auxiliary
matrix of well-known parametrization of control law in (10):

X0 K0 ¼Y : (12)

The symbol + denotes the symmetric structure of LMI in (11b).
The gain matrix of the control law in (10) is designed using (12) by

K0 ¼X�1
0 Y : (13)

Finally, the procedure of convex-lifting-based robust control
considering non-tunable approach is summarized in Algorithm 1,
see Ref. [24].

3.2. Tunable approach

Considering the tunable RPI set Xrpi ¼ X1 enables explicit
implementation of control performance criteria, see Ref. [25].

The tunable RPI set X1 is constructed considering the MPC-like
weighting matrices (Q1;R1), where Q1_0;2Rnx�nx ;R1_0;2Rnx�nx .
These weighting matrices are tuned to satisfy

Vðxð0ÞÞ� �
X∞

k¼0ðxðkÞuQ1xðkÞþuðkÞuR1uðkÞÞ; (14)

where V is the Lyapunov function.
The RPI set X1 is given by the solution of

min
gj;X1;Y1

gj (15a)

Algorithm 1
Convex-lifting-based robust control using non-tunable RPI set.

1:Input: uncertain model in (2)
2: Output: manipulated variable uðkÞ
3: I. Off-line phase
4: construct invariant set X0 and associated K0 using (13)
5: construct convex lifting above set Xlift
6: II. On-line phase
7: If xðkÞ2Xlift then
8: solve LP in (9) to compute uðkÞ
9: Else
10: uðkÞ ¼ K0 xðkÞ
11: end if
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s:t: :

266666664
Xj + + +

AvX1 þ BvY1 X1 + +

Q1=2
1 X1 0 g1I +

R1=21 Y1 0 0 g1I

377777775; (15b)

where v ¼ 1;…;nv, gj >02R is auxiliary optimized parameter, Y12
Rnu�nx is the auxiliary matrix of the control law parametrization,
and X1 ¼ Xu

1 _02Rnx�nx is the inverted weighted Lyapunov
matrix.

The gain matrix of control law in (10) is designed using

K1 ¼X�1
1 Y1: (16)

Finally, the procedure of convex-lifting-based robust control
considering tunable approach is proposed in Algorithm 2, see
Ref. [25].

3.3. Multiple tunable approach

Themultiple tunable RPI setsXrpi2fX1;X2;…Xnsg improve the
control performance by considering the set of control laws in (10),
see Ref. [25]. These multiple tunable RPI sets are constructed
considering the set of the MPC-like weighting matrices (Qj; Rj),
where Qj_0; 2Rnx�nx ; Rj_0; 2Rnx�nx . These weighting matrices
are tuned to satisfy

V

 
x

 
0

!!
� �

X∞
k¼0

 
xðkÞuQj x

 
k

!
þ uðkÞuRj u

 
k

!!
; j

¼ 1;2;…;ns; (17)

where V is the Lyapunov function and ns is total number of con-
structed RPI sets.

The set of ns weighting matrices (Qj; Rj) is considered in the
following SDPs, see Ref. [18,25]:

min
gj;Xj;Yj

gj (18a)

s:t: :

266666664

Xj + + +

AðvÞXj þ BðvÞYj Xj + +

Q1=2
j Xj 0 gjI +

R1=2j Yj 0 0 gjI

377777775; (18b)

where v ¼ 1;…; nv, j ¼ 1;2;…; ns. Usually, 2 pairs of weighting
matrices are considered, i.e., ns ¼ 2.

The set of gain matrices of control law in (10) is designed using

Kj ¼X�1
j Yj; j ¼ 1;2;…;ns: (19)

Finally, the procedure of convex-lifting-based robust control
considering tunable approach is proposed in Algorithm 3, see
Ref. [25].

4. Results and discussion

RMPC represents a standard and well-known robust control
strategy, that requires quite computationally demanding mathe-
matical operations in each sampling time. On the other hand, the
convex-lifting-based robust controllers are designed to reduce the
computational demand during the online phase, but still having a
favourable control performance and energy efficiency. In this sec-
tion, we analyse the results of the laboratory implementation of 3
proposed theoretical strategies proposed in Section 3 on the plate
heat exchanger described in Section 2.

4.1. Experimental setup

Robust control design aimed to ensure the offset-free setpoint
tracking of the plate heat exchanger. The setpoint temperature was
Tref ¼ 40+ C, while the inlet temperature of the heated medium
was approximately T0 ¼ 20+ C.

First, RMPC was considered as the reference control approach,
see Ref. [17]. RMPC was tuned w.r.t. the tuning parameters Q ;R, i.e.,
the weighting matrices, to optimize the control performance and
energy efficiency. The sampling time of RMPC was 5 s to ensure
sufficient time to solve the complex optimization online. Further
implementation details are in Refs. [17].

Next, three convex-lifting-based robust control approaches
were designed to ensure the offset-free setpoint tracking problem.
Sampling timewas set to ts ¼ 2 s. This valuewas reduced compared
to RMPC design, as the online computational burden was signifi-
cantly reduced by the convex-lifting-based robust control methods.

To make the measured results fully comparable with the refer-
ence RMPC strategy, the control trajectories were analysed
considering only initial 60 s of control, i.e., tc ¼ 60 s. The real-time
control was realized by MATLAB/Simulink R2018b, using CPU i5
2.7 GHz and 8 GB RAM. The optimization problems were parsed
using YALMIP toolbox [33]. The semidefinite optimization prob-
lems were solved by the solver MOSEK v8 [34], and LPs were
handled by solver Gurobi [35]. The parametric optimization and
geometry computations were delegated to Multi-Parametric
Toolbox [36]. Communication with the plant was ensured by
Wifi-based eLab Manager toolbox [37].

Convex-lifting-based robust control was designed and

Algorithm 2
Convex-lifting-based robust control using tunable RPI set.

1: Input: uncertain model in (2), MPC-like weighting matrices ðQ1;R1Þ
2: Output: manipulated variable uðkÞ
3: I. Off-line phase:
4: construct invariant set X1 and associated K1 using (16)
5: construct convex lifting above set Xlift
6: II. On-line phase:
7: If xðkÞ2Xlift then
8: solve LP in (9) to compute uðkÞ
9: else
10: uðkÞ ¼ K1 xðkÞ
11: end if

Algorithm 3
Convex-lifting-based robust control using multiple tunable RPI sets.

1: Input: uncertain model in (2), 2 pairs of MPC-like weighting matrices
ðQ1;R1Þ, ðQ2;R2Þ

2: Output: manipulated variable uðkÞ
3: I. Offline phase:
4: construct invariant sets X1 and X2 and associated K1 and K2 using (19)
5: construct convex lifting above set Xlift
6: II. Online phase:
7: if xðkÞ2Xlift then
8: solve LP in (9) to compute uðkÞ
9: else if xðkÞ2X2 then
10: uðkÞ ¼ K2 xðkÞ
11: else if xðkÞ2X1 then
12: uðkÞ ¼ K1 xðkÞ
13: end if
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implemented w.r.t. three different scenarios. At first, we designed
(i) original nontunable approach. By modifying the original
approach we designed (ii) tunable approach with single pair of
tuning MPC-like matrices Q ; R, that were systematically tuned as
follows:

Q ¼
�
1 0
0 1

�
; R¼ ½1�: (20)

Finally, we implementedmultiple tunable approach with 2 pairs
of tuning matrices. In this case, we selected two pairs of tuning
matrices Q1;R1 and Q2;R2 as follows:

Q1 ¼
�
5 0
0 0:03

�
; R1 ¼ ½1�; (21a)

Q2 ¼
�
1 0
0 1

�
; R2 ¼ ½1�: (21b)

For the controller design, input, state, and output variables of
system in (2) were defined in the form of the following deviation
variables:

uðkÞ¼ qðkÞ � qs; (22a)

x1ðkÞ¼ TðkÞ � Ts; (22b)

yðkÞ¼ TðkÞ � Ts; (22c)

where T is the controlled temperature of the heated fluid, Ts is the
associated working point temperature, q is the volumetric flow rate
of the hot medium and qs is the working point value of the flow
rate. The state x2 is an incremental value of the state x1, therefore, it
does not have any working point value.

The manipulated variable, the volumetric flow rate of the hot
medium q, was restricted within an operating range ½0�11:5� mL
s�1. This range was normalized so that the working point corre-
sponded to qs ¼ 5:75 mL s�1. This value was also the mean value of
the operating range. Therefore, the considered constrains of the
manipulated variable q were:

�5:75 mL s�1 � u
�
k
	
� 5:75 mL s�1: (23)

The negative value of the manipulated variable uðkÞ follows
from its definition in (22a). The minimum value of uðkÞ ¼ �
5:75 mL s�1 corresponds to the flow rate qðkÞ ¼ 0 mL s�1.

The controlled variable, i.e., the temperature of the heated fluid
T, was operated within ½15 � 55� + C. The limit values of this range
correspond to the minimal and maximal values of the manipulated
variable bounded as shown in (23). The controlled variable was
normalized so that the mean temperature Ts ¼ 35 + C corresponds
to the operating point. The normalized constrains of the controlled
variable were:

�20 � C � yðkÞ � 20 � C: (24)

The negative value of the controlled variable yðkÞ follows from
its definiton in (22c). The minimum value yðkÞ ¼ �20 + C corre-
sponds to the temperature TðkÞ ¼ 15 + C.

Finally, the elements of the augmented vector in (4) were con-
strained by� �20
�200

�
� bxðkÞ � � 20

200

�
: (25)

4.2. Offline phase of convex-lifting-based robust control

This part briefly summarizes the results of the offline phase of
the convex-lifting-based robust controller design. The main part of
the offline phase of the proposed approaches was to construct the
convex lifting setXlift and a single or the multiple RPI setsXrpi. The
technical details of the construction are described in Section 3. The
controllers were designed w.r.t. three different strategies:

i non-tunable convex-lifting-based robust control: convex lifting
and RPI set are depicted in Fig. 2,

ii tunable convex-lifting-based robust control with single pair of
weighting matrices: convex lifting and RPI set are plotted in
Fig. 3,

iii multiple tunable convex-lifting-based robust control with
multiple pairs of weighting matrices: convex lifting and two RPI
sets are shown in Fig. 4.

4.3. Online phase of convex-lifting-based robust control

The aim of the online phase, i.e., the real-time control, was to

Fig. 2. Parametric solution of convex-lifting-based robust control method for the
model of heat exchanger: (i) original non-tunable convex-lifting-based control.

Fig. 3. Parametric solution of convex-lifting-based robust control method for the
model of heat exchanger: (ii) tunable convex-lifting-based control with single RPI set.
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compute the optimal value of the manipulated variable uðkÞ at each
instance k. The non-tunable robust control strategy could not
explicitly take into account the control performance criteria and
the energy efficiency during the controller design. On the other
hand, the tunable and multiple tunable approaches were experi-
mentally tuned to obtain a satisfactory control performance w.r.t.
the minimization of their energy consumption. These control
methods were tuned by a single or two pairs of weighting matrices
in (20), (21), respectively.

The overall comparison of the control performance of all
considered robust control strategies is depicted in Fig. 5. Particu-
larly, the trajectories of the controlled variable, i.e., the temperature
of the heated medium, are depicted in Fig. 5 (a), while the associ-
ated trajectories of the manipulated variables, i.e., volumetric flow-
rate of the hot medium, are shown in Fig. 5 (b).

It can be seen in Fig. 5 (a) that all control approaches ensured
offset-free setpoint tracking within 2 min. Simultaneously, the
values of the manipulated variables evaluated by all considered
control strategies respected the given constraints (Fig. 5 (b), dashed
black). As can be seen, the designed convex-lifting-based robust
controllers (Fig. 5 (a), blue, yellow, purple) significantly out-
performed the RMPC approach (Fig. 5 (b), green). Differences be-
tween control trajectories in the analysed approaches were caused
by multiple factors. First, RMPC method was focused on the opti-
mization of the performance of the nominal, i.e., average model.
The uncertain system vertices were considered just to ensure
robust stability guarantee. On the other hand, the convex-lifting-
based approaches considered all vertex models in control perfor-
mance optimization. Next, the structures of the optimization
problems themselves were different. Particularly, the RMPC is
based on the repetitive solution of the semidefinite programming,
while the convex-lifting-based robust control methods solve the
LPs or parametric LPs. However, all the approaches are still com-
parable as they share the same control conditions determined by
the uncertain system and the constraints on the manipulated var-
iable and controlled variable. Details of RMPC design applied on the
heat exchanger are summarized in Ref. [17].

Fig. 6 provides the detail insight into the initial 60 s to compare
the control performance of particular convex-lifting-based robust
control approaches. Control trajectory of presented approaches is

depicted in Fig. 6 (a) Corresponding trajectories of the manipulated
variables are depicted in Fig. 6 (b). As can be seen, the measured
control trajectories differ in the values of settling time and
overshoot.

4.4. Analysis of the control performance

The quality of control was judged w.r.t. the control performance
of the heat exchanger outlet temperature T, i.e., the system output y.
Simultaneously, the quality was analysed subject to the overall
energy consumption, i.e., the system input u. The evaluated control
performance criteria are summarized in Table 1, where three main
control performance quality criteria were analysed, i.e., the settling
time tset, overshoot smax, and the energy consumption E.

The settling time tset was determined as the time, when the
controlled variable settled within 2 %-neighborhood of the setpoint
value Tref .

The overshoot smax was computed by:

smax ¼ Tmax � Tref
Tref � Tinit

; (26)

where Tmax is the maximum value of the controlled variable, Tref ¼
40 + C is the setpoint, Tinit ¼ 30 + C is the initial value of the
controlled variable.

Energy efficiency E was evaluated as the total energy con-
sumption necessary to heat the heating medium and was calcu-
lated as follows:

E¼Vtotal r cp DT ¼
ð120
0

qðtÞ r cp DTdtz
X
k¼0

60
qðkÞ r cp DT ts;

(27)

where Vtotal was the total consumption of heating medium,
r ð35+CÞ ¼ 993:94 kg m�3 was the density,

cp ð35�CÞ ¼ 4:18 kJ kg�1 K�1 was the specific heat capacity of hot
medium, i.e., water. The temperature difference was DT ¼ 50 +C as
the hot medium was heated up from the initial laboratory tem-
perature Tlab ¼ 20 +C to the temperature of hot medium Thot ¼
70 +C.

Control trajectory of RMPC had the largest overshoot smax and
settling time tset. Moreover, the energy consumption E had the
largest value. Implementation of the convex-lifting-based robust
controllers significantly improved all of the evaluated quality
criteria, see Table 1. By implementing original non-tunable strategy,
overshoot smax decreased by 40 %, settling time tset decreased by
62 %, and the energy consumption E was reduced by 82 %. Imple-
menting of tunable and multiple tunable strategies, the overshoot
and settling time decreased, when compared to the non-tunable
approach. Particularly, in comparison to the non-tunable strategy,
the multiple tunable approach reduced the overshoot by 36 %.

Settling time in multiple tunable strategy was the same as the
settling time ensured by the tunable strategy. When compared to
the non-tunable strategy, the settling time was reduced by 21 %.
Compared to RMPC, the tunable and themultiple tunable strategies
reduced the settling time by 70 %.

Comparing non-tunable and tunable approaches, the energy
consumption E increased, but the other evaluated criteria were
improved. On the other hand, comparing non-tunable and multiple
tunable approaches, the energy consumption E decreased by 13 %.
Therefore, the multiple tunable strategy was evaluated as the most
suitable w.r.t. the judged control performance criteria, see Table 1.

The implementation point of view is important when

Fig. 4. Parametric solution of convex-lifting-based robust control method for the
model of heat exchanger: (iii) multiple tunable convex-lifting-based robust control
with 2 pairs of RPI sets.
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considering the industrial implementation of the designed robust
control strategies. This paper analysed also the computational de-
mands of each control procedure.

The main limitation of the real-time implementation of RMPC is
the computational burden it puts upon the hardware to compute
the optimal value of the manipulated variable.

In contrast to RMPC, the convex-lifting-based methods have a
preparation offline phase to construct a robust controller. The ma-
jority of the optimization problems regarding the controller design
were solved during the offline phase. The overall computation time
tsol of the offline phasewas approximately 3 s. As a consequence, the
offline phase significantly decreased the computational demand of
computing the optimal value of themanipulated variable during the
online phase, i.e., the real-time control.

Table 2 compares the implementation properties of the
considered robust control strategies, where tonline is the time
necessary to compute the optimal value of the manipulated vari-
able during the online phase, i.e., real-time control. As can be seen,
convex-lifting-based robust control strategies significantly out-
performed the RMPC as the computational time was reduced by
99.4 %. The reason is, that RMPC solved in each control step com-
plex SDP optimization problem. On the other hand, convex-lifting-
based robust control strategies solved either LP in (9) or
optimization-free state feedback linear control law in (10). The
linear control law is evaluated when system states lie inside the RPI
set. Therefore, the volume of RPI set Vrpi was maximized to increase
the probability to evaluate the optimization-free linear control law,
see Table 2.

Fig. 5. Control performance: RMPC (dash-dotted green), (i) nontunable approach (dashed blue), (ii) tunable approach with single pair of weighting matrices (solid yellow), (iii)
tunable approach with multiple pairs of weighting matrices (dotted purple), setpoint (dashed black), and manipulated variable constrains (dash-dotted black).
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Implementation of the tunable strategy decreased the compu-
tational demand during the online phase when compared to the
non-tunable strategy. The reason is increased volume of the RPI set
Vrpi, see Table 2.

5. Conclusions

In this paper, we analysed control performance and energy ef-
ficiency of four robust control strategies implemented on the

Fig. 6. Control performance: (i) non-tunable approach (dash blue), (ii) tunable approach with single pair of weighting matrices (solid yellow), (iii) tunable approach with multiple
pairs of weighting matrices (dotted purple), setpoint (dashed black), and manipulated variable constrains (dash-dotted black).

Table 1
Comparison of the control performance and energy efficiency of the strategies.

Strategy tset [s] smax [%] E [kJ]

RMPC 102 10.5 780.0
non-tunable 39 6.3 140.5
tunable 31 5.5 141.5
multiple tunable 31 4.0 123.0

Table 2
Comparison of the designed controller properties.

Criteria tonline [ms] Vrpi [� 103]

RMPC 160 y
non-tunable 1 5.7
tunable 1 9.5
multiple tunable 1 9.5
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laboratory plate heat exchanger. First, we considered the conven-
tional RMPC as the reference approach. Next, three convex-lifting-
based robust control methods were designed and implemented.
Compared to RMPC, the non-tunable approach improved control
performance in terms of the minimization of the selected quality
criteria. Moreover, it increased energy efficiency in 82% w.r.t. RMPC
method. The tunable approach with a single RPI set ensured further
significant improvement of the control performance. On the other
hand, the energy efficacy decreased compared to the non-tunable
approach. Multiple tunable approach with 2 RPI sets was
designed to preserve the control performance of non-tunable
approach and, simultaneously, to ensure further energy savings
by 13%w.r.t. the non-tunable approach. Based on the analysis of the
measured data, the multiple tunable convex-lifting-based robust
controller with two RPI sets was evaluated as the most energy-
efficient control strategy for the considered plate heat exchanger.
Further research is focused on the investigation of the energy ef-
ficacy considering approximated control law.
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ai: slope of the i-th polytope
A: system matrix of the state space system
AðvÞ: vertex system matrix of the state space systembAðvÞ

: vertex system matrix of the augmented state space system
A: set of uncertain state space system
bi: intercept of the i-th polytope

J. Oravec et al. / Energy 201 (2020) 11756610

https://doi.org/10.1016/j.energy.2009.04.034
https://doi.org/10.1016/j.energy.2009.04.034
https://doi.org/10.1016/j.applthermaleng.2016.06.183
https://doi.org/10.1016/j.applthermaleng.2016.06.183
https://doi.org/10.1016/j.jprocont.2007.05.007
https://doi.org/10.1016/j.jprocont.2007.05.007
https://doi.org/10.3303/CET1976124
https://doi.org/10.1016/j.automatica.2014.10.128
https://doi.org/10.1016/j.automatica.2014.10.128
https://doi.org/10.1016/j.energy.2009.04.034
https://doi.org/10.1016/j.energy.2009.04.034
https://doi.org/10.1016/j.energy.2019.05.023
https://doi.org/10.1016/j.energy.2019.04.178
https://doi.org/10.1016/j.energy.2019.04.178
http://refhub.elsevier.com/S0360-5442(20)30673-3/sref9
http://refhub.elsevier.com/S0360-5442(20)30673-3/sref9
http://refhub.elsevier.com/S0360-5442(20)30673-3/sref9
http://refhub.elsevier.com/S0360-5442(20)30673-3/sref9
http://refhub.elsevier.com/S0360-5442(20)30673-3/sref9
http://refhub.elsevier.com/S0360-5442(20)30673-3/sref9
http://refhub.elsevier.com/S0360-5442(20)30673-3/sref9
http://refhub.elsevier.com/S0360-5442(20)30673-3/sref9
http://refhub.elsevier.com/S0360-5442(20)30673-3/sref9
http://refhub.elsevier.com/S0360-5442(20)30673-3/sref9
http://refhub.elsevier.com/S0360-5442(20)30673-3/sref9
https://doi.org/10.1016/j.applthermaleng.2017.10.056
https://doi.org/10.1016/j.applthermaleng.2017.10.056
https://doi.org/10.1016/j.energy.2019.07.022
https://doi.org/10.1016/j.energy.2019.07.022
https://doi.org/10.3303/CET1976045
https://doi.org/10.3303/CET1976045
https://doi.org/10.1016/j.rser.2019.05.046
https://doi.org/10.1016/j.rser.2019.05.046
http://refhub.elsevier.com/S0360-5442(20)30673-3/sref14
http://refhub.elsevier.com/S0360-5442(20)30673-3/sref14
http://refhub.elsevier.com/S0360-5442(20)30673-3/sref14
https://doi.org/10.1016/j.energy.2018.06.106
https://doi.org/10.1016/j.energy.2018.06.106
https://doi.org/10.3303/CET1976131
https://doi.org/10.1016/j.energy.2019.05.093
https://doi.org/10.1016/j.energy.2019.05.093
http://refhub.elsevier.com/S0360-5442(20)30673-3/sref18
http://refhub.elsevier.com/S0360-5442(20)30673-3/sref18
http://refhub.elsevier.com/S0360-5442(20)30673-3/sref18
https://doi.org/10.1016/j.ifacol.2017.08.2220
https://doi.org/10.1016/j.ifacol.2017.08.2220
https://doi.org/10.1109/TAC.2017.2737234
https://doi.org/10.1109/TAC.2017.2737234
https://doi.org/10.1109/CDC.2015.7403150
https://doi.org/10.3182/20140824-6-ZA-1003.02364
https://doi.org/10.3182/20140824-6-ZA-1003.02364
https://doi.org/10.1016/j.automatica.2017.12.017
https://doi.org/10.1016/j.automatica.2017.12.017
https://doi.org/10.1016/j.automatica.2016.11.031
https://doi.org/10.1016/j.automatica.2016.11.031
https://doi.org/10.1016/j.ejcon.2019.01.002
https://doi.org/10.3303/CET1976123
https://doi.org/10.3303/CET1976123
http://refhub.elsevier.com/S0360-5442(20)30673-3/sref28
http://refhub.elsevier.com/S0360-5442(20)30673-3/sref28
http://refhub.elsevier.com/S0360-5442(20)30673-3/sref28
https://doi.org/10.1016/B978-0-444-63965-3.50266-X
https://doi.org/10.1016/B978-0-444-63965-3.50266-X
https://doi.org/10.1017/9781139061759
https://doi.org/10.1017/9781139061759
http://refhub.elsevier.com/S0360-5442(20)30673-3/sref31
http://refhub.elsevier.com/S0360-5442(20)30673-3/sref31
http://refhub.elsevier.com/S0360-5442(20)30673-3/sref31
http://refhub.elsevier.com/S0360-5442(20)30673-3/sref32
http://refhub.elsevier.com/S0360-5442(20)30673-3/sref32
http://refhub.elsevier.com/S0360-5442(20)30673-3/sref32
http://refhub.elsevier.com/S0360-5442(20)30673-3/sref33
http://refhub.elsevier.com/S0360-5442(20)30673-3/sref33
http://refhub.elsevier.com/S0360-5442(20)30673-3/sref33
https://mosek.com/
http://www.gurobi.com
http://control.ee.ethz.ch/%7Empt
http://refhub.elsevier.com/S0360-5442(20)30673-3/sref37
http://refhub.elsevier.com/S0360-5442(20)30673-3/sref37
http://refhub.elsevier.com/S0360-5442(20)30673-3/sref37
http://refhub.elsevier.com/S0360-5442(20)30673-3/sref37
http://refhub.elsevier.com/S0360-5442(20)30673-3/sref37
http://refhub.elsevier.com/S0360-5442(20)30673-3/sref37


B: input matrix of the state space system
BðvÞ: vertex input matrix of the state space systembBðvÞ

: vertex input matrix of the augmented state space system
cp: specific heat capacity, kJ kg�1 K�1

C: output matrix of the state space system
CðvÞ: vertex output matrix of the state space systembC ðvÞ

: vertex output matrix of the augmented state space system
e: control error, �C
E: energy consumption, kJ
I: identity matrix
k: sample of discrete time domain, s
K: gain matrix of the controller
K0: gain matrix associated to non-tunable RPI set
Kj: gain matrix associated to j-th tunable RPI set
[: lifting value
np: total number of polytopes
ns: total number of RPI sets
nu: total number of system inputs
nv: total number of the uncertain system vertices
nx: total number of system states
ny: total number of system outputs
q: volumetric flowrate of hot medium, i.e., manipulated variable, mL s�1

qs: steady-state working point of manipulated variable, mL s�1

Q: weighting matrix of system states
Qj: weighting matrix of system states associated to j-th tunable RPI set
R: weighting matrix of system inputs
Rj: weighting matrix of system inputs associated to j-th tunable RPI set
r: setpoint value, �C
R: Euclidean space of the real numbers
t: time, s
tc: control time, s
tonline: time necessary to compute optimal value of manipulated variable during

online phase, s
ts: sampling time, s
tset : settling time, s
T: output temperature of the heated medium, i.e., controlled variable, �C
T0: inlet temperature of the heated medium, �C
Thot : temperature of the heating medium, �C
Tinit : initial value of controlled variable, �C
Tmax: maximal value of controlled variable, �C
Tlab: laboratory temperature, �C
Tref : setpoint temperature, �C
Ts: steady-state working point of controlled variable, �C
DT: temperature difference, �C
u: control input, i.e., manipulated variable, mL s�1

umax: maximal value of the manipulated variable, mL s�1

umin: minimal value of the manipulated variable, mL s�1

U: set of constrains on the manipulated variable
v: vertex of the polytopic uncertain system
V: Lyapunov function
Vrpi: volume of robust positive invariant set

Vtotal: total consumption of heating medium, mL
V ðXrpiÞ: set of vertices of RPI set
w: measurement noise, i.e., additive disturbance
W: set of constrains on the measurement noise
x: system states
x0: initial conditions of system statesbx: augmented vector of the system states
X0: weighted inverted Lyapunov matrix associated to non-tunable RPI set
Xj: weighted inverted Lyapunov matrix associated to j-th tunable RPI set
X0: robust positive invariant set associated to non-tunable RPI set
Xj: robust positive invariant set associated to j-th tunable RPI set
Xlift : convex lifting set
Xrpi: robust positive invariant set
y: system output, �C
ymax: maximal value of the system output, �C
ymin: minimal value of the system output, �C
Y: auxiliary matrix of control law parametrization
Yj: auxiliary matrix of control law parametrization associated to j-th tunable RPI set
z: decision variable of parametric linear programming
Z: gain
Zmax: maximum gain
Zmin: minimum gain

Greek letters

g: auxiliary optimized parameter
g+: optimal value of auxiliary optimized parameter
gj : auxiliary optimized parameter associated to j-th tunable RPI set
l: parameter of the convex combination of uncertain system vertices
P: polytopic set
r: density, kg m�3

smax: overshoot, %
t: time constant, s
tmax: maximum time constant, s
tmin: minimum time constant, s

Abbreviations

CPU: central processing unit
CV: controlled variable
LMI: linear matrix inequality
LP: linear programming
MPC: model predictive control
MV: manipulated variable
PID: proportionaleintegralederivative
PLC: programmable logic controller
RAM: random access memory
RMPC: robust model predictive control
RPI: robust positive invariant
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A B S T R A C T

Climate change enforces the implementation of sustainable industrial production with a special focus on
pollution reduction, resource management, and energy savings. These goals are addressed by designing
advanced control methods using the solution of an adequately formulated optimization problem. Heat
exchangers represent particularly energy-demanding plants that are challenging from the advanced controller
design point of view. Model predictive control (MPC) is a suitable control strategy to address the relevant
control tasks. The complexity of the real-time implementation of MPC directly depends on the number of
inequality constraints in the corresponding optimization problem. Therefore, the real-time computational
effort can be reduced by removing inactive constraints. Since removing inactive constraints does not change
the optimal solution, it is desirable to detect inactive constraints corresponding to the current system state
measurement and remove them from the formulation of the MPC problem before running the optimization
solver. However, external disturbances, parametric uncertainties, and setpoint changes often impact real
plants, limiting the application range of the conventional constraint removal MPC approach. In this paper, we
propose a modification of the conventional constraint removal approach to address this issue. The modified
constraint removal approach achieves the robustness required for a practical application to a laboratory-scaled
heat exchanger. The control performance of the heat exchanger is analyzed from the industrial perspective
considering the computational time and energy consumption by implementing the control approach on a 32-bit
microcontroller.

1. Introduction

Efficient energy supply plays a crucial role in achieving important
goals, such as the health of economies in the presence of sustainable
industry. Nowadays, approximately 80% of energy utilization involves
some form of heat transfer [1]. Heat exchangers are present in most
industrial operations and are thus involved in the energy-intensive part
of the operation. As the consequence, the operation of heat exchangers
has a strong impact on the economic efficiency of their operation [2].
Therefore, the importance of heat transfer technologies, modeling, and
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integration are significant. An overview of current advancements in
applied thermal engineering is presented, e.g., in [3].

One of the areas with a promising potential for improvement is the
design and application of optimal control algorithms for heat exchang-
ers. Thus, the improved operation of heat exchangers can be directly
associated with the implementation of advanced control strategies.

In recent years, advanced optimization-based control methods like
model predictive control (MPC) gained popularity [4]. MPC is a control
method based on periodically solving a constrained optimal control
problem (OCP) in every time step to evaluate the optimal input signal.
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From the control perspective, the implementation of MPC outperforms
any proportional–integral–derivative (PID) controller by its nature, as
MPC evaluates the control actions by solving the optimization problem
taking into account a wide class of technological constraints and quality
criteria. In [5], several case studies comparing MPC with PID control
point out the superiority of the optimization-based MPC. A possibility of
how to avoid online optimizations while preserving competing results
such as an optimal operation was investigated in [6], underlining
the wish to profit from the benefits coming with optimization-based
control approaches. In, e.g., [7], the aforementioned advantages of
MPC, together with the possibility to naturally control systems with
multiple inputs and outputs, have been shown to enhance both, the
control performance and its robustness compared to the existing PID
controller of a heat exchanger processed in a South-East Asian facility.
Besides this, further work has dealt with the control of heat exchangers
using MPC. In [8], MPC was proposed for the intermittent operation
of a solar-assisted ground source heat pump system. Predictive control
methods were also considered to control a network of heat exchangers
in [9]. In [10], a so-called neural network predictive controller com-
bined with an auxiliary fuzzy controller was successfully applied to a
heat exchanger to reduce energy consumption. Compared to conven-
tional APC controller design, the proposed method introduces two main
benefits: first, we preserve the optimal evaluation of the control actions
by a simultaneous reduction of the computational burden. Secondly,
as a consequence, the decreased computational effort leads to reduced
energy requirements on the controller-side. Admittedly, MPC comes at
a higher implementation cost than APC, but it is evident that more
sophisticated control methods, e.g. MPC, may achieve better control
performance. Therefore the MPC based methods also affect the energy
aspect of the controlled device itself not only the implementation cost.

In MPC, the complexity of the OCP depends on the complexity of
the controlled plant, the associated prediction model, and the num-
ber of considered physical constraints. The solution of the underlying
optimization problem can be computationally intensive. Therefore,
extensive research has been devoted to reducing the complexity of the
corresponding OCP and to speeding up the solution process [11].

Some well-known methods, e.g., move blocking, decrease the com-
putational effort by reducing the degrees of freedom, see, e.g., [12]
for a review of move blocking methods. However, the resulting control
action is no longer optimal. From an energy-saving point of view,
MPC design methods that preserve the optimality and, simultaneously,
minimize the computational burden by exploiting the structure of the
OCP (see, e.g., [13,14]) are more relevant. Explicit MPC (see [15,16])
avoids real-time optimization by precomputing the explicit solution
map considering the whole set of admissible initial conditions. How-
ever, even for linear MPC, the multi-parametric optimization problem
of the explicit MPC may be intractably complex, or the constructed
explicit solution exceeds the memory limits of industrial hardware
for immediate online use. Several methods have been proposed for
complexity reduction, e.g., exploiting the geometry of explicit MPC
solutions [17], using bilevel optimization [18], or introducing the
reachability analysis [19].

Yet another class of approaches detects and removes inactive con-
straints before delegating the optimization problem to the solver,
see [20–23]. These methods aim at preserving the optimal solution
while reducing the computational complexity.

The MPC design method proposed in this paper originates from
[23], and its nonlinear MPC variant is presented in [24]. The main idea
is to evaluate a characteristic number associated with a cost function
value that is assigned to each constraint of the OCP. The characteristic
values (the 𝜎-bounds introduced in Section 3) are calculated offline,
i.e., before the runtime of the controller. Online, i.e., during runtime,
the assigned values serve as an indicator to determine if the correspond-
ing constraint is inactive in the current and all subsequent control steps.

The offline calculation of the characteristic values results in additional
optimization problems but does not affect the real-time feasibility.
Technically, the characteristic value for every constraint represents a
bound corresponding to the minimum value that the cost function at-
tains if the corresponding constraint is active. From a theoretical point
of view, the cost function is guaranteed to be non-increasing along the
control steps, which originates in the asymptotic stability condition of
the designed MPC (see, e.g., [25]). As a consequence, once the cost
function value decreases below the precomputed characteristic bound,
the corresponding inactive constraint is removed for all subsequent
time steps. The method does not only remove redundant constraints but
progressively reduces the number of constraints during the runtime of
the controller. However, the described technique needs to be adopted if
an increase in the optimal cost function value can no longer be avoided.
This may be the case, for example, due to a disturbance.

The main contribution of this paper is the application of MPC with
constraint removal for the setpoint tracking problem of a laboratory
plate heat exchanger. To the best of the authors’ knowledge, this work
presents the first experimental implementation of MPC with constraint
removal on a real plant. When controlling a real device, disturbances
and plant-model mismatch are inevitable. To eliminate steady-state
errors, we will therefore introduce an integrator part to our model. This
can lead, however, to an increase of the optimal cost function value
over time. Thus we modify the characteristic bounds assigned to every
constraint of the OCP to avoid removing constraints that could become
active for a later time step due to the step change of the setpoint.

Specifically, we determine conservative values of the original 𝜎-
bounds depending on the maximum impact of the setpoint changes on
the closed-loop optimal cost function value. Based on the conservative
values of the original 𝜎-bounds, inactive constraints in the OCP are
detected and removed. Due to the fact that the removed constraints
are not active, the control performance is not affected. To confirm
this, the control performance of MPC was evaluated by comparing
MPC with and without applying the constraint removal approach. To
demonstrate the constraint removal approach’s practical benefits, the
OCP was also implemented and solved on a 32-bit microcontroller. The
computational time and energy efficiency of the microcontroller were
again evaluated for MPC with and without constraint removal.

In this paper, we focus on the energy efficiency of the microcon-
troller, therefore the energy aspect of the controlled device itself is
beyond its scope. The energy consumption on the side of the controller,
however, is often overlooked, but highly relevant to be considered from
the authors perspective.

The paper is organized as follows. We introduce the control problem
in Section 2. The constraint removal approach is described in detail in
Section 3. The considered laboratory plate heat exchanger is introduced
in Section 4, and Section 4.3 treats the necessary modifications on
the considered constraint removal method. The extensive experimental
case study of the heat exchanger control is analyzed in Section 5.1,
followed by an evaluation of energy reduction considering a micro-
controller in Section 5.2. Section 6 concludes the paper and gives an
outlook on future work.

2. Problem statement and notation

Throughout this paper, we consider linear discrete-time systems of
the form

𝑥(𝑘 + 1) = 𝐴𝑥(𝑘) + 𝐵𝑢(𝑘), (1a)

𝑦(𝑘) = 𝐶𝑥(𝑘), (1b)

𝑘 ≥ 0, with states 𝑥(𝑘) ∈ R𝑛, inputs 𝑢(𝑘) ∈ R𝑚, and outputs 𝑦(𝑘) ∈ R𝑝,
and matrices 𝐴 ∈ R𝑛×𝑛, 𝐵 ∈ R𝑛×𝑚, and 𝐶 ∈ R𝑝×𝑛. We assume (𝐴,𝐵) to
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be stabilizable. States and inputs are subject to lower and upper bounds

𝑥𝑖,min ≤ 𝑥𝑖(𝑘) ≤ 𝑥𝑖,max, (2a)

𝑢𝑗,min ≤ 𝑢𝑗 (𝑘) ≤ 𝑢𝑗,max, (2b)

for all 𝑘 and with 𝑖 = 1,… , 𝑛, 𝑗 = 1,… , 𝑚. The objective of the MPC
design is to regulate the system state (1a) to the origin by periodically
solving the optimization problem

min
𝑋,𝑈

𝑥(𝑁)⊤𝑃𝑥(𝑁) +
𝑁−1
∑

𝑘=0
𝑥(𝑘)⊤𝑄𝑥(𝑘) + 𝑢(𝑘)⊤𝑅𝑢(𝑘) (3a)

s.t. 𝑥(0) = 𝑥0, (3b)

𝑥(𝑘 + 1) = 𝐴𝑥(𝑘) + 𝐵𝑢(𝑘), 𝑘 = 0,… , 𝑁 − 1, (3c)

𝑥(𝑘) ∈  , 𝑘 = 0,… , 𝑁 − 1, (3d)

𝑢(𝑘) ∈  , 𝑘 = 0,… , 𝑁 − 1, (3e)

𝑥(𝑁) ∈  , (3f)

on a receding prediction horizon 𝑁 for the current state 𝑥(0). The state
and input constraints (2) are stated as compact and convex sets 
and  , respectively. The decision variables are summarized by 𝑋 =
(𝑥(1)⊤,… , 𝑥(𝑁)⊤)⊤ and 𝑈 = (𝑢(0)⊤,… , 𝑢(𝑁 − 1)⊤)⊤, and the weighting
matrices 𝑃 , 𝑄, 𝑅 have the obvious dimensions. We assume 𝑄 to be
positive semi-definite and 𝑃 and 𝑅 to be positive definite. The terminal
set  ⊆  , which appears as a constraint on the last state along the
prediction horizon 𝑁 , is assumed to contain the origin in its interior.

By substituting the dynamics of system (1a) into (3), the optimal
control problem (3) is rewritten as a quadratic program (QP) of the
form
min
𝑈

𝑉 (𝑥(0), 𝑈 )

s.t. 𝐺𝑈 ≤ 𝑤 + 𝐸𝑥(0),
(4)

where 𝑉 (𝑥(0), 𝑈 ) = 1
2
𝑥(0)⊤𝑌 𝑥(0) + 𝑥(0)⊤𝐹𝑈 + 1

2
𝑈⊤𝐻𝑈 , 𝑌 ∈ R𝑛×𝑛,

𝐹 ∈ R𝑛×𝑚𝑁 , 𝐻 ∈ R𝑚𝑁×𝑚𝑁 , 𝐻 ≻ 0, and 𝐺 ∈ R𝑞×𝑚𝑁 , 𝑤 ∈ R𝑞 , 𝐸 ∈ R𝑞×𝑛,
with 𝑞 denoting the number of constraints (see, e.g., [23] and the
references therein). Since 𝐻 ≻ 0, the solution to (4) is unique, if it
exists. After solving (4) for an optimal input trajectory 𝑈⋆, we apply
the first element, i.e., 𝑢⋆(0) to the system. In the next time step, we solve
problem (4) again for the receding horizon 𝑁 and the updated system
state, such that a closed-loop control scheme results (see, e.g., [4,25]
for a further introduction). Note that, since the system described by
Eq. (1)a-b serves as the prediction model used for the MPC design and
the optimization problem described by Eq. (3)a-f does not implement
a robust variant of MPC, uncertainties arising in the real plant are not
considered in Eq. (1)a-b explicitly.

Notation

Let  refer to the set of states 𝑥 ∈  for which (4) has a solution, and
let 𝑈⋆(𝑥(0)), for any 𝑥(0) ∈  , refer to the sequence that optimizes (4).
We often write 𝑈⋆, 𝑈⋆(𝑥), 𝑉 (𝑥, 𝑈⋆), 𝑉 (𝑥, 𝑈⋆(𝑥)), etc., as short for
𝑈⋆(𝑥(0)), 𝑉 (𝑥(0), 𝑈⋆(𝑥(0))), etc. Let  = {1,… , 𝑞} collect all constraint
indices. The constraint with index 𝑖 ∈  is called active for 𝑥(0) ∈ 
if 𝐺𝑖𝑈⋆ − 𝑤𝑖 − 𝐸𝑖𝑥(0) = 0, and inactive if 𝐺𝑖𝑈⋆ − 𝑤𝑖 − 𝐸𝑖𝑥(0) < 0.
Let (𝑥(0)) and (𝑥(0)) be defined as the set of indices of all active
and inactive constraints for 𝑥(0), respectively. For a matrix 𝐺 and an
ordered set 𝛴 ⊂ , let 𝐺𝛴 refer to the submatrix of 𝐺 with the rows
indicated by indices 𝛴.

3. MPC with constraint removal

In this Section, we introduce the constraint removal method pre-
sented in [23] as needed in the present paper. Later, in Section 4.3,

we show the modifications necessary to adopt this method for an
application to the laboratory heat exchanger.

Inactive constraints have no influence on the optimal solution. Thus
the optimal input sequence 𝑈⋆(𝑥) resulting from solving (4) does not
change if some or all inactive constraints are removed from the original
OCP. This observation is stated concisely in the following proposition.

Proposition 1 ([23]). Let 𝑥0 ∈  be arbitrary and let ̃ ⊂  be an ar-
bitrary subset of the inactive constraints. Consider the reduced optimization
problem

min
�̂�

𝑉 (𝑥0, �̂� )

s.t. 𝐺⧵̃ �̂� ⩽ 𝑤⧵̃ + 𝐸⧵̃𝑥0.
(5)

Then (5) has a unique solution, which we denote by �̂�⋆. This solution is
equal to the solution obtained from (4), i.e., �̂�⋆ = 𝑈⋆ and 𝑉 (𝑥0, �̂�⋆) =
𝑉 (𝑥0, 𝑈⋆).

We use precalculated characteristic bounds on the optimal cost
function to detect inactive constraints as proposed in [23]. Hereafter,
we denote these bounds 𝜎𝑖, 𝑖 = 1,… , 𝑞, with index 𝑖 corresponding to a
constraint of problem (4) and thus a certain line of 𝐺, 𝑤, and 𝐸. Such a
bound 𝜎𝑖 is equal to the minimum value the cost function attains such
that constraint 𝑖 ∈ , and will be used as a lower bound on the optimal
cost function in (4).

Definition 1. Let 𝑖 ∈  be arbitrary. If there exists an 𝑥 ∈ R𝑛 such
that
min
𝑥,𝑈

𝑉 (𝑥, 𝑈 )

s.t. 𝐺𝑖𝑈 −𝑤𝑖 − 𝐸𝑖𝑥 = 0,

𝐺⧵𝑖𝑈 −𝑤⧵𝑖 − 𝐸⧵𝑖𝑥 ⩽ 0

(6)

has a solution, set 𝜎𝑖 to the minimum that results for (6), i.e., 𝜎𝑖 ∶=
𝑉 (𝑥⋆, 𝑈⋆). Otherwise, let 𝜎𝑖 = ∞.

Note that 𝜎𝑖 = ∞ implies constraint 𝑖 can never be active. Since
we need to find the configuration of initial state and input trajectory
resulting in the smallest cost function value 𝑉 ⋆, the initial state 𝑥 is an
additional degree of freedom in (6), while it is a fixed parameter in (5).
The properties of the bounds 𝜎𝑖 can be summarized as follows.

Lemma 1 ([23]). Let 𝑖 be arbitrary and consider the QP (6). The following
statements hold:

(i) If QP (6) is feasible, it has a unique solution.
(ii) If (6) is feasible, then 0 < 𝜎𝑖 < ∞.
(iii) If (6) is infeasible, then constraint 𝑖 is always inactive in (4), or

equivalently, 𝑖 ∈ (𝑥) for all 𝑥 ∈  .

Proposition 2 is based on Proposition 6 and Corollary 7 in [23] and
summarizes how to use the bounds 𝜎𝑖 to detect and remove inactive
constraints with respect to problem (4).

Proposition 2 ([23]). Let 𝑖 ∈  and 𝑥 ∈  be arbitrary, and assume 𝜎𝑖 as
defined in (6) has been determined. If 𝑉 (𝑥, 𝑈⋆(𝑥)) < 𝜎𝑖, then constraint
𝑖 is inactive at the optimal solution of (4) for 𝑥(0) = 𝑥. Furthermore,
𝑉 (𝑥(𝑘0), 𝑈⋆(𝑥(𝑘0))) < 𝜎𝑖 implies 𝑖 ∈ (𝑥(𝑘)) for all 𝑘 > 𝑘0.

The second statement of Proposition 2 holds if the closed-loop
optimal cost function is a Lyapunov function and thus nonincreasing.
While constraint removal was designed under these conditions in [23],
we will see from the results in Section 5 that further modifications are
necessary. These are summarized in Section 4.3.

Algorithm 1 summarizes MPC with constraint removal according to
Proposition 2. We use the cost trajectory of a hypothetical example
depicted in Fig. 1 to explain the steps of Algorithm 1. Let the optimal
cost function value 𝑉 (𝑥(𝑘), 𝑈⋆(𝑥(𝑘))) be denoted by 𝑉 ⋆ for short, and let
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Fig. 1. Optimal cost function trajectory 𝑉 ⋆ over discrete time steps for a hypothetical
example.

 denote the set of indices corresponding to the constraints that have
not been removed and thus can be active or inactive. Assume that, after
initially solving the optimization problem in time step 𝑘 = 1, constraint
𝑖 = 1 of this hypothetical example can be detected to be inactive for
all future time steps (steps 3 and 4 in Algorithm 1). Therefore, this
constraint is removed from the QP (4) (step 7 in Algorithm 1 and
topmost dashed line in Fig. 1). The same happens to constraints 𝑖 = 7
and 𝑖 = 4 in time step 𝑘 = 2, and later for 𝑘 = 4 and constraint 𝑖 = 19.
Note that the enumeration of the constraints and corresponding bounds
𝜎𝑖, 𝑖 ∈  = {1,… , 𝑞} results from the order of the constraints in (4). This
order can be chosen arbitrarily but has to be fixed.

Algorithm 1 MPC with constraint removal (see [23]).

1: Input: 𝑉 ⋆, 𝑥+,  =  ⧵ ̃, 𝜎𝑖, 𝑖 ∈ .
2: for all 𝑖 ∈  do
3: if 𝑉 ⋆ < 𝜎𝑖 then
4: 𝑖th constraint will remain inactive: ̃ ← ̃ ∪ {𝑖}.
5: end if
6: end for
7: Remove inactive constraints:  ←  ⧵ ̃
8: Solve reduced optimization problem in (4) for 𝑥(0) = 𝑥+ and

reduced set of constraints .
9: Output: Updated 𝑈⋆, 𝑉 ⋆, 𝑥+, .

4. Control of the heat exchanger plant

The proposed constraint removal approach is used to simplify the
control of a laboratory liquid–liquid plate heat exchanger. The con-
sidered plate heat exchanger, manufactured by Armfield, is shown in
Fig. 2.

The three-stage counter-current liquid–liquid plate heat exchanger
(Fig. 2, device (I)) can serve to cool or heat the liquids. These three
stages are separated, but interconnected at the same time. MPC was
applied to the heating part here. The heat exchanger’s dimensions are
as follows: outer width, length, and height are 90 mm, 103 mm, and
160 mm.

The cold medium (cold water) is stored in the retention tanks
(Fig. 2, device (II)). As the device works in laboratory conditions, after
the cold medium exits the heat exchanger it is not used for any other
operation. The hot medium (hot water) is pre-heated to the desired
temperature 𝑇hot = 70 ◦C using a heating coil inside a retention tank
(Fig. 2, device (III)). After the heating medium exits the heat exchanger
it enters the heating tank again. The temperature of the hot medium
𝑇hot is controlled by an auxiliary PID controller. Both media are fed to
the device by two peristaltic pumps (Fig. 2, devices (IV) and (V)).

Fig. 2. The controlled plant — plate heat exchanger (I), tanks for cold medium (II),
tank for hot medium with heating system (III), peristaltic pump used for cold medium
(IV), peristaltic pump used for hot medium (V).

The main objective of the controller design is to heat the cold
medium, and, simultaneously, to ensure the offset-free setpoint tracking
of the reference temperature 𝑇s. The control output is the outlet tem-
perature of the cold medium 𝑇 . The value of the temperature mainly
depends on the volumetric flow rate of the hot medium �̇� , as the
temperature of the hot medium is constant with 𝑇hot = 70 ◦C. Hence,
the control input is the flow rate of the hot medium. The actuator is
the peristaltic pump that feeds the hot medium into the plate heat
exchanger (Fig. 2, device (V)). The peristaltic pumps have flexible
silicon rubber tubing with wall thickness of 1.6 mm and inner diameter
of 3.2 mm.

The inlet temperature of the cold medium is also constant at the
temperature 𝑇0 = 20 ◦C. The control output is measured with a 𝐾-type
thermocouple with operation range 0–150 ◦C. The detailed scheme of
the controlled heat exchanger is presented in Fig. 3, where (I) is the
plate heat exchanger, (II) is the peristaltic pump for cold liquid, (III) is
the peristaltic pump for hot liquid, (IV) is the retention tank for cold
liquid, (V) is the tank with heating coil, (T1–T5) are the temperature
sensors, (L1, L2) are the level sensors, (S1–S5) are the solenoid valves,
and (W) is the heating coil (see [26] for further information on the
plant).

4.1. Mathematical model of the plate heat exchanger

The prediction model for the MPC design purposes was obtained
as the nominal model of the intervals bounded by minimum and
maximum values for each system parameter, i.e., the gains, and the
time constants. These boundary values were evaluated by a set of
experimentally collected data generated by a set of laboratory exper-
iments. Then, the step-response-based method of identification was
used, see, e.g., [28]. Fig. 4 shows the set of measured and normalized
step responses serving for the identification of the parameters of the
mathematical model. These were collected by investigating the exten-
sive set of laboratory experiments. The step response of the identified
nominal mathematical model is depicted by the black dashed line.
The most important property of the mathematical model for controller
design purposes, i.e., its ability to track the initial dynamics of the
controlled system, is fulfilled by the identified model.

A time delay is not considered as its value is insignificant. Using the
minimum and maximum values of the system parameters, a nominal
system is created and transformed into a state-space model in the
discrete-time domain as defined in (1). Further technical details about
the identification of the heat exchanger can be found in [29].
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Fig. 3. The detailed scheme of the controlled heat exchanger [27].

Fig. 4. The set of measured and normalized step responses serves for the identification
of the parameters of the mathematical model. The step response of the nominal
mathematical model is depicted in the black dashed line.

For the MPC design, the input, state, and output variables of the
system in (1) were defined in the form of deviation variables

𝑢(𝑘) = �̇� (𝑘) − �̇�s, (7a)
𝑥(𝑘) = 𝑇 (𝑘) − 𝑇s, (7b)
𝑦(𝑘) = 𝑇 (𝑘) − 𝑇s, (7c)

where 𝑇s is the operating point of controlled temperature and �̇�s is the
operating point of the flow rate.

In industrial applications, controllers are often expected to ensure
offset-free setpoint tracking. To remove the steady-state error, the state-
space model from (1) is augmented by a term adding the integral action
to the controller design. The considered augmented vector of the system
states �̂� is thus defined in the form

�̂�(𝑘) =

[

𝑥(𝑘)
∑𝑘

𝑗=0 𝑒(𝑗)

]

, (8)

with 𝑒(𝑗) = 𝑇s − 𝑇 (𝑗) = −𝑥(𝑗) the control error, and the negative sign
resulting from the laboratory setup.

The matrices of the state-space model considering the augmented
vector of states from (8) are defined as

�̂� =
[

𝐴 0
−𝑡𝑠𝐶 𝐼

]

, �̂� =
[

𝐵
0

]

, �̂� =
[

𝐶 0
]

, (9)

where 𝑡s is the sampling time resulting from discretization. Thus the
augmented state-space model of the plant has again a structure as in (1)

�̂�(𝑘 + 1) = �̂��̂�(𝑘) + �̂�𝑢(𝑘), (10a)

𝑦(𝑘) = �̂��̂�(𝑘). (10b)

State, input, and output matrices read

�̂� =
[

0.8736 0
−2 1

]

, �̂� =
[

0.5562
0

]

, �̂� =
[

1 0
]

, (11)

respectively. The augmentation of the states only serves to remove
the steady-state control error, its influence on the applied constraint
removal method will be discussed in Section 4.3. Further technical de-
tails regarding the experimental identification of the plant are discussed
in [29].

4.2. Control setup

In this experimental case study, the offset-free setpoint tracking of
the plant was ensured. The prediction horizon was 𝑁 = 7, and the
penalty matrices 𝑃 , 𝑄, and 𝑅 were set to

𝑃 =

[

0.1479 −0.0217
−0.0217 0.0053

]

, 𝑄 =

[

0.001 0
0 0.001

]

, 𝑅 = 0.1.

(12)

Both, the terminal penalty matrix 𝑃 and the terminal set  in (3)
were determined using the Multi-Parametric Toolbox [30] by solving
the Riccati equation. The sampling time considered for the laboratory
experiments was 𝑡s = 2 s. The weighting matrices 𝑄 and 𝑅 in (3)
were systematically tuned. First, we observed the control performance
by fixing one of the penalty factors, and, simultaneously, by increas-
ing/decreasing the values of the elements of the remaining weighting
matrix. Then, we analyzed the impact of the further increase/decrease
of the penalty factor. Finally, we investigated the impact of the other
weighting matrix, until a satisfactory control performance was ensured.

Real-time control was implemented with MATLAB/Simulink
R2019b on a PC with an i5 CPU (2.7 GHz) and 8 GB RAM. The opti-
mization problems were solved using the MATLAB programming envi-
ronment [31], and the communication with the plate heat exchanger
was implemented with the Wifi-based eLab Manager toolbox [32].
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The control input of the plant, i.e., the volumetric flow rate of the
hot medium, was constrained to the interval [0, 11.5]ml s−1 representing
the physical constraints. This range was normalized so that the operat-
ing point corresponded to �̇�s. Therefore, the constraints considered on
the control input in the deviation form were chosen as

− 5.75ml s−1 ≤ 𝑢(𝑘) ≤ 5.75 ml s−1. (13)

The outlet temperature 𝑇 of the cold medium was constrained to
the interval [25, 65] ◦C (i.e. [298.15, 338.15] K). The state variable 𝑥 was
normalized so that the temperature 𝑇s corresponds to the operating
point or the reference temperature. The normalized constraints of the
elements of the augmented vector in (8) were defined as
[

−20
−100

]

≤ �̂�(𝑘) ≤
[

20
100

]

. (14)

The augmented state defined in (8) is an incremental value of the state
𝑥 and it does not have any operating point.

4.3. Necessary modification of the bounds

The constraint removal method was originally designed from a the-
oretical point of view assuming a non-increasing optimal cost function
value along time steps 𝑘. However, to overcome challenges such as
measurement noise and plant-model mismatch, the integrator state
as described in Section 4.1 was introduced. While this ensures the
offset-free tracking of the setpoint value, the integrator state leads to a
different development of the closed-loop optimal cost function value. As
can be seen in Section 5, a change in the setpoint value 𝑇𝑠 in (7b) does
not only lead to an increase of 𝑉 ⋆ due to the new value for the initial
state 𝑥(0) = 𝑇 (0) − 𝑇𝑠 (in this case a simple restart with all constraints
added back to the original optimization problem would be possible).
However, the integration of the error (see �̂�2(𝑘) in (8)) will result in a
further increase before approaching the new setpoint and thus depends
on the new setpoint itself.

To make sure constraints that may become active again after the
setpoint change are not removed, we present a heuristics to modify
the bounds 𝜎𝑖 straightforwardly based on existing experimental data.
For ease of presentation, we use the same hypothetical example as in
Section 3, augmented by an increase of 𝑉 ⋆, in Fig. 5 (red curve).

Every bound 𝜎𝑖, as the minimum value of the optimal cost function
such that constraint 𝑖 is active, was originally determined assuming a
closed-loop cost function trajectory as shown in Fig. 5, green curve.
Since the green curve is non-increasing, we can ensure that the cor-
responding constraint will remain inactive once it was detected to be
inactive. However, the setpoint change will lead to a trajectory as
shown in Fig. 5, red curve, i.e., the integrator state will lead to a
temporary increase of the optimal cost function value 𝑉 ⋆ for some
time steps 𝑘. For bound 𝜎4 corresponding to a hypothetical constraint,
e.g., the value of 𝑉 ⋆ crosses the bound again from below, such that
we cannot ensure that constraint 𝑖 = 4 will never become active again.
To compensate for this increase, such that the removed constraints will
still be inactive despite the increase of 𝑉 ⋆, we choose the bounds to
be more conservative and thus compensate for the expected increase of
the cost function value.

From the set of experimentally collected data generated for the
step changes of the setpoint value, we evaluate the maximum increase
in 𝑉 ⋆ caused by the setpoint changes (𝑉 ⋆ in Fig. 5(a)). Then we
determine sufficiently conservative bounds by reducing their value by
the maximum increase in the optimal cost function value 𝑉 ⋆, i.e., the
value 𝑉 ⋆. This is illustrated in Fig. 5(b), where the reduced bounds 𝜎𝑖
are shown in comparison to the original 𝜎-bounds. While constraint 𝑖 =
4 was removed in time step 𝑘 = 2 for the original values of the bounds,
this constraint is now removed in time step 𝑘 = 4. The conservative
bound 𝜎4 takes into account the level of the maximum increase in the
original cost function 𝑉 ⋆, and thus constraint 𝑖 = 4 is not removed too
early. This prevents removing a constraint that could become active

Fig. 5. Modification of the applied constraint removal approach for the hypothetical
example from Section 3. (a) MPC with increasing cost (red) and maximum increase 𝑉 ⋆.
If 𝑉 ⋆ increases due to the integrator state after a setpoint change, constraints previously
detected to be inactive can become active again. (b) Modification of the hypothetical
bounds to more conservative values (blue) based on the maximum increase in 𝑉 ⋆.

again later during closed-loop control. Obviously, if some 𝜎-bounds are
reduced to negative values, they cannot be removed. Therefore, such
constraints can be omitted from the evaluation of Algorithm 1, see,
e.g., 𝜎19 in Fig. 5(b). However, constraint removal is efficient also for
a subset 𝛴 ⊆  of all constraints.

For the laboratory case study, we performed an extensive experi-
mental investigation with a conventional MPC to determine the max-
imum influence of the expected setpoint step changes. Throughout
the experiments, we logged the sequences of the closed-loop optimal
cost function value. The result is presented in Section 5.1, where two
representative control setups were selected.

We stress that this procedure does not give a guarantee that no
constraints are removed too early if the conservativeness of the bound
on 𝑉 ⋆ was not appropriately determined during the experiments, sim-
ilar to the ill-defined level of uncertainty for a robust MPC design.
Also, if the setpoints are changing more often or in a different way
than expected during the modification process of the 𝜎-bounds, further
data evaluation and modification may be necessary. However, we will
demonstrate in Section 5.1 that no constraints have been violated
when applying MPC combined with the modified constraint removal
approach to the laboratory plate heat exchanger. Possible benefits of
this approach in terms of energy savings are presented in Section 5.2.

To summarize the steps described so far, the overall process on how
to operate MPC with constraint removal on a real plant is sketched
in Fig. 6 and can be divided into an offline and an online phase. The
offline phase contains the necessary preparations that apply once and
before the actual control of the system. It starts with the design of
the MPC problem (3), such as deriving a prediction model or tuning
the weighting matrices. Once the MPC problem is defined, the sigma
bounds need to be computed by solving problem (6) once for each
constraint. The last offline step is the modification of the bounds as
described in Section 4.3, i.e., by using experiments with expected
reference values or existing data of formerly performed experiments.

During the online phase, i.e., for the actual control of the plant, the
constraints that may become active have to be reset for a new initial
state first, i.e., the constraints are made part of problem (3) again. Then,
Algorithm 1 applies to control the system state to its reference. Both
steps of the online phase can at least be repeated as long as the initial
states and reference values fit the data used during the preparatory
offline phase.

5. Experimental results

This section provides two extensive experimental case studies. First,
we investigate the control performance of MPC with constraint removal
designed for the laboratory plate heat exchanger. Then, we analyze the
energy savings achieved by the proposed control method considering
an embedded platform suitable for industrial control.
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Fig. 6. Workflow of operating MPC with constraint removal on a real plant.

5.1. Experimental validation using the plate heat exchanger

Multiple setpoint step changes were performed and analyzed to
demonstrate the efficiency of the proposed acceleration by the con-
straint removal approach. The closed-loop control trajectories, cost
function value 𝑉 ⋆, and number of considered constraints 𝑐 for MPC
with constraint removal are depicted in Fig. 7(a) and Fig. 8(a) for two
representative setpoint changes, respectively.

The constraint removal strategy (and thus Algorithm 1) started
at the same time instance as the setpoint step change, i.e., at 𝑡 =
50 seconds. In all scenarios, the number of considered constraints
immediately decreased.

The associated control trajectories and cost function value for the
same setpoint changes generated by MPC without constraint removal
are depicted in Figs. 7(b)–8(b). These experimentally collected results
demonstrate that implementing the proposed constraint-removal-based
acceleration technique does not decrease the control performance.
Obviously, the control performance in Figs. 7(a)–8(a) can slightly differ
from the performance depicted in Figs. 7(b)–8(b) as the presented re-
sults are experimentally collected and it is not possible to fully replicate
the real plant behavior due to the random impact of disturbances and
measurement noise.

For the modification of the bounds as described in Section 4.3, the
values of the maximum increase 𝑉 ⋆ were evaluated based on the results
shown in Figs. 7(b)–8(b). By analyzing these sequences, we determined
the maximum increase 𝑉 ⋆ to the value 𝑉 ⋆ = 19.06. The corresponding
value of each modified bound 𝜎𝑖, 𝑖 ∈ {1,… , 𝑞} is depicted in Fig. 9.
In total, 12 out of all 48 constraints were detected to be redundant,
i.e., they will never be active as there exist different, more restrictive
constraints. For these 12 redundant constraints, according to Defini-
tion 1, 𝜎𝑖 = ∞ holds (see the constraints depicted on the far right in
Fig. 9). They can be removed completely before running the controller.
All constraints with bounds below a value of zero will not be removed,
as the MPC cost function value is non-negative by definition.

The experimental results in Figs. 7(a)–8(a) show that the designed
MPC controller with constraint removal ensured setpoint tracking
within 2 minutes. Simultaneously, the computed values of the control
input respected the given physical constraints in (13)–(14) even though
some of the constraints were removed from the optimization problem
by the applied constraint removal method.

At the beginning of the experiment, 48 constraints were consid-
ered, and at the end of the time span, only 20 and 18 constraints
remained considered in Fig. 7(a) and Fig. 8(a), respectively. Thus, in
the experimentally evaluated control scenarios, the MPC cost function
value decreased enough to remove at least 28 constraints. Although
the first state variable reached the origin, the MPC cost function value
depicted in Figs 7–8 is not decreasing to zero, but stays slightly above.
Measurement noise and especially the value of the integrator state �̂�2
kept the cost from decreasing further and inhibited removing more than
28 constraints. Also, due to the modification of the bounds, some of the
�̃�𝑖 attain negative values as described in Section 4.3 and will thus never
be removed.

In conclusion, despite using the conservative bounds 𝜎𝑖, between
around 58% and 62.5% of all constraints were removed from the
original OCP without affecting the control performance negatively.

Fig. 7. Experimental results for MPC with (see (a)) and without (see (b)) constraint
removal and setpoint step change 50 ◦C → 45 ◦C (323.15 K → 318.15 K): measured
control output (solid green), setpoint (dashed red), control input (solid blue), constraint
(dashed black), cost function value (solid black), number of considered constraints
(solid red).
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Fig. 8. Experimental results for MPC with (see (a)) and without (see (b)) constraint
removal and setpoint step change 40 ◦C → 45 ◦C (313.15 K → 318.15 K): measured
control output (solid green), setpoint (dashed red), control input (solid blue), constraint
(dashed black), cost function value (solid black), number of considered constraints
(solid red).

5.2. Experimental evaluation of energy savings

We demonstrate non-negligible energy savings result with the pro-
posed controller. Here, the practical benefits of the applied method
were analyzed by evaluating the energy amount consumed by the
control unit during its operation.

In practice, control units equipped with a 32-bit microprocessor are
gaining more prominence, as they provide sufficient computing power
for a wide range of industrial applications. We show that the energy
consumption of such a control unit can be reduced considering the
presented acceleration method.

Fig. 9. Values of the modified bounds evaluated for the 48 constraints of the MPC
problem, sorted for increasing values. Note that the enumeration here does not reflect
the order of the constraints.

In this second case study, the following steps were performed using
the microcontroller:

• implementation of a QP solver on a 32-bit microcontroller
• simulation of the control steps
• evaluation of computation time and the corresponding energy

consumption by the control unit

The ESP32 DevKit V4 microcontroller platform was used as a control
unit. This platform is equipped with a 32-bit microprocessor with 4 MB
of Flash memory, which is sufficient to handle the library necessary for
solving OCPs having the form of a QP. This library was generated using
the CVXGEN tool [33], which created a tailored solver dedicated to
solving QP-representable convex optimization problems. The generated
solver was exported in C-code, which is compatible with the control
unit.

In this case study, the data measured during the experiments was
used to simulate the control of the heat exchanger plant using the
embedded control unit. Specifically, two sets of data were used: (i)
control using MPC without constraint removal, see Fig. 8(b), and (ii)
control using MPC with constraint removal, depicted in Fig. 8(a). Both
data sets refer to the step change from 40 ◦C (313.15 K) to 45 ◦C
(318.15 K). Fig. 8(a) shows that considering the constraint removal
approach, the number of constraints dropped only once, i.e., from 48
to 20 constraints. Therefore, using this observation, the computational
time and the corresponding energy consumption necessary to solve
the QP on a microcontroller were compared considering 48 and 20
constraints, respectively.

We used the system states measured during the experiments on the
heat exchanger in Section 5.1 as initial conditions for the solution of
the online QP implemented on the microcontroller at each sampling
instant. Then the associated control input was evaluated, simulating
the real-time control of the plant. Within the simulated closed-loop
control, it is possible to determine the time required to evaluate the
optimal control action by solving the associated QP. The corresponding
experimentally generated results are depicted in Fig. 10.

We could assume that solving an optimization problem that con-
siders a smaller number of constraints will consume a less portion of
time. However, the procedure of the constraint removal approach also
introduces additional operations necessary to evaluate the comparison
of the bounds 𝜎𝑖 with the current cost function value 𝑉 ⋆ to detect
the constraints to be removed. To make the results more comparable,
the closed-loop control considering 20 constraints also included the
operations necessary to identify inactive constraints. Therefore, at each
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Fig. 10. Time necessary for solving a QP at each sampling instance using the modified
constraint removal method (orange) and conventional MPC (blue).

Table 1
Comparison of the average and total solver time for conventional MPC
and MPC with constraint removal.

MPC method 𝑡avg [s] 𝑡sol [s]

Conventional MPC 0.133 21.295
MPC with constraint removal 0.0433 6.921

Table 2
Comparison of the energy consumption for conventional MPC and MPC
with constraint removal within one sampling period.

MPC method 𝐸t𝑠 [×10−3 J]

Conventional MPC 38
MPC with constraint removal 12

sampling time, the microcontroller compared the bounds 𝜎𝑖 for each
considered constraint with the current cost function value 𝑉 ⋆.

Simulation of the closed-loop control showed that the total time
required to resolve all QPs throughout the whole time of the operation
was significantly lower using the proposed constraint removal ap-
proach. Table 1 summarizes the evaluated computational time, where
the criterion 𝑡avg represents an average computational time evaluated
for each control step. This criterion was computed considering the total
number of 160 control steps. The criterion 𝑡sol represents the total time
necessary to solve the QP in each sampling time during the simulation
period. As can be seen, the proposed method reduced the total solver
time 𝑡sol by around 68%.

The energy consumption of the control unit depends on whether
calculations are in progress or not. Therefore, the reduced computation
time 𝑡sol corresponds to the energy savings, i.e., the saved electric
power. Within the operation and control of the laboratory plant, we
can divide the activities of the control unit into three main groups:

1. The first group is routine operations such as the application of
a control action to a controlled process and the acquisition of
measured values from sensors.

2. The second group includes the evaluation of optimal control action,
e.g., operations associated with the constraint removal approach
and the solution of the QP.

3. The last group is the sleep mode, which fills the time until the
end of a given sampling period.

Analogously to the case study presented in Section 5.1, we also con-
sidered a sampling period of 2 s here. Fig. 11 illustrates the individual
stages of the operation within one sampling instance.

The measured results shown in Fig. 11 demonstrate that, depending
on the applied control strategy, a sampling instance is split differently
into the three groups mentioned above. The electric current drawn by
the microcontroller amounts to 𝐼comp = 61.3 mA when a QP is solved.
On the other hand, during the sleep mode, the value is 𝐼sleep = 3.92 mA.
Therefore, the decisive factor is the time needed for the solution. The
time difference multiplied by the measured current and the set voltage
represents the consumed electric power and is calculated by

𝐸ts = (𝐼comp − 𝐼sleep)𝑈s 𝑡avg, (15)

where 𝐸ts is the energy consumed within one sampling period, and 𝑈s
is the supply voltage of the control unit set to 𝑈s = 5V. The energy
was computed for the MPC with and without constraint removal. The
results are summarized in Table 2. As can be seen, when considering
MPC with constraint removal, also the energy consumption is reduced
by around 68% compared to the conventional MPC.

The energy consumption saved per hour of operation is then com-
puted as

𝐸h =
3600
𝑡s

𝛥𝐸ts = 41.222 J , (16)

where 𝛥𝐸ts is the difference between energy consumption 𝐸ts computed
for conventional MPC and for MPC with constraint removal, see Ta-
ble 2. Subsequently, it is quite straightforward to calculate the saved
annual energy consumption of one control unit per year, 𝐸y = 361.1 kJ.
Such an amount of energy is equivalent to 20 Ah. The presented results
can reflect, e.g., the significantly increased battery life supplying the
controller platform.

6. Conclusion

We applied MPC with a constraint removal approach to a laboratory
plate heat exchanger. By detecting and removing inactive constraints
before solving the underlying optimization problem, this variant of
MPC reduces the computational effort associated with solving the opti-
mization problem. The bounds indicating the inactive constraints were
modified to overcome the challenges arising in the control setup. In this
paper, two experimental case studies were investigated to analyze the
properties of the proposed control method - control of the laboratory
heat exchanger plant, and the implementation on a microcontroller.

In the real-time experiments on the laboratory plant, the constraint
removal approach was able to reduce the number of constraints to
be considered in the optimization problem by up to 60% compared
to conventional MPC. The results further confirmed that the approach
does not affect the control performance in terms of performance losses,
resulting in comparable trajectories of the control inputs.

Based on the experimental data, we further implemented and solved
the optimization problems corresponding to MPC with constraint re-
moval and to conventional MPC on a 32-bit microcontroller. Both, the
computation time and the associated energy consumption decreased by
approximately 68% for MPC with constraint removal in contrast to the
conventional variant of MPC.

Future research will be focused on the application of nonlinear MPC
with constraint removal for the control of the heat exchanger plant and
modifications towards robust MPC.
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Fig. 11. The timeline of the operations within one sampling instance.

Nomenclature

Symbols

𝐴,𝐵, 𝐶 State-space system
�̂�, �̂�, �̂� Augmented state-space system
,, ̃ Active set, inactive set, subset
𝑒 Control error
𝐸h, 𝐸y Energy consumption per hour, year
𝐸ts , 𝛥𝐸ts Energy consumed within one sampling

period, difference
 ,  , Feasible set, terminal set, set of

remaining constraints
𝐺,𝑤,𝐸 Constraint matrices of the quadratic

program
𝐼comp, 𝐼sleep Electric current consumed during solving,

sleep mode
𝑘 Time step
𝑚, 𝑛, 𝑝, 𝑞 Number of inputs, states, outputs,

constraints
𝑁 Horizon length
𝑃 ,𝑄,𝑅 Weighting matrix for terminal state,

states, inputs
, 𝛴 Constraint set, subset
𝑇 , 𝑇hot , 𝑇s Temperature of the cold medium, hot

medium, setpoint
𝑡sol, 𝑡avg Total, average solver time
𝑢, 𝑦 System input, output
𝑢min, 𝑢max Lower, upper bound on inputs
𝑈,𝑋 Input, state prediction
 , Constraint set for inputs, states
𝑈s Supply voltage of the control unit
𝑉 , 𝑉 ⋆ Cost function, maximum increase in 𝑉 ⋆

�̇� , �̇�s Volumetric flow rate of the hot medium,
operating point

𝑥, 𝑥+, 𝑥0, �̂� System state, subsequent state, initial
state, augmented system state

𝑥min, 𝑥max Lower, upper bound on states
𝑌 , 𝐹 ,𝐻 Matrices of the cost function of the

quadratic program

Greek letters

𝜎𝑖 Bound corresponding to constraint 𝑖

Abbreviations

MPC Model predictive control
OCP Optimal control problem
PID Proportional–integral–derivative

controller
QP Quadratic program
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A B S T R A C T

The tunable approximated explicit model predictive control (MPC) comes with the benefits of real-time
tunability without the necessity of solving the optimization problem online. This paper provides a novel
self-tunable control policy that does not require any interventions of the control engineer during operation
in order to retune the controller subject to the changed working conditions. Based on the current operating
conditions, the autonomous tuning parameter scales the control input using linear interpolation between the
boundary optimal control actions. The adjustment of the tuning parameter depends on the current reference
value, which makes this strategy suitable for reference tracking problems. Furthermore, a novel technique for
scaling the tuning parameter is proposed. This extension provides to exploit different ranges of the tuning
parameter assigned to specified operating conditions. The self-tunable explicit MPC was implemented on a
laboratory heat exchanger with nonlinear and asymmetric behavior. The asymmetric behavior of the plant
was compensated by tuning the controller’s aggressiveness, as the negative or positive sign of reference change
was considered in the tuning procedure. The designed self-tunable controller improved control performance
by decreasing sum-of-squared control error, maximal overshoots/undershoots, and settling time compared to
the conventional control strategy based on a single (non-tunable) controller.

1. Introduction

The current crisis of energy resources emphasizes the long-term
goal of achieving sustainable industrial production and optimal en-
ergy utilization. Moreover, minimizing the energy utilization directly
reduces the corresponding CO2 emissions. Therefore, sustainable indus-
trial production is focused on the wide implementation of advanced
control methods [1]. A recent survey on applied thermal engineering
focused on energy saving and pollution reduction from the industrial
perspective is provided in [2], and references therein.

The heat exchangers in their numerous variants are integrated
into many industrial plants as the heat transfer represents the crucial
phenomena for all thermal energy applications [3]. Simultaneously, the
utility generation for heating or cooling is energy-demanding. From the
control viewpoint, the controller design for the heat exchangers is a
challenging task due to the necessity to take into account the nonlinear
and asymmetric behavior of the device, i.e., different plant behavior
when the temperature is increasing, in contrast to the behavior when
the temperature is decreasing, see [4].

A very common challenge in terms of the time-varying behavior
of heat exchangers is fouling. The authors in [5] focus on modeling

∗ Corresponding author.
E-mail address: lenka.galcikova@stuba.sk (L. Galčíková).

the thermal efficiency in a cross-flow heat exchanger using an artificial
neural network, which leads to a highly accurate model. In [6], the
authors address the effect of fouling by adjusting the parameters of the
proportional–integral–derivative (PID) controller.

Although the conventional and widely-used PID controllers are ro-
bust and easy to tune, their control performance may not be sufficient.
Various extensions built above the well-tuned PID controller were
developed to compensate for the nonlinear and asymmetric behavior,
often affected by the additional impact of the uncertain parameters.
Such widely-used control strategies include, e.g., the robust control [7],
the gain-scheduling, and adaptive control. In a recent study [8], the
authors suggest to adjust the controller online, based on a minimization
of an objective function designed to achieve the desired control perfor-
mance. For the rigorous mathematical modeling and controller design
methods in general, see [9], and for the controller design tailored for
the process control engineers see [10].

One of the promising control strategies addressing all these issues
in an optimal way came with the formation of the model predictive
control (MPC), e.g., see [11]. MPC provides optimal control input
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based on the minimization of a specified cost function while consid-
ering a model of the system. Compared to linear quadratic controllers
(LQR) [12], model predictive control also includes constraints on the
control input or process variables [13], and additional saturation is not
necessary. Moreover, as the optimization problem is solved in every
control step, MPC represents a receding horizon control policy [14],
having a significant benefit mainly in the terms of disturbance re-
jection. The model predictive control was intensively investigated in
connection with heat exchangers. In [15], the authors developed a
model predictive control for a shell and tube heat exchanger. Four
robust control strategies were presented and compared in [16]. A
two-level control structure was applied on a heat exchanger network
in [17], where the low level of control was ensured by MPC and the
high level by a supervisory online optimizer. The fast nonlinear MPC
was designed to optimize the waste heat recovery [18]. The multi-
layer control designed in [19] designed the MPC in the leader loop to
optimize the thermal response to improved control performance. The
applicability of model predictive control expanded with the parametric
solution of the MPC optimization problem, known as explicit MPC [20].
As the MPC optimization problem is pre-solved offline, it does not need
to be solved in the online phase, i.e., in real-time control. Instead, a
piece-wise affine (PWA) control law is evaluated to apply the optimal
control action in each control step. The complexity of construction of
the explicit MPC controller grows exponentially with the number of
considered constraints. If the MPC design problem can be pre-solved
explicitly offline, the consequent reduced online computational com-
plexity makes the explicit MPC more suitable for practical industrial
implementation. Nevertheless, the explicit MPC is not tunable in default
as the conventional approach in [20] considers the penalty matrices
with fixed structure and values. The inability to tune the explicit
controller online can be a disadvantage due to varying operating
conditions when the different setups of the controllers are beneficial.

The possibility to tune the explicit MPC online came with the
publishing of [21]. The tuning parameter penalizing the control inputs
became a parameter, for which the optimal controller was precom-
puted. Nevertheless, the application was limited only to linear cost
functions of the optimization problem. To satisfy the demands for often-
used quadratic cost functions, the approximated tunable explicit MPC
was presented in [22]. The technique is based on two explicit model
predictive controllers which differ in the setup of one penalty matrix.
The two explicit MPCs provide upper and lower boundary optimal
controllers. Based on the evaluation of the two boundary control inputs,
the tuned control input is calculated by linear interpolation. The follow-
up work [23] provided stability and recursive feasibility guarantees
by proper choice of the terminal penalty matrix and terminal set
constraint [24]. Moreover, the strategy in [23] extends the tuning
ability based on any penalty matrix and not just the input penalty.

The idea of approximated tunable MPC with neural networks is
presented in [25]. To ensure the tuning property, the penalty matrices
were included in the training process. As a result, it was possible to tune
the neural network-based controller online, while mimicking the nearly
optimal MPC. In [26], the neural network-based tunable controller MPC
was extended with a corrector which steered the controller such that
the constraints on the manipulated and process variables were satisfied.

The paper [27] pushes the idea of tunable explicit MPC further and
deals with the issues of practical industrial-oriented implementation. In
numerous practical applications, the reference value of the controlled
variable is changed and acquires values from a wide range of operating
conditions. The use of different controller setups can help handle the
plant’s nonlinear behavior. The paper [27] presents a procedure of the
self-tunable controller technique. The controller’s aggressivity is tuned
based on the difference between the reference value and the steady
state corresponding to the model linearization point. In the context
of MPC, the aggressiveness is associated with the setup of the penalty
matrices, as it determines the aggressiveness of the final control input.
In general, higher penalization of the controlled states or control error

in the cost function leads to more aggressive control actions. This
process is analogous to increasing the proportional gain in the PID
controller. On the contrary, higher penalization of the input variable
leads to more sluggish control, e.g., see [13]. In [27], the MPC tuning
based on the distance from the steady-state operating point represented
a way how to compensate for the system’s nonlinear behavior.

This work directly extends our results presented in [27], where the
basic principles of the self-tunable approximated explicit MPC were
introduced. In this paper, a novel method of self-tuning parameter setup
is introduced. Compared to [27], the self-tuning method is based on the
size of the reference step change. Moreover, the idea of further scaling
of the tuning parameter is elaborated. The interval of the values of the
self-tuning parameter is split at some certain value and each part of the
interval corresponds to the specific operating conditions defined by the
control engineer. In such a way, e.g., the system’s asymmetric behavior
is compensated. Finally, to investigate the benefits of the proposed
approach, the proposed self-tuning control policy was implemented to
control a laboratory-scaled counter-current plate heat exchanger. This
work provides the control performance evaluation and analysis using
the self-tunable controller compared to the boundary explicit MPCs.

The paper is organized as follows. First, the theoretical backgrounds
are presented in Section 2, where the explicit MPC, the approximated
tunable explicit MPC, and existing self-tunable methods are briefly
elaborated. Then, the novel proposed method of self-tunable procedure
is explained in detail in Section 3. Finally, the experimental results
of the self-tuning controller implementation on a heat exchanger are
discussed in Section 4, followed by the main conclusions in Section 5.

2. Theoretical backgrounds

In this section, the theoretical backgrounds necessary for the pro-
posed method are summarized. First, the explicit model predictive
control is briefly recalled. Next, the tunable technique of the approx-
imated explicit model predictive control is introduced. Finally, the
ideas of a self-tunable technique of the approximated explicit MPC are
presented.

2.1. Explicit model predictive control

Explicit model predictive control [20] utilizes a parametric solution
of the model predictive control introducing its application range to-
wards the systems with fast dynamics. Moreover, the explicit solution
enables providing rigorous analysis and certification of the closed-loop
system stability, constraints satisfaction, etc. As the explicit solution
is available, real-time solving of the optimization problem in every
control step is omitted. As this work deals with industrial-oriented im-
plementation, let us consider the optimization problem in the following
form:

min
𝑢0 ,𝑢1 ,…,𝑢𝑁−1

𝑁−1
∑

𝑘=0

(

(𝑦𝑘 − 𝑦ref )⊺𝑄y(𝑦𝑘 − 𝑦ref ) + 𝑢⊺𝑘𝑅𝑢𝑘 + 𝑥⊺I,𝑘𝑄I𝑥I,𝑘
)

(1a)

s.t.∶ 𝑥𝑘+1 = 𝐴𝑥𝑘 + 𝐵 𝑢𝑘, (1b)

𝑦𝑘 = 𝐶 𝑥𝑘, (1c)
𝑢𝑘 ∈  , (1d)
𝑦𝑘 ∈  , (1e)
𝑥0 = 𝜃, (1f)
𝑘 = 0, 1,… , 𝑁 − 1, (1g)

where 𝑘 denotes the step of the prediction horizon 𝑁 . To obtain the
offset-free control results, the built-in integrator was included in the
state-space model, e.g., see [28]. The prediction model in Eq. (1b)–
(1c) has the form of augmented linear time-invariant (LTI) system for
a given augmented state matrix 𝐴 ∈ R𝑛x̃×𝑛x̃ , augmented input matrix
𝐵 ∈ R𝑛x̃×𝑛u and augmented output matrix 𝐶 ∈ R𝑛y×𝑛x̃ . Variables 𝑥 ∈ R𝑛x̃ ,
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𝑢 ∈ R𝑛u , 𝑦 ∈ R𝑛y are vectors of corresponding augmented system states,
control inputs, and system outputs, respectively. The sets  ⊆ R𝑛u ,
 ⊆ R𝑛y are convex polytopic sets of physical constraints on inputs
and outputs, respectively. These sets include the origin in their strict
interiors. The penalty matrix 𝑄y ∈ R𝑛y×𝑛y , 𝑄y ⪰ 0 penalizes the squared
control error, i.e., the deviation between the controlled output and
output reference value 𝑦ref . The matrix 𝑅 ∈ R𝑛u×𝑛u , 𝑅 ≻ 0 penalizes the
squared value of control inputs. The value of integrator is also penalized
in the cost function with the penalty matrix 𝑄I ∈ R𝑛y×𝑛y , 𝑄I ⪰ 0. All the
penalty matrices are considered to be diagonal due to the applicability
of the self-tunable explicit MPC approach. The parameter 𝜃 ∈ 𝛩 in
Eq. (1f) represents the initial condition of the optimization problem for
which it is parametrically pre-computed.

The augmented model of the controlled system with the built-in
integrator in Eq. (1b)–(1c) is rewritten as follows:

𝑥𝑘+1 =
[

𝑥𝑘+1
𝑥I,𝑘+1

]

=
[

𝐴 0
−𝑇s𝐶 𝐼

] [

𝑥𝑘
𝑥I,𝑘

]

+
[

𝐵
𝐼

]

𝑢𝑘, (2a)

𝑦𝑘 =
[

𝐶 0
]

[

𝑥𝑘
𝑥I,𝑘

]

, (2b)

where 𝑥I ∈ R𝑛y is the integral of the control error, 𝑇s denotes the
sampling time, and matrices 𝐴, 𝐵, 𝐶 are the well-known state-space
matrices that form the augmented LTI model. As a consequence of this
extension and penalization in the cost function in Eq. (1a), not only the
control error is penalized, but also the integrated value, which leads
to analogous offset-free reference tracking results as incorporating an
integral part in the PID controller.

The parametric solution of the optimization problem of the quadratic
programming (QP) in Eq. (1) leads to the explicit solution in the form of
piecewise affine PWA control law defined above the domain consisting
of 𝑟 critical regions:

𝑢(𝜃) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝐹1 𝜃 + 𝑔1 if 𝜃 ∈ 1,
𝐹2 𝜃 + 𝑔2 else if 𝜃 ∈ 2,

⋮
𝐹𝑟 𝜃 + 𝑔𝑟 else if 𝜃 ∈ 𝑟,

(3)

where 𝐹𝑖 ∈ R𝑛u×𝑛x and 𝑔𝑖 ∈ R𝑛u respectively are the slope and affine
section of the corresponding control law. The PWA function defined
in Eq. (3) is stored and recalled in the online phase, i.e., during the
real-time control. Based on identifying the specific polytopic critical
region 𝑖, where the parameter 𝜃 belongs, the optimal control input
is calculated based on the associated control law in Eq. (3).

Note, many other formulations of the optimization problems for the
explicit MPC design were formulated mainly in terms of the definition
of the cost functions in Eq. (1a). Also, the incremental (velocity)
formulation of the state-space model is common, but leads to further ex-
tension of the vector of parameters 𝜃, and therefore also the complexity
of the explicit MPC controller increases. Another option for offset-free
tracking is introducing disturbance modeling and estimation. For such
an overview see, e.g,. [29]

2.2. Tunable explicit model predictive control

The aggressivity of the controller and the whole nature of the
control is influenced by appropriate fine-tuning of the penalty matrices
in the optimization problem in Eq. (1). When the multi-parametric QP
(mp-QP) problem is precomputed offline to obtain the corresponding
parametric solution, it is not possible to tune the controller afterward
without trading off a significant increase in the controller complexity or
the performance loss. As the operating conditions and requirements on
controller setup may differ throughout the control, the ability to adjust
the controller’s aggressivity can be very beneficial.

The idea of approximated tunable explicit MPC comes from the
work [22], where the control action is calculated based on linear

interpolation between two boundary control actions. These control ac-
tions result from evaluating two boundary explicit MPCs. The boundary
explicit controllers are constructed by solving the optimization problem
having the same structure and setup, except for one of the penalty ma-
trices — the tuned one. Based on the specific control application, any
penalty matrix can be chosen as the tuned parameter, i.e., this approach
is applicable for any penalty matrix. The boundary penalty matrices
follow the assumptions on the penalty matrices from Section 2.1 and
are diagonal matrices such that 𝜆𝑖,L ≤ 𝜆𝑖,U, ∀𝑖 = 1,… , 𝑠, where 𝜆 denotes
the vector of eigenvalues of the penalty matrix, 𝑠 is the rank of the
tuned penalty matrix, and 𝐿, 𝑈 denote the lower and upper boundary
setup, respectively.

Let us consider the penalty matrices in the cost function in Eq. (1a).
The penalty matrices are scaled in the following way:

𝑅(𝑘) = (1 − 𝜌(𝑘)) 𝑅L + 𝜌(𝑘) 𝑅U, (4a)
𝑄I(𝑘) = (1 − 𝜌(𝑘)) 𝑄I,L + 𝜌(𝑘) 𝑄I,U, (4b)

𝑄y(𝑘) = (1 − 𝜌(𝑘)) 𝑄y,L + 𝜌(𝑘) 𝑄y,U, (4c)

where 𝜌 represents the tuning parameter such that 0 ≤ 𝜌 ≤ 1 holds.
Based on the rules in Eq. (4), it is possible to choose online any
controller setup from the lower to the upper boundary of the tuned
matrix. From the implementation point of view, it is preferred to
tune just a single penalty matrix, i.e., to store only two controllers
corresponding to the boundary values of the selected penalty matrix.
To determine which penalty matrix in Eq. (4) should be tuned, it is
suggested to judge the control performance by systematic tuning of
all the penalty matrices. Systematic tuning involves selecting a specific
penalty matrix and observing the control results by gradually increasing
or decreasing the diagonal elements of the matrix. This process is then
repeated for the remaining penalty matrices in a similar manner.

When the tuning parameter 𝜌 is determined based on the current
control conditions, the approximated optimal control action is evalu-
ated using the two optimal controllers. Based on the boundary control
actions, the interpolated, i.e., tuned control action is calculated using
the convex combination:

𝑢(𝑘) = (1 − 𝜌(𝑘)) 𝑢L(𝑘) + 𝜌(𝑘) 𝑢U(𝑘), (5)

where 𝑢L and 𝑢U denote the optimal control actions from the lower
and upper boundary controller, respectively. The online tuning of the
controller comes with the cost of storing and evaluating two explicit
controllers. Nevertheless, the ability to tune the controller may be more
important in many practical applications.

The concept of explicit MPC tuning is applicable to a wide class of
MPC design formulations, based on the current specific needs. Without
loss of generality, hereafter, let us consider the penalty matrices of the
cost function in Eq. (1a), as it is necessary to satisfy offset-free reference
tracking.

Remark 2.1. If the asymptotic stability and recursive feasibility guar-
antees are required, the reader is referred to follow the instructions
from [23]. In order to satisfy these requirements, the study introduces
a procedure for computing the common terminal penalty and terminal
set for the two boundary controllers.

Remark 2.2. Not only Eq. (5) needs to be chosen for interpolation of
the control input. Another way of tuning of the control input can be
using some nonlinear relation for the interpolation.

2.3. Self-tunable explicit model predictive control

The advantage of a tunable controller brings a question of how
to design the logic of setting the tuning parameter 𝜌. In this section,
the idea of online self-tuning is summarized [27]. The concept of
self-tuning provides the possibility to adjust the aggressiveness of the
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controller without the necessity to intervene and tune the penalty
matrices during control.

The need for real-time controller tuning often arises from tracking
a time-varying piece-wise constant (PWC) reference. The work [27]
focuses on adjusting the penalty matrix when the reference value is
changed. The further the reference value is from the steady state,
the more aggressively the controller is tuned. The idea behind the
suggested scaling lies in compensation for the nonlinear behavior of
the system.

Consider a single-input and single-output (SISO) system or a system
with completely decoupled pairs of the control inputs and the system
outputs. Then, the procedure of tuning the controller is based on
evaluating the different operating points between the current value
of the reference and the system steady-state value. This deviation is
considered to scale the value of control action. First, the maximal
admissible absolute value of the reference is defined. Analogous to the
reference trajectory preview concept of MPC design, this value can be
determined based on the general knowledge of the expected future
reference values. Another suggestion is to set the maximal deviation
𝑑max based on the constraints on system outputs:

𝑑max = max(|𝑦min|, 𝑦max), (6)

where the symbol |.|, hereafter, denotes the element-wise absolute
value, 𝑦min and 𝑦max are respectively lower and upper bound on the
output variable in the deviation form, i.e., zero (origin) corresponds to
the system steady-state value. Using the information about the maximal
possible deviation 𝑑max, the tuning parameter 𝜌 can be calculated as the
ratio between the current reference value and the maximal deviation:

𝜌(𝑘) =
|𝑦ref (𝑘)|
𝑑max

. (7)

Based on Eq. (7), the property 0 ≤ 𝜌 ≤ 1 holds, as |𝑦ref | ≤ 𝑑max. As
a consequence, the parameter 𝜌 represents a way how to normalize
the deviation from the steady-state value and is exploited to scale the
control action or, implicitly, to tune the aggressiveness of the controller.

Note that the reference value must be reachable from the operating
range to ensure that 0 ≤ 𝜌 ≤ 1 holds. Otherwise, the interpolated control
action would be the ‘‘extrapolation’’ leading to the loss of guarantees
on the input or state constraints satisfaction, etc.

When considering tuning the control action based on Eq. (5), a
higher value of tuning parameter 𝜌 leads to approaching the upper
boundary controller and vice versa. When tuning, e.g., the matrix 𝑄y
penalizing the control error, a higher ratio 𝜌 would lead to more
aggressive control actions. When operating with the reference value
close to the system steady-state value, the parameter 𝜌 decreases and
the control profiles become sluggish.

Remark 2.3. In general, the parameter 𝑑max is a vector, as it depends
on the size of the system outputs. If 𝑑max is scalar, the parameter 𝜌 is
scalar as well and can be directly utilized to scale the control action. If
multiple outputs are controlled, it is suggested to calculate the tuning
parameter based on the maximal ratio as follows:

𝜌(𝑘) = max
(

|𝑦ref (𝑘)|
𝑑max

)

. (8)

Note that the relations in Eqs. (7) and (8) operate with the absolute
value of the reference. It is not taken into account whether the reference
value changed upwards or downwards with respect to the system
steady-state value placed in the origin, i.e., whether the inequality
𝛥ref (𝑘) = 𝑦ref (𝑘) − 𝑦ref (𝑘 − 1) > 0 holds or 𝛥ref (𝑘) < 0. As many plants
have nonlinear behavior with an asymmetric nature (different behavior
when the process variable is rising or decreasing), the positivity or
negativity of the reference change could be considered in the controller
self-tuning procedure to improve the control performance.

3. Methodology

This section extends the ideas of self-tunable explicit MPC in order
to improve control performance. First, a different way of tuning param-
eter calculation is introduced. Furthermore, an extended self-tunable
technique is presented to scale the tuning parameter for industrial-
oriented applications, when it is beneficial to exploit a specific range
of the tuning parameter in different operating conditions.

3.1. Tuning parameter based on the size of reference change

The approach of self-tunable explicit MPC in [27] suggested tuning
based on the current reference value distance from the steady state.
The aim is to compensate for the nonlinear behavior of a system when
using a simple linear prediction model. This work provides also another
useful way of the real-time evaluation of the tuning parameter 𝜌 based
on the size of reference change. When different sizes of reference step
changes are made and the behavior of the closed-loop system is varying,
it can be beneficial to include the size of the reference step change in
the tuning procedure.

In this approach, the aggressivity is adjusted based on the ratio
between the reference step change and the maximal reference step
change that can be realized during the control operation:

𝜌(𝑘) =
|𝛥ref (𝑘)|
𝛥max

, (9)

where 𝛥ref (𝑘) = 𝑦ref (𝑘) − 𝑦ref (𝑘 − 1) is the size of the reference step
change. The denominator of Eq. (9) is changed as well. In contrast to
the maximal deviation from the steady state in Section 2.3, this ap-
proach introduces 𝛥max as the maximal possible reference step change.
Analogously to the original approach, the maximal reference step can
be set based on the general knowledge of the expected future reference
values, i.e., 𝛥max = ‖𝛥ref (𝑘)‖∞,∀𝑘 ≥ 0. Another option is to exploit the
information about the system constraints and set the parameter 𝛥max
according to Eq. (6).

Note, only the absolute value of 𝛥ref and 𝛥max are considered in this
procedure to ensure 𝜌 ≥ 0.

In Eq. (9), it is suggested to increase the value of tuning parameter
𝜌 with increasing value of reference step change. Note, in this work,
the larger value of the tuning parameter leads to adding more weight
on the penalty matrices associated with the upper boundary controller,
see Eq. (4). If the opposite logic of controller tuning is requested, it is
possible to adapt the tuning such that

𝑅(𝑘) = 𝜌(𝑘) 𝑅L + (1 − 𝜌(𝑘)) 𝑅U, (10)
𝑄I(𝑘) = 𝜌(𝑘) 𝑄I,L + (1 − 𝜌(𝑘)) 𝑄I,U, (11)

𝑄y(𝑘) = 𝜌(𝑘) 𝑄y,L + (1 − 𝜌(𝑘)) 𝑄y,U, (12)

hold. This change leads to adding more weight to the lower boundary
controller with the increasing value of the tuning parameter 𝜌.

Remark 3.1. The tuning parameter 𝜌 should be updated only when the
reference changes. Updating the tuning parameter in the control steps
when 𝛥ref = 0 would lead to using tuning parameter 𝜌 with zero value,
i.e., the control input would correspond to one boundary controller and
would not be scaled.

3.2. Self-tunable technique for systems with asymmetric behavior

This paper provides a further extension of the self-tuning method
proposed in [27]. The suggested technique of tuning is suitable, e.g., for
systems with asymmetric behavior, but can be used in any application,
where ‘‘simple’’ tuning in the whole range of tuning parameter 𝜌 is not
sufficient.

The proposed self-tuning method is based on splitting the interval of
the tuning parameter 𝜌 in order to utilize different parts of the interval
in different operating conditions. Instead of the original value of tuning
parameter 𝜌, the adjusted tuning parameter 𝜌 is then utilized to scale
the control input according to Eq. (5).
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Definition 3.1 (Decision Function). For a given interval of tuning
parameter 𝜌, 0 ≤ 𝜌 ≤ 1, let 𝜌s, 0 < 𝜌s < 1 be a boundary value splitting
the interval into two parts. Let 𝛾 ∶ R → R be an arbitrary function such
that 0 ≤ 𝛾 ≤ 1 holds. Then the decision function 𝛾 is constructed to
assign its value either 𝛾 ≤ 𝜌s or 𝛾 ≥ 𝜌s.

Various decision functions 𝛾 can be considered. In this work, the
decision functions according to Eqs. (8) and (9) are suggested, while
Eq. (9) was implemented in the experimental case study.

Definition 3.2 (Scaling of the Tuning Parameter). Given the value of
tuning parameter 𝜌, 0 ≤ 𝜌 ≤ 1, the splitting value of the tuning
parameter interval 𝜌s, 0 < 𝜌s < 1, and the value of the decision function
𝛾, 0 ≤ 𝛾 ≤ 1. Then the scaling of the tuning parameter 𝜌 is given by:

𝜌 =
{

𝜌 𝜌s if 𝛾 ∈ ⟨0, 𝜌s⟩,
𝜌 (1 − 𝜌s) + 𝜌s, else if 𝛾 ∈ ⟨𝜌s, 1⟩.

(13)

Remark 3.2. The introduction of splitting the tuning parameter 𝜌 into
the tuning intervals in (13) is not limited only to two intervals. If the
nature of the controlled plant would benefit from splitting the operating
range into more intervals, e.g., when the plant operates in the multiple
steady-states values, then these intervals are simply determined by the
corresponding values of 𝜌s,𝑖 for each part of the interval. Next, the
tuning rules in (13) are adopted in an analogous way.

The following outcomes result from Eq. (13).

Lemma 3.2.1. Given control law in (3), its approximation given by the
convex combination in (5), and given scaled tuning parameter 𝜌 according
to Definition 3.2. Then the control action approximated into the form:

𝑢(𝑘) = (1 − 𝜌(𝑘)) 𝑢L(𝑘) + 𝜌(𝑘) 𝑢U(𝑘), (14)

preserves the closed-loop system stability and recursive feasibility of the
original control law in (3).

Proof. It has been proven [23] that for the asymptotic stable and
recursive feasible pair of control inputs (𝑢L, 𝑢U), the approximated
control law in (3) preserves these properties for any 𝜌 satisfying 0 ≤
𝜌 ≤ 1, see Theorem 3.6 in [23]. It remains to prove that for any value
of the scaled tuning parameter 𝜌 according to Definition 3.2 the same
results hold. The rest of the proof of Lemma 3.2.1 consists of two parts
corresponding to each particular rule in (13).

First, it is proved that Lemma 3.2.1 holds for any 𝛾 ≤ 𝜌s. Substituting
a lower bound 𝜌 = 0 into (13) leads to 𝜌 = 0. For the upper bound
value of 𝜌 = 1, from (13) holds 𝜌 = 𝜌s < 1. Next, for any value
0 < 𝜌 < 1 evaluation of the linear rule in (13) leads to the convex
combination, i.e., 0 < 𝜌 < 𝜌s holds. Therefore, any value of 𝜌 satisfies
0 ≤ 𝜌 ≤ 𝜌s < 1. As a consequence, according to the Theorem 3.6
in [23], the asymptotic stability and recursive feasibility of the control
law in (14) are preserved.

Secondly, it is proved that Lemma 3.2.1 holds also for any 𝛾 ≥ 𝜌s.
Substituting a lower bound 𝜌 = 0 into (13) leads to 𝜌 = 𝜌s. For the
upper bound value of 𝜌 = 1, from (13) holds 𝜌 = 1. Next, for any value
0 < 𝜌 < 1 evaluation of the linear rule in (13) leads to the convex
combination, i.e., 𝜌s < 𝜌 < 1 holds. Therefore, any value of 𝜌 satisfies
𝜌s ≤ 𝜌 ≤ 1. As a consequence, according to the Theorem 3.6 in [23], the
asymptotic stability and recursive feasibility of the control law in (14)
are preserved. □

Remark 3.3. The Lemma 3.2.1 can be extended subject to the multiple
intervals in an analogous way following Remark 3.2.

The advantage of the proposed method remains in the self-tuning of
the controller as in the approach from Section 2.3. Nevertheless, it is
required to appropriately determine the splitting value of the tuning
parameter 𝜌s and assign the parts of the interval to the associated
operating conditions.

Remark 3.4. Note, the suggested scaling method is suitable also for
online MPC, as the optimization problem is solved in every control
step. Therefore, it is possible to include the controller tuning in the
procedure of computing the optimal control input.

For a detailed insight into the proposed control technique, the
procedure of self-tuning evaluation is depicted in Fig. 1.

From the point of computational complexity, the proposed tuning
procedure does not lead to any significantly demanding mathematical
operations. Simple algebraic operations in Eqs. (9) and (13) are eval-
uated. Note, the overall control strategy still comes with the cost of
storing and evaluating two explicit controllers.

4. Results and discussion

In this section, the results of the proposed self-tuning method are
analyzed by an experimental implementation. The self-tuning strategy
utilizes tuning parameter calculation based on the size of reference
change (Section 3.1) and the scaling of tuning parameter based on
splitting the interval of the parameter and assigning the interval parts
to specific operating conditions (Section 3.2).

The plant on which the control was implemented and analyzed is a
laboratory-scaled counter-current liquid-to-liquid plate heat exchanger
Armfield Process Plant Trainer PCT23 [30], see Fig. 2. The schematic
of the plant is depicted in Fig. 3. The heat exchanger is 90 mm wide,
103 mm long, and 160 mm high. The heat exchange is performed
between the cold medium (water) and the hot medium (water). The
cold medium as well as the heating medium are transported to the heat
exchanger by two peristaltic pumps with flexible tubing from silicon
rubber. The flow rate of the cold medium is constant, while the aim
of control is to track the reference value of the outlet cold medium
temperature. Therefore, the controlled variable is the cold medium
temperature 𝑇 at the outlet of the heat exchanger. The inlet cold
medium temperature was constant during the whole control, i.e., 𝑇C =
19, ◦C. The temperature of the heated cold medium in the outlet stream
was measured by the type K thermocouple. The associated manipulated
variable is the voltage 𝑈 corresponding to the power of the pump
feeding the heat exchanger by the hot medium. The voltage is within
the range of [0–5] V normalized into the relative values in percentage.
The maximal voltage 5 V or 100% corresponds to volumetric flow
rate 11.5 ml s−1. For further technical specifications of the laboratory
heat exchanger, the reader is referred to [30]. As heat exchange is a
nonlinear and asymmetric process [10], this heat exchanger represents
a suitable candidate for the presented controller tuning strategy. The
corresponding illustrative scheme of the implemented closed-loop con-
trol setup is in Fig. 6, where the ‘‘Self-tuning’’ block substitutes the
more detailed scheme of the tuning procedure in Fig. 1.

The system was identified by experimental identification. The aim
was to work with linear nominal model in MPC optimization problem
to decrease the numerical complexity. To avoid plant-model mismatch
in order to ensure offset-free tracking, either disturbance observer
or built-in integrator (Eq. (1)) can be employed. Due to the ease of
implementation, in this work, the built-in integrator was considered.
The system was identified based on several measured step responses.
The step changes were performed in the whole range of admissible
values of manipulated variable and every step response was identified
by transfer function. It was possible to identify every step response
as a first-order system, while the nominal gain and time constant are
respectively 𝐾 = 0.24 ◦C and 𝜏 = 5.7 s. Finally, the nominal transfer
function was converted to the state-space model. The matrices of the
discrete-time state-space model of the plant are

𝐴 =
[

0.839
]

, 𝐵 =
[

0.039
]

, 𝐶 =
[

1
]

, (15a)

considering the sampling time 𝑇s = 1 s. To respect the physical limita-
tions of the operating conditions, the constraints are considered in the
terms of control inputs

− 15% ≤ 𝑢 ≤ 65%, (16)
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Fig. 1. Scheme of the self-tuning control evaluation.

Fig. 2. Laboratory heat exchanger Armfield Process Plant Trainer PCT23: cold medium
pump (1), heating medium pump (2), cold medium tanks (3), heater for heating
medium (4), heat exchanger (5).

where the variable 𝑢 represents the control inputs in the deviation form.
The values of the heated cold medium temperature and voltage of the
heating medium pump corresponding to zero steady states are respec-
tively 𝑇 s = 35,◦C and 𝑈 s = 35%. Therefore, the physical constraints on
the manipulated variable are actually

20% ≤ 𝑈 ≤ 100%. (17)

As the controlled system is naturally stable even if the maximal or
minimal value of the manipulated variable is constantly applied, the
constraints on the controlled variable in Eq. (1e) could be omitted.
On the other hand, unbounded states/outputs lead to higher memory
consumption, because covering the whole possible range of parameters
requires more critical regions. Therefore, the ‘‘redundant’’ constraints
on the system outputs were included in order to reduce the number
of critical regions and the overall memory footprint of the explicit
controllers. The output constraints were set as:

− 15 ◦C ≤ 𝑦 ≤ 20 ◦C. (18)

The constraints in Eq. (18) are equal to physical temperature as
follows:

20 ◦C ≤ 𝑇 ≤ 55 ◦C, (19)

which corresponds to the range of temperature values which are achiev-
able in the considered laboratory conditions and setup.

The penalty matrices of the problem in Eq. (1) were systematically
tuned, and the corresponding control setup was implemented on the
laboratory heat exchanger for each setup of the considered explicit
MPC controllers. First, the tuning procedure aimed to determine which
penalty matrix is the most suitable for real-time tuning. The most
relevant was the penalty matrix 𝑄y as the tuning is directly associated
with a reference value, which takes place in the calculation of the
tuning factor 𝜌. Moreover, the tuning of 𝑄y preserved a satisfactory
control performance. Next, the boundary values of the tunable matrix
𝑄y were tuned until the following limit values were determined based
on the measured closed-loop control data: 𝑄y,L = 100 and 𝑄y,U = 1 000.
The built-in integrator was penalized with the fixed penalty matrix 𝑄I
= 1 and the control input with the fixed penalty matrix 𝑅 = 10. The
prediction horizon 𝑁 was set to 20 control steps. The explicit model
predictive controllers were constructed in MATLAB R2020b using the
Multi-Parametric Toolbox 3 [31].

The explicit MPC corresponding to the penalty matrix 𝑄y,U contains
1 680 critical regions, and the explicit MPC with the penalty matrix 𝑄y,L
contains 409 critical regions. The corresponding polytopic partitions
can be seen in Fig. 4 for the upper boundary controller and Fig. 5 for
the lower boundary controller.

The designed explicit model predictive controllers were imple-
mented to track a time-varying PWC reference. For the initial 200 s,
the reference temperature was the steady-state value. After that, the
reference changed its value twice upwards and twice downwards. The
reference changes also acquired different sizes in order to examine the
proposed tuning method as it is dependent on the size of the reference
step change. Specifically, the reference temperature values were 𝑇ref =
35,◦C, 45,◦C, 50,◦C, 45,◦C, 35,◦C.

Besides the control design of two boundary explicit MPCs, it was
necessary to keep the temperature of the heating medium constant.
The heating medium was transported back to the heater after leav-
ing the heat exchanger, i.e., the volume of the heating medium was
recycled during the whole operation. The temperature of the heating
medium was maintained on the value 70,◦C with a simple proportional
controller with proportional gain 𝑃 = 20. The control input from the
proportional controller was the electric power which could acquire the
values in the range [0–2] kW and was also normalized to percentage.

The control profiles generated for both considered boundary control
setups are compared in Fig. 9 for the controlled variable, and in Fig. 10
for the control inputs. Note, the constructed explicit MPC controller
computed control inputs to respect the constraints on the control inputs
and they need not be truncated afterward.

An interesting phenomenon can be observed while tracking the
third reference value, i.e., 𝑇ref = 50,◦C. Although the steady-state values
of temperature have the same value, the values of the manipulated
variable are different. To check the correctness of the results, the
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Fig. 3. Scheme of Armfield PCT23. Heat exchanger (I), peristaltic pump for cold medium (II), peristaltic pump for heating medium (III), tank for cold medium (IV), heater for
heating medium (V), temperature sensors (T – controlled temperature, TC – cold outlet cold medium temperature, TH – heating medium temperature), and electric power for
maintaining the temperature of the heating medium (W).

Fig. 4. Polytopic partition of the upper boundary explicit MPC.

Fig. 5. Polytopic partition of the lower boundary explicit MPC.

measurements were performed multiple times and led to the same
behavior. Also, the inlet temperatures of the cold and heating medium
were checked to exclude the effect of a disturbance. Regarding the
temperature of the cold medium, due to the limited hardware interface,
it was not possible to measure the data continuously, store them, and
plot the trajectory in a Figure. Nevertheless, the temperature of the cold
medium was manually checked multiple times during the experiment
and was constant.

Regarding the temperature of the heating medium, the correspond-
ing trajectories of the temperature can be seen in Fig. 11, and the
electric power, i.e., the corresponding manipulated variable, can be
seen in Fig. 12. Note that the legends correspond to the specific setup of
MPC, but the temperature of the heating medium was controlled with
a simple P controller with the same proportional gain in every control
scenario.

It can be seen that the temperature of the heating medium remains
relatively constant during the whole control, except for the undershoots
in the scenario with upper boundary MPC, i.e., blue trajectory. The
undershoots can be easily associated with the trajectory of the voltage
on the pump dosing the heating medium (and ultimately the heating
medium flow rate). As the upper boundary MPC calculated ‘‘aggressive’’
control inputs, the increased flow rate of the heating medium led to
a slight decline in the heating medium temperature. After approxi-
mately 100 s, the heating medium warmed up to the reference value,
i.e., 𝑇H,ref = 70, ◦C and remained constant within the accuracy of the
temperature sensor. It can be seen that although the temperature of
the heating medium is constant and identical for all control scenarios
(MPC setups), the value of the voltage on the pump dosing the heating
medium is not the same when tracking the temperature 𝑇ref = 50, ◦C.
Therefore, the same conditions were fulfilled for all control scenarios.

The reason for this behavior could be explained by the peak of the
manipulated variable associated with the upper boundary controller at
time 800 s, see Fig. 10, blue. After approximately 100 s, the value of
the manipulated variable dropped and settled at a value lower than
the value associated with the lower boundary controller, see Fig. 10,
red. This is a consequence of the heat accumulated inside the heat
exchanger plates, and therefore, less heating medium was necessary
to heat the cold medium. This phenomenon does not happen when
tracking the reference value 𝑇ref = 45,◦C, which originates in the
nonlinear nature of the heat transfer process. When working in a higher
temperature range, the gain of the heat transfer process decreases,
and the sensitivity to changes in the heating medium flow is lower.
Therefore, even different flow rates of the heating medium lead to the
same temperature at the outlet.
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Fig. 6. Scheme of the implemented closed-loop control setup, where ‘‘eMPC’’ denotes explicit MPC.

The trajectories in Fig. 9 show the asymmetric nature of controlling
the plant of plate heat exchanger mainly when observing the overshoots
and undershoots. When applying the control inputs associated with the
lower boundary penalty matrix 𝑄y,L in Eq. (1a), significant undershoots
are present when tracking the reference downwards, i.e., when the
reference change is negative. On the contrary, when implementing
the controller associated with 𝑄y,U in Eq. (1a), the undershoots are
negligible, but significant overshoots can be seen when tracking the
reference upwards, see Fig. 9, blue.

These main experimental observations established the base for the
strategy of controller self-tuning. The strategy follows the ideas sum-
marized in Section 3. Utilizing the nature of the boundary controller
with the penalty matrix 𝑄y,L is preferred when the reference changes
upwards. Therefore, in these operating conditions, the tuning factor
is scaled in the first part of the whole interval, i.e., closer to the
lower bound. On the contrary, tuning the controller closer to the upper
boundary controller associated with 𝑄y,U is preferred for negative
reference step changes. Therefore, in these operating conditions, the
tuning factor is scaled above the splitting value 𝜌s, i.e., closer to the
upper bound. The splitting value of the tuning parameter was chosen
simply in the middle of the interval, i.e., 𝜌s = 0.5. The remaining
parameter that needed to be set was the maximal admissible size of
the reference step change 𝛥max, which was determined to 15 ◦C as the
investigated range of controlled temperature was [35–50],◦C. Based on
the aforementioned parameters and real-time information about the
current reference change, the tuning factor was updated during control.
The evolution of the scaled tuning factor 𝜌 can be seen in Fig. 7.
When the positive reference changes are tracked, the tuning factor is
scaled below the splitting value 𝜌s. On the contrary, when the reference
changes are negative, the tuning factor is scaled above the splitting
value 𝜌s.

The setup of the tuning factor can be associated with tuning of the
penalty matrix 𝑄y according to Eq. (4c). The evolution of the penalty
matrix 𝑄y during control is depicted in Fig. 8. Note, the penalty matrix
evolution in Fig. 8 does not correspond to tuning of the optimal MPC,
but serves for a deeper insight into the association of the interpolated
control inputs with the optimal explicit MPC setup.

The control input is applied to the system each second, so there is
a possible concern regarding the speed at which two explicit MPCs are
evaluated. By analyzing the computational speed, it was concluded that
the approximate control input can be generated in an average time of
0.01 s, which is 100 times faster than the sampling time.

The control results of the self-tunable technique compared to the
boundary controllers can be seen in Fig. 9 for the controlled variable,
and in Fig. 10 for the manipulated variable. It can be seen that the
tuned controller combined the benefits of the two boundary controllers.
The overshoots and undershoots were reduced, as in the first half of

Fig. 7. Evolution of the scaled tuning factor 𝜌 during real-time control. When tracking
positive reference changes, the tuning factor is scaled below the splitting value 𝜌s
(200–1 400 s). On the contrary, when the reference changes are negative, the tuning
factor is scaled above the splitting value 𝜌s (1 400–2 600 s).

control the penalty matrix 𝑄y acquired value from the first half of
the penalty interval. When tracking the reference with negative step
change, the penalty matrix acquired the values from the second half of
the interval, i.e., closer to the upper bound 𝑄y,U. The similarity with
the boundary controllers can be seen also on the manipulated variable
profiles. Note, the constraints on the input variable were satisfied as
they were scaled using linear interpolation based on the boundary
controllers which are constructed considering the input constraints.

The control performance was also investigated quantitatively.
Table 1 summarizes the evaluated control performance criteria com-
puted for the two boundary controllers and the self-tuned controller.
The control performance is evaluated for each reference step change
separately. The considered quality criteria are: sum-of-squared control
error SSE, maximal overshoot/undershoot 𝜎max and the settling time
𝑡𝜖 for 5%-neighborhood of the reference temperature 𝑇ref . To provide
better readability of the computed results in Table 1, the best values,
i.e., the minimum values, are emphasized using a bold font style.

As can be seen in Table 1, the real-time self-tuning of the explicit
MPC controller helped to improve two to three criteria when tracking
each reference value. The relative improvement in the percentage, de-
noted by 𝛿, of using the self-tunable controller is summarized in Table 2
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Fig. 8. Evolution of the penalty matrix 𝑄y during real-time control. When tracking
positive reference changes, the controller is tuned to operate closer to the lower
boundary matrix 𝑄y,L (200–1 400 s). On the contrary, when the reference changes are
negative, the controller is tuned to operate closer to the lower boundary matrix 𝑄y,U
(1 400–2 600 s).

Fig. 9. Explicit MPC: Controlled variable trajectory for two boundary controllers and
the tuned one. The solid lines represent the controlled temperature 𝑇 and the dashed
line represents the reference value.

for each reference step change separately. The values were computed as
the difference between two criteria values corresponding to the optimal
and self-tunable MPC, referred to the self-tunable MPC. The negative
numbers represent deterioration of the specific performance criterion
in the corresponding reference tracking.

Compared to the considered non-self-tunable controllers, the control
trajectories and the evaluated quality criteria confirmed the improved
control performance for the reference tracking control problem of
the heat exchanger with the non-linear and asymmetric behavior.
Implementing a self-tunable explicit MPC controller leads to improved
control performance in the most analyzed quality criteria, see Table 2.
In average, the control performance criteria improved compared to the

Fig. 10. Explicit MPC: Manipulated variable trajectory for two boundary controllers
and the tuned one. The solid lines represent the voltage 𝑈 and the dashed lines
represent the constraints.

Fig. 11. Auxiliary P controller: The trajectory of heating medium temperature control.

Table 1
Control performance criteria.

Reference step change 𝑄y SSE [◦C2 s] 𝜎max [%] 𝑡𝜖 [s]

35 ◦C → 45 ◦C 1 000 714 33.5 16.5
100 867 16.7 12.5
self-tuned 678 15.2 9.5

45 ◦C → 50 ◦C 1 000 365 47.2 5
100 606 23.3 26.5
self-tuned 248 19.1 9.5

50 ◦C → 45 ◦C 1 000 245 18.9 6.5
100 398 79.6 31
self-tuned 186 24.6 6.5

45 ◦C → 35 ◦C 1 000 1 024 18.4 22.5
100 1 402 41.9 90
self-tuned 967 16.5 18.5



Journal of Process Control 140 (2024) 103260

10

L. Galčíková and J. Oravec

Fig. 12. Auxiliary P controller: The trajectory of electric power controlling the heating
medium temperature.

Table 2
Relative improvement of the control performance using the self-tunable explicit MPC
controller.

Comparison with 𝑄y setup 𝛿 SSE [%] 𝛿𝜎max [%] 𝛿𝑡𝜖 [%]

35 ◦C → 45 ◦C 1000 5 121 74
100 28 10 32

45 ◦C → 50 ◦C 1000 47 147 −47
100 144 22 179

50 ◦C → 45 ◦C 1000 32 −23 0
100 114 224 377

45 ◦C → 35 ◦C 1000 6 12 22
100 45 154 386

Average 1000 23 64 12
100 83 102 244

upper and lower boundary MPC respectively as follows: the squared-
error-based criterion (SSE) reduced by 23% and 83%, the maximal
overshoot/undershoot 𝜎max reduced by 64% and 102%, and the settling
time 𝑡𝜖 reduced by 12% and 244%.

In general, utilizing the proposed controller with a scalable aggres-
siveness according to the operating conditions leads to higher accuracy
(lower SSE), lower value of the overshoots (reduced 𝜎max), and faster
achieving the reference value (decreased 𝑡𝜖).

Obviously, if there exists a well-tuned ‘‘universal’’ controller that
satisfies the requirements on the control performance in the whole
range of the considered operating conditions, then the implementation
of the self-tuning procedure is out of scope for such control applica-
tion. Nevertheless, in numerous practical situations, using only one
controller with a constant setup leads to poor or just ‘‘satisfactory’’
control results, i.e., the reference value is achieved, but with worse
control performance, e.g., leading to high overshoots or settling times.
When working on our laboratory case study, a set of different setups
of penalty matrices was investigated. In every control scenario, the
setup was beneficial only in some working conditions (tracking the
reference upwards or downwards). Therefore, the closed-loop control
performance is improved by introducing the benefits of the self-tuning
method based on the two boundary MPC controllers.

Note that this strategy relies on a proper design of the two boundary
controllers. In case a non-negligible disturbance occurs, both boundary
controllers should be able to solve a disturbance rejection problem as
the final value of the manipulated variables is interpolated between

them. To address the impact of the disturbances directly in constructing
the MPC controller design, a robust MPC strategy should be considered,
e.g., see [32]. Any robust MPC design method leads to conservative
control actions as some portion of the performance is sacrificed to
compensate for the impact of the disturbances. Nevertheless, if it
is possible to obtain the explicit (multi-parametric) solution of the
robust explicit MPC offline, then the same self-tuning procedure is
applicable to interpolate between the control actions from the robust
controllers.

5. Conclusions

This paper deals with the experimental implementation and anal-
ysis of the novel self-tunable approximated explicit model predictive
control method and provides a strategy for an effective self-tuning
controller design. Based on the current value of the piece-wise constant
reference, the tuning parameter is scaled using linear interpolation.
The previously published work related to the self-tunable explicit MPC
suggested tuning based on the distance of the reference value from
the system steady-state value. This paper presents a novel perspective
idea of self-tuning based on the size of reference step change. The self-
tuning algorithm aims to compensate for the nonlinear behavior of the
controlled system. The self-tuning parameter is updated whenever the
reference changes. The tuning value is calculated as the ratio between
the size of the reference change and the maximal admissible size of the
reference change, which is specified before operation. Another novel
contribution addresses the challenging control problem of asymmetric
system behavior by splitting the interval of the self-tuning parameter
into two ranges, while both intervals are assigned to different operating
conditions. The proposed method is implemented on a laboratory-
scaled heat exchanger with nonlinear and asymmetric behavior. The
asymmetry makes the plant a suitable candidate to analyze the benefits
of splitting the interval of the tuning parameter. The decision criterium
is negativity or positivity of reference change. When the reference
changed upwards, the control input was tuned in the first part of the
interval and approached the boundary controller associated with the
lower bound on the selected penalty matrix. On the contrary, when the
reference changed downwards, the control input was tuned to approach
the control input from the boundary controller with the upper bound
on the penalty matrix.

To properly investigate the control results, the control performance
was also judged quantitatively using a set of quality criteria. The
self-tunable control approach outperformed the conventional control
strategy handling just a single controller, i.e., non-tunable controller.
In average, the control performance criteria improved compared to the
upper and lower boundary MPC respectively as follows: the squared-
error-based criterion (SSE) reduced by 23% and 83%, the maximal
overshoot/undershoot 𝜎max reduced by 64% and 102%, and the settling
time 𝑡𝜖 reduced by 12% and 244%.

The approach of the self-tunable technique was successfully imple-
mented on a SISO system but can also be extended to multivariable
systems by utilizing only a single value of the tuning parameter 𝜌 to
interpolate the values of every control input. It is suggested in Eq. (8)
that the tuning parameter 𝜌 can be calculated as the maximal value of
all the tuning parameters computed for every output reference. How-
ever, this is straightforward to implement only for decoupled systems. If
there are strong interactions between the system states, the self-tunable
technique is challenging to design. In such a case, it is necessary to
include expert knowledge about the system state interactions, and the
resulting value of the tuning parameter 𝜌 could be computed, e.g., as a
weighted average of the individual tuning parameters.
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Nomenclature

Symbols
𝐴 system state matrix
𝐴 augmented system state matrix
𝐵 system input matrix
𝐵 augmented system input matrix
𝐶 system output matrix
𝐶 augmented system output matrix
𝑑max maximal deviation from the steady-state value
𝐹 slope of the affine control law
𝑔 section of the affine control law
𝐼 identity matrix
𝑘 step of the prediction horizon
𝐾 system gain, ◦C
𝑁 prediction horizon
𝑛u size of system inputs
𝑛y size of system outputs
𝑛x̃ size of augmented system states
𝑃 proportional gain of proportional controller
𝑄x penalty matrix of the built-in integrator
𝑄x,L lower bound on the penalty matrix of the built-in integrator
𝑄x,U upper bound on the penalty matrix of the built-in integrator
𝑄y penalty matrix of the control error
𝑄y,L lower bound on the penalty matrix of the control error
𝑄y,U upper bound on the penalty matrix of the control error
𝑅 penalty matrix of system inputs
𝑅L lower bound on the penalty matrix of system inputs
𝑅U upper bound on the penalty matrix of system inputs
 critical region
R Euclidean space of real numbers
𝑡 time, s
𝑡𝜖 settling time, s
𝑇 temperature, ◦C
𝑇C cold medium temperature, ◦C
𝑇H heating medium temperature, ◦C
𝑇H,ref heating medium reference temperature, ◦C
𝑇ref reference temperature, ◦C
𝑇s sampling time, s
𝑇 s steady state of temperature, ◦C
𝑢 control inputs
𝑢L control inputs associated with the lower boundary controller
𝑢U control inputs associated with the upper boundary controller
𝑈 voltage, %
𝑈 s steady state of voltage, %
 set of control inputs
𝑊 electric power, %
𝑥 system states
𝑥 augmented system states
𝑥I system states corresponding to the built-in integrator
𝑦 system outputs
𝑦max maximal value of system outputs
𝑦min minimal value of system outputs
𝑦ref reference value of system outputs
 set of system outputs
0 zero matrix

Greek letters
𝛿 relative improvement, %
𝛥max maximal size of the reference change, ◦C
𝛥ref size of the reference change, ◦C
𝜌 tuning factor
𝜌 scaled tuning factor

𝜌s splitting value of the tuning factor
𝜎max maximal overshoot, %
𝜏 system time constant, s
𝜃 parameter of optimization problem
𝛩 set of parameter values

Abbreviations
eMPC explicit model predictive control
LTI linear time-invariant (system)
LQR linear-quadratic regulator
MPC model predictive control
mp-QP multi-parametric quadratic programming (problem)
PID proportional–integral–derivative (controller)
PWA piece-wise affine (function)
PWC piece-wise constant (function)
QP quadratic programming (problem)
SISO single-input and single-output (system)
SSE sum-of-squared error

CRediT authorship contribution statement

Lenka Galčíková: Writing – review & editing, Writing – origi-
nal draft, Validation, Methodology, Investigation, Data curation. Juraj
Oravec: Writing – review & editing, Validation, Supervision, Project
administration, Methodology, Investigation, Formal analysis.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability

The authors are unable or have chosen not to specify which data
has been used.

Acknowledgments

The authors gratefully acknowledge the contribution of the Scien-
tific Grant Agency of the Slovak Republic under the grants 1/0545/20,
1/0297/22, and the Slovak Research and Development Agency under
the project APVV-20-0261. This research is funded by the European
Union’s Horizon Europe under grant no. 101079342 (Fostering Op-
portunities Towards Slovak Excellence in Advanced Control for Smart
Industries). The authors also acknowledge Petronela Belková for help
with generating the experimental data.

References

[1] M.M. Morato, J.E. Normey-Rico, O. Sename, Model predictive control design
for linear parameter varying systems: A survey, Annu. Rev. Control 49 (2020)
64–80, http://dx.doi.org/10.1016/j.arcontrol.2020.04.016.

[2] L. Zhi-Yong, P.S. Varbanov, J.J. Klemeš, J.Y. Yong, Recent developments in
applied thermal engineering: Process integration, heat exchangers, enhanced
heat transfer, solar thermal energy, combustion and high temperature processes
and thermal process modelling, Appl. Therm. Eng. 105 (2016) 755–762, http:
//dx.doi.org/10.1016/j.applthermaleng.2016.06.183.

[3] J. Klemeš, P. Varbanov, Heat transfer improvement, energy saving, management
and pollution reduction, Energy 162 (2018) 267–271, http://dx.doi.org/10.1016/
j.energy.2018.08.014.

[4] W. Roetzel, X. Luo, D. Chen, Chapter 1 - heat exchangers and their networks:
A state-of-the-art survey, in: W. Roetzel, X. Luo, D. Chen (Eds.), Design and
Operation of Heat Exchangers and their Networks, Academic Press, 2020, pp.
1–12, http://dx.doi.org/10.1016/B978-0-12-817894-2.00001-7.

[5] S. Aguel, Z. Meddeb, M.R. Jeday, Parametric study and modeling of cross-flow
heat exchanger fouling in phosphoric acid concentration plant using artificial
neural network, J. Process Control 84 (2019) 133–145, http://dx.doi.org/10.
1016/j.jprocont.2019.10.001.

http://dx.doi.org/10.1016/j.arcontrol.2020.04.016
http://dx.doi.org/10.1016/j.applthermaleng.2016.06.183
http://dx.doi.org/10.1016/j.applthermaleng.2016.06.183
http://dx.doi.org/10.1016/j.applthermaleng.2016.06.183
http://dx.doi.org/10.1016/j.energy.2018.08.014
http://dx.doi.org/10.1016/j.energy.2018.08.014
http://dx.doi.org/10.1016/j.energy.2018.08.014
http://dx.doi.org/10.1016/B978-0-12-817894-2.00001-7
http://dx.doi.org/10.1016/j.jprocont.2019.10.001
http://dx.doi.org/10.1016/j.jprocont.2019.10.001
http://dx.doi.org/10.1016/j.jprocont.2019.10.001


Journal of Process Control 140 (2024) 103260

12

L. Galčíková and J. Oravec

[6] M. Trafczynski, M. Markowski, S. Alabrudzinski, K. Urbaniec, The influence of
fouling on the dynamic behavior of PID-controlled heat exchangers, Appl. Therm.
Eng. 109 (2016) 727–738, http://dx.doi.org/10.1016/j.applthermaleng.2016.08.
142.

[7] Y. Wang, S. You, W. Zheng, H. Zhang, X. Zheng, Q. Miao, State space
model and robust control of plate heat exchanger for dynamic performance
improvement, Appl. Therm. Eng. 128 (2018) 1588–1604, http://dx.doi.org/10.
1016/j.applthermaleng.2017.09.120.

[8] J. van Niekerk, J. le Roux, I. Craig, On-line automatic controller tuning of a
multivariable grinding mill circuit using Bayesian optimisation, J. Process Control
128 (2023) 103008, http://dx.doi.org/10.1016/j.jprocont.2023.103008.

[9] J. Mikleš, M. Fikar, Process Modelling, Identification, and Control, Springer,
2007.

[10] B.G. Liptak, fourth ed., Instrument Engineers’ Handbook, vol. 2: Process Con-
trol and Optimization, CRC Press, London, 2005, http://dx.doi.org/10.1201/
9781315219028.

[11] M. Morari, J. H. Lee, Model predictive control: Past, present and future, Comput.
Chem. Eng. 23 (4) (1999) 667–682, http://dx.doi.org/10.1016/S0098-1354(98)
00301-9.

[12] C. Hajiyev, H. Soken, S. Vural, Linear quadratic regulator controller design, in:
State Estimation and Control for Low-Cost Unmanned Aerial Vehicles, Springer,
Cham, 2015, http://dx.doi.org/10.1007/978-3-319-16417-5_10.

[13] J. Maciejowski, Predictive Control with Constraints, Prentice Hall, London, 2000.
[14] J. Mattingley, Y. Wang, S. Boyd, Receding horizon control, IEEE Control Syst.

Mag. 31 (3) (2011) 52–65, http://dx.doi.org/10.1109/MCS.2011.940571.
[15] K.V. Vinaya, K. Ramkumar, V. Alagesan, Control of heat exchangers using

model predictive controller, in: IEEE-International Conference on Advances in
Engineering, Science and Management, ICAESM -2012, 2012, pp. 242–246.

[16] J. Oravec, M. Bakošová, A. Mészáros, N. Míková, Experimental investigation of
alternative robust model predictive control of a heat exchanger, Appl. Therm.
Eng. 105 (2016) 774–782, http://dx.doi.org/10.1016/j.applthermaleng.2016.05.
046.

[17] A.H. González, D. Odloak, J.L. Marchetti, Predictive control applied to heat-
exchanger networks, Chem. Engi. Process.: Process Intensif. 45 (8) (2006)
661–671, http://dx.doi.org/10.1016/j.cep.2006.01.010.

[18] X. Wu, J. Chen, L. Xie, Fast economic nonlinear model predictive control strategy
of organic rankine cycle for waste heat recovery: Simulation-based studies,
Energy 180 (2019) 520–534, http://dx.doi.org/10.1016/j.energy.2019.05.023.

[19] Z. Dong, Z. Zhang, Y. Dong, X. Huang, Multi-layer perception based model
predictive control for the thermal power of nuclear superheated-steam supply
systems, Energy 151 (2018) 116–125, http://dx.doi.org/10.1016/j.energy.2018.
03.046.

[20] A. Bemporad, M. Morari, V. Dua, E.N. Pistikopoulos, The explicit linear quadratic
regulator for constrained systems, Automatica 38 (2002) 3–20, http://dx.doi.org/
10.1016/S0005-1098(01)00174-1.

[21] M. Baric, M. Baotic, M. Morari, On-line tuning of controllers for systems with
constraints, in: Proceedings of the 44th IEEE Conference on Decision and Control,
2005, pp. 8288–8293, http://dx.doi.org/10.1109/CDC.2005.1583504.

[22] M. Klaučo, M. Kvasnica, Towards on-line tunable explicit MPC using interpola-
tion, in: Preprints of the 6th IFAC Conference on Nonlinear Model Predictive
Controle, IFAC, Madison, Wisconsin, USA, 2018.

[23] J. Oravec, M. Klaučo, Real-time tunable approximated explicit MPC, Automatica
142 (2022) 110315, http://dx.doi.org/10.1016/j.automatica.2022.110315.

[24] D. Mayne, J. Rawlings, C. Rao, P. Scokaert, Constrained model predictive control:
Stability and optimality, Automatica 36 (6) (2000) 789–814, http://dx.doi.org/
10.1016/S0005-1098(99)00214-9.

[25] K. Kiš, M. Klaučo, A. Mészáros, Neural network controllers in chemical tech-
nologies, in: 2020 IEEE 15th International Conference of System of Systems
Engineering, SoSE, 2020, pp. 397–402, http://dx.doi.org/10.1109/SoSE50414.
2020.9130425.

[26] K. Kiš, P. Bakaráč, M. Klaučo, Nearly optimal tunable MPC strategies on embed-
ded platforms, in: 18th IFAC Workshop on Control Applications of Optimization,
IFAC-PapersOnline, 2022, pp. 326–331, http://dx.doi.org/10.1016/j.ifacol.2022.
09.045.

[27] L. Galčíková, M. Horváthová, J. Oravec, M. Bakošová, Self-tunable approximated
explicit model predictive control of a heat exchanger, Chem. Eng. Trans. 94 (94)
(2022) 1015–1020, http://dx.doi.org/10.3303/CET2294169.

[28] D. Di Ruscio, Model predictive control with integral action: A simple MPC
algorithm, Model. Identif. Control 34 (3) (2013) 119–129, http://dx.doi.org/10.
4173/mic.2013.3.2.

[29] M. Klaučo, M. Kvasnica, MPC-Based Reference Governors, Springer, 2019, http:
//dx.doi.org/10.1007/978-3-030-17405-7.

[30] Introduction Manual, PCT23-MkII Process Plant Trainer, Armfield, 2007.
[31] M. Herceg, M. Kvasnica, C. Jones, M. Morari, Multi-parametric toolbox 3.0, in:

European Control Conference, 2013, pp. 502–510, http://dx.doi.org/10.23919/
ECC.2013.6669862.

[32] G. Pannocchia, J.B. Rawlings, S.J. Wright, Conditions under which suboptimal
nonlinear MPC is inherently robust, Systems Control Lett. 60 (9) (2011) 747–755,
http://dx.doi.org/10.1016/j.sysconle.2011.05.013.

http://dx.doi.org/10.1016/j.applthermaleng.2016.08.142
http://dx.doi.org/10.1016/j.applthermaleng.2016.08.142
http://dx.doi.org/10.1016/j.applthermaleng.2016.08.142
http://dx.doi.org/10.1016/j.applthermaleng.2017.09.120
http://dx.doi.org/10.1016/j.applthermaleng.2017.09.120
http://dx.doi.org/10.1016/j.applthermaleng.2017.09.120
http://dx.doi.org/10.1016/j.jprocont.2023.103008
http://refhub.elsevier.com/S0959-1524(24)00100-8/sb9
http://refhub.elsevier.com/S0959-1524(24)00100-8/sb9
http://refhub.elsevier.com/S0959-1524(24)00100-8/sb9
http://dx.doi.org/10.1201/9781315219028
http://dx.doi.org/10.1201/9781315219028
http://dx.doi.org/10.1201/9781315219028
http://dx.doi.org/10.1016/S0098-1354(98)00301-9
http://dx.doi.org/10.1016/S0098-1354(98)00301-9
http://dx.doi.org/10.1016/S0098-1354(98)00301-9
http://dx.doi.org/10.1007/978-3-319-16417-5_10
http://refhub.elsevier.com/S0959-1524(24)00100-8/sb13
http://dx.doi.org/10.1109/MCS.2011.940571
http://refhub.elsevier.com/S0959-1524(24)00100-8/sb15
http://refhub.elsevier.com/S0959-1524(24)00100-8/sb15
http://refhub.elsevier.com/S0959-1524(24)00100-8/sb15
http://refhub.elsevier.com/S0959-1524(24)00100-8/sb15
http://refhub.elsevier.com/S0959-1524(24)00100-8/sb15
http://dx.doi.org/10.1016/j.applthermaleng.2016.05.046
http://dx.doi.org/10.1016/j.applthermaleng.2016.05.046
http://dx.doi.org/10.1016/j.applthermaleng.2016.05.046
http://dx.doi.org/10.1016/j.cep.2006.01.010
http://dx.doi.org/10.1016/j.energy.2019.05.023
http://dx.doi.org/10.1016/j.energy.2018.03.046
http://dx.doi.org/10.1016/j.energy.2018.03.046
http://dx.doi.org/10.1016/j.energy.2018.03.046
http://dx.doi.org/10.1016/S0005-1098(01)00174-1
http://dx.doi.org/10.1016/S0005-1098(01)00174-1
http://dx.doi.org/10.1016/S0005-1098(01)00174-1
http://dx.doi.org/10.1109/CDC.2005.1583504
http://refhub.elsevier.com/S0959-1524(24)00100-8/sb22
http://refhub.elsevier.com/S0959-1524(24)00100-8/sb22
http://refhub.elsevier.com/S0959-1524(24)00100-8/sb22
http://refhub.elsevier.com/S0959-1524(24)00100-8/sb22
http://refhub.elsevier.com/S0959-1524(24)00100-8/sb22
http://dx.doi.org/10.1016/j.automatica.2022.110315
http://dx.doi.org/10.1016/S0005-1098(99)00214-9
http://dx.doi.org/10.1016/S0005-1098(99)00214-9
http://dx.doi.org/10.1016/S0005-1098(99)00214-9
http://dx.doi.org/10.1109/SoSE50414.2020.9130425
http://dx.doi.org/10.1109/SoSE50414.2020.9130425
http://dx.doi.org/10.1109/SoSE50414.2020.9130425
http://dx.doi.org/10.1016/j.ifacol.2022.09.045
http://dx.doi.org/10.1016/j.ifacol.2022.09.045
http://dx.doi.org/10.1016/j.ifacol.2022.09.045
http://dx.doi.org/10.3303/CET2294169
http://dx.doi.org/10.4173/mic.2013.3.2
http://dx.doi.org/10.4173/mic.2013.3.2
http://dx.doi.org/10.4173/mic.2013.3.2
http://dx.doi.org/10.1007/978-3-030-17405-7
http://dx.doi.org/10.1007/978-3-030-17405-7
http://dx.doi.org/10.1007/978-3-030-17405-7
http://refhub.elsevier.com/S0959-1524(24)00100-8/sb30
http://dx.doi.org/10.23919/ECC.2013.6669862
http://dx.doi.org/10.23919/ECC.2013.6669862
http://dx.doi.org/10.23919/ECC.2013.6669862
http://dx.doi.org/10.1016/j.sysconle.2011.05.013


Computers and Chemical Engineering 157 (2022) 107606 

Contents lists available at ScienceDirect 

Computers and Chemical Engineering 

journal homepage: www.elsevier.com/locate/compchemeng 

Fixed complexity solution of partial explicit MPC 

Lenka Gal ̌cíková, Juraj Oravec 

∗

Institute of Information Engineering, Automation, and Mathematics, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, 

Radlinskeho 9, SK812-37 Bratislava, Slovak Republic 

a r t i c l e i n f o 

Article history: 

Received 25 May 2021 

Revised 21 September 2021 

Accepted 18 November 2021 

Available online 23 November 2021 

Keywords: 

Parametric optimization 

Fixed complexity solution 

Explicit model predictive control 

a b s t r a c t 

Solving large-scale optimization problems with numerous constraints and optimization variables is a chal- 

lenging task. Partial explicit MPC enables solving the large-scale optimization problem efficiently. This 

paper pushes the idea of partial explicit MPC to the fixed complexity parametric solution. The idea is to 

replace the polytopic critical regions that have a variable number of halfspaces with the maximal vol- 

ume inner approximation based on the Chebyshev balls. As the approximation has a fixed and known 

structure, the memory footprint of the parametric solution is also fixed and known in advance, with- 

out the necessity to solve the large-scale optimization problem. This valuable property enables scaling 

the solution size a priori to meet the requirements of the hardware, where the MPC controller will be 

installed. The proposed method also dramatically reduced the memory burden of the partial explicit so- 

lution. Moreover, the proposed method improves the accuracy of the initialization of the hot-start proce- 

dure. 

© 2021 Elsevier Ltd. All rights reserved. 

1. Introduction 

In the past three decades, model predictive control (MPC) be- 

came a widely used control strategy due to its many practical ben- 

efits, see, e.g. Morari and Lee (1999) , Darby and Nikolaou (2012) , 

Morato et al. (2020) , and references therein. As MPC is a reced- 

ing horizon control strategy, the optimization of control action is 

performed in each control step. The possibility to include con- 

straints on the input, output, or state variable is nonnegligible. 

These properties make MPC an attractive way of process control 

compared to the well-known proportional-integral-derivative (PID) 

controllers for Single-Input Single-Output (SISO) systems or linear- 

quadratic (LQ) optimal controllers for Multiple-Input Multiple- 

Output (MIMO) systems. As a consequence, some form of MPC- 

based control is present in approximately 90% of industrial imple- 

mentation of multivariable control, see ( Lu, 2015 ), Qin and Badg- 

well (2003) . However, the necessity to solve an optimization prob- 

lem in each control step is a very challenging task due to the com- 

putational complexity. The challenges of the real-time MPC appli- 

cations include complex systems with many constraints, e.g., ro- 

bust and stochastic MPC design ( Mayne, 2016 ), distributed con- 

trol ( Li and Swartz, 2019 ), problems with a long prediction hori- 
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E-mail addresses: lenka.galcikova@stuba.sk (L. Gal ̌cíková), juraj.oravec@stuba.sk 

(J. Oravec). 

zon and a high number of states and control actions ( Darby et al., 

2011 ). 

One of the ways to implement MPC despite its demands on 

real-time computational complexity is an explicit solution using 

multiparametric programming, see, e.g., Bemporad et al. (2002) , 

Burnak et al. (2019) . The essence of the explicit model predictive 

control lies in the division of implementation into two separate 

phases. First, in the offline phase, the controller is constructed. Par- 

ticularly, the optimization problem is computed for a predefined 

set of parameter values and the corresponding control law is deter- 

mined. For a multiparametric quadratic problem (mpQP), the con- 

trol law has the form of a piecewise affine (PWA) function over a 

polytopic partition composed of a set of the convex critical regions. 

Next, in the online phase, i.e., in the real-time control, the optimal 

control action is evaluated from the control law after identifying 

the critical region corresponding to the current measurement by 

solving the point location problem in some form of a lookup table. 

Although the application range of explicit MPC is wide, two in- 

terconnected issues arise from its implementation: memory con- 

sumption and runtime effort. One of the possibilities of mem- 

ory burden reduction is a regionless explicit model predictive 

control presented in Kvasnica et al. (2015) . The authors showed 

that the geometrical construction and storage of the critical 

regions are not required. Instead, the active sets are consid- 

ered, which provides significant savings in memory preserving 

the optimal solution. Other efficient constructions of the ex- 
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plicit partition using the dynamic programming were introduced 

in Mönnigmann (2019) , Mitze and Mönnigmann (2020) . The mem- 

ory savings were achieved in Kvasnica and Fikar (2012) , using the 

clipping function eliminating the number of regions of the PWA 

function over which the control law attains a saturated value. The 

utilization of the large set of critical regions evaluating the satu- 

rated control law is removed using the polynomial separator func- 

tion in Kvasnica et al. (2013) . The polynomial separator was re- 

placed by various convex sets in Oravec et al. (2013) . 

The complexity reduction techniques do not target only mem- 

ory footprint, but also accelerating the evaluation of the optimal 

control action in the online phase. One of the methods speed- 

ing up the online phase was suggested in Holaza et al. (2020) , 

where the critical regions are sorted based on the minimal or max- 

imal value of the corresponding value function. Using the proposed 

smart order, real-time control is significantly accelerated on av- 

erage. Another technique leading to the decreased computational 

effort was an online removal of inactive constraints introduced 

in Jost et al. (2017) . In Kvasnica et al. (2019) , the online runtime 

is reduced by simplifying the point location problem without sac- 

rificing closed-loop performance. The irrelevant critical regions are 

removed using the reachability analysis. 

Several works bridge the gap between optimization-less real- 

time implementation of explicit MPC and implicit (non-explicit) 

MPC suitable for large-scale systems. 

Many later works were inspired by Ferreau et al. (2008) , where 

the online solution of the MPC problem was accelerated using the 

warm-start strategy based on the knowledge of the optimal active 

set from the previous control step. An efficient approach of semi- 

explicit MPC was presented in Goebel and Allgöwer (2017) . This 

method is based on the offline state-dependent parametrization of 

the optimization variables using the tailored subspace clustering 

algorithm and the training data consisting of the MPC optimiza- 

tion problem solutions. A semi-explicit approach was introduced 

into the move-blocking-based MPC design in Son et al. (2020) , 

where the time-varying blocking structure also guarantees the re- 

cursive feasibility and closed-loop system stability. Learning ap- 

proximate semi-explicit MPC for a hybrid system was designed 

in Masti et al. (2020) . In Zeilinger et al. (2011) , the real-time sub- 

optimal MPC was designed combining the approximated explicit 

solution of the MPC problem used for warm-start of the active set 

method. 

The trade-off between the benefits and limitations of the ex- 

plicit MPC implementation for the large-scale MPC problems is 

well-balanced in Katz and Pistikopoulos (2020) . This work presents 

a novel perspective concept of a partial multiparametric solution 

which places it on the road between explicit MPC and implicit MPC. 

Without loss of optimality, closed-loop system stability and recur- 

sive feasibility of the large-scale MPC problem, the partial multi- 

parametric solution utilized in the framework of the explicit MPC 

improves initialization of the hot-start strategy for the real-time 

implementation. 

First, in the offline phase, a partial solution of an explicit MPC 

optimization problem is evaluated. The positions of the critical re- 

gions are represented by the centers of the Chebyshev balls. In the 

online phase, when the measurement is obtained, the critical re- 

gion with the nearest center of the Chebyshev ball is identified. 

This critical region is used for the hot-start strategy to initialize 

solving the large-scale optimization problem. 

The main contribution of this work is to push the idea towards 

the fixed complexity parametric solution of the partial explicit MPC. 

Throughout this paper, the term “fixed complexity” denotes that 

the size of the memory footprint necessary to store the parametric 

solution is determined in advance, i.e., before solving the multi- 

parametric optimization problem. Inspired by the ideas presented 

in Katz and Pistikopoulos (2020) , the crucial idea of this paper is 

not to store the polytopic critical region, but only its maximal vol- 

ume inner approximation using the Chebyshev ball, i.e., data defin- 

ing its center and radius. Just these data will be used in the online 

phase for the hot-start strategy. As the critical polytopic regions 

do not have the same number of halfspaces, the data size needed 

to be stored is not known in advance. On the other hand, stor- 

ing the Chebyshev ball approximation provide us with fixing the 

memory of each considered critical region. As a consequence, the 

partial solution of explicit MPC is fixed in advance. It enables scal- 

ing the size of the solution a priori without the necessity to solve 

an optimization problem. 

Moreover, compared to Katz and Pistikopoulos (2020) , the pro- 

posed method significantly reduces the memory consumption of 

the partial solution, as the storage of the Chebyshev balls, i.e., cen- 

ters and radii, requires much lower memory, compared to the stor- 

age of the polytopes. 

Finally, the proposed method improves also the initialization 

of the hot-start procedure for solving the large-scale optimization 

problem. In contrast to Katz and Pistikopoulos (2020) , we do not 

consider only the centers of Chebyshev balls but also their radii, 

which provide much more accurate information to identify the 

nearest region for the hot-start strategy. 

The paper is organized as follows: first, the preliminaries con- 

taining the concepts of explicit MPC and partial explicit MPC are 

introduced. In the following section, the novel method of design- 

ing the fixed complexity partial explicit MPC is presented. The next 

section analyses results together with a discussion focused on the 

main benefits of the proposed fixed complexity approach. Finally, 

the main conclusions are summarized. 

2. Preliminaries 

2.1. Explicit MPC 

In this section, the concept of explicit MPC is briefly recalled. 

Let us consider the model predictive control problem given in the 

form of multiparametric quadratic programming 

min U 
1 

2 

U 

� HU + θ� F U (1a) 

s . t . GU ≤ Eθ + w, (1b) 

where θ ∈ R 

n is the vector of parameters. The vector of the op- 

timization variable U ∈ R 

m is the vector of the manipulated vari- 

able optimized for the whole prediction horizon N, i.e., U 

� = 

[ u � � 
0 

, . . . , u � � 
N−1 

] � . Matrices H ∈ R 

m ×m � 0 , F ∈ R 

n ×m , G ∈ R 

c×m , E ∈ 

R 

c×n , and vector w ∈ R 

c define the problem data describing the 

system model and its limitations, and c represents the number of 

optimization problem constraints. Typically, the parameter θ de- 

fines the set of initial conditions of system states, for which the 

problem is solved in the offline phase. Further technical details are, 

e.g., in Bemporad et al. (2002) . 

Using the well-known transformation, the optimization prob- 

lem (1) can be rewritten for 

z = U + H 

−1 F � θ, (2a) 

S = E + GH 

−1 F � , (2b) 

into the equivalent following form 

min z 1 / 2 z � Hz (3a) 

s . t . Gz ≤ Sθ + w. (3b) 

Finally, the constraints of the optimization problem (3) can be 

divided as follows: 

2 
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min z 1 / 2 z � Hz (4a) 

s . t . G A z = S A θ + w A , (4b) 

G N z < S N θ + w N , (4c) 

where A denotes the rows of matrices G , S, and vector w where the 

equality holds, i.e., the constraints are active. On the contrary, N 

denotes the inactive constraints. The index sets A and N are dis- 

joint, i.e., A ∩ N = ∅ and A ∪ N = { 1 , . . . , c} . Further technical de- 

tails are, e.g., in Borrelli (2017) . 

The result of the optimization problem in (4) is an affine rela- 

tion between the optimization variable z and parameter θ as fol- 

lows: 

z � = F (A ) θ + f (A ) , (5) 

where the slope F (A ) and the section f (A ) are functions of the 

combinations of the active and inactive constraints 

F (A ) = H 

−1 G 

� 
A (G A H 

−1 G 

� 
A ) 

−1 S A , (6a) 

f (A ) = H 

−1 G 

� 
A (G A H 

−1 G 

� 
A ) 

−1 w A . (6b) 

The subset of the parametric space, where the affine control law 

in (5) is optimal, is defined as a critical region R . The critical re- 

gion R is closed and bounded convex polytope 

R = 

{
θ ∈ R 

n | Aθ ≤ b 
}
, (7) 

where 

A = 

[
G N F (A ) − S N 

(G A H 

−1 G 

� 
A ) 

−1 S A 

]
, (8a) 

b = 

[
w N − G N f (A ) 

−(G A H 

−1 G 

� 
A ) 

−1 w A 

]
. (8b) 

We can see in (6) and (8), that every feasible combination of 

the active and inactive constraints defines a specific critical region 

R with its corresponding affine control law in (5) . Therefore, when 

the multiparametric QP in (4) is solved for the whole parametric 

space, one can obtain the complete piecewise affine control law 

defined over all regions R i , i = 1 , . . . , R total , i.e., over the polytopic 

partition given by ∪ 

R total 
i 

R i , where R total denotes the total number of 

the generated critical regions. The more constraints the optimiza- 

tion problem has, the higher is the potential to form more com- 

binations of the active sets, and the corresponding computational 

time necessary to solve the multiparametric optimization problem 

exponentially increases. 

In the online phase of explicit MPC, the point location prob- 

lem is solved. According to system state measurement θ , the cor- 

responding critical region is located such that θ ∈ R i holds. When 

the corresponding critical region is detected, the associated affine 

control law is applied to implement the optimal control action u � 
0 

into the system. However, with increasing problem size, the num- 

ber of critical regions is also rising. Then the point location prob- 

lem becomes more complex, and the usage of the explicit solution 

is hardly tractable. 

2.2. Partial explicit MPC 

One of the perspective techniques on how to handle large-scale 

optimization problems with numerous active sets is a partial so- 

lution of the explicit MPC, see Katz and Pistikopoulos (2020) . The 

main idea is to solve the problem of explicit MPC only for a partic- 

ular set of initial points from the feasible domain, i.e., feasible seed- 

ing points . In Katz and Pistikopoulos (2020) , the authors suggest 

using the procedure of random walks to obtain a random set of ini- 

tial conditions from the parameter space. Therefore, only a subset 

of all critical regions is determined and stored, i.e., R i , i = 1 , . . . , R , 

where R denotes the number of the evaluated and stored critical 

regions. This method leads to decreased memory burden compared 

to the whole explicit solution, i.e., R 
 R total . In addition, the com- 

putational complexity of the offline phase is significantly reduced, 

since it is not necessary to construct the full explicit solution of 

the given large-scale optimization problem. 

On the other hand, since we do not construct all critical re- 

gions in the offline phase, it can often occur in the online phase 

that the current state measurement θ does not lay inside any of 

them, i.e., θ / ∈ R i , ∀ i = 1 , . . . , R . In such cases, we need to solve the 

optimization problem in (3) to evaluate the optimal control action 

using (5) . To initialize solving the large-scale optimization problem, 

a near critical region is utilized. This is a useful tool to streamline 

searching for the critical region where the measurement belongs. 

This procedure is called hot-start strategy ( Ferreau et al., 2008 ). 

The hot-start strategy utilizes the previous parameter realization 

θi , its corresponding region R i , and the current parameter θ j , to 

find the critical region R j such that θ j ∈ R j . Once the critical re- 

gion or associated active set is identified, then the corresponding 

control law is determined to find the optimal control action. For a 

more detailed description of the hot-start procedure see Katz and 

Pistikopoulos (2020) . Implementation of the hot-start strategy re- 

quires storing one point which lies inside every stored critical re- 

gion, a so-called feasible point . In Katz and Pistikopoulos (2020) , 

it is suggested to construct the Chebyshev ball inside each stored 

critical region and determine its center. The Chebyshev balls cen- 

ters C i are then stored along with the associated critical regions R i , 

∀ i = 1 , . . . , R . 

Besides the polytope data and Chebyshev ball center C i , we 

store a binary vector I i defining the indices of active constraints 

A of the optimization problem in (3) for each critical region R i , 

∀ i = 1 , . . . , R . The associated vector I i is utilized for initializing the 

hot-start procedure in the online phase. This vector has a cardinal- 

ity given by the number of constraints, i.e., | G | in (3). Particularly, 

the elements of this vector represent the fixed-ordered indices of 

constraints and their binary values indicate, if the particular con- 

straint is active or inactive, e.g., see Mönnigmann (2019) . 

Remark 2.1. (Storing the control law) As binary vectors I i , i = 

1 , . . . , R , defining the active sets are stored, the matrices F (A ) and 

f (A ) are recovered from the problem matrices H, G , w , and S to 

apply the optimal control action u � 
0 
. It is also possible to store the 

matrices F (A ) and f (A ) , along with the polytopic regions R i , but 

it leads to an unnecessary increased memory burden. 

Remark 2.2. (Number of critical regions) The random distribution 

of the feasible seeding points p i , i = 1 , . . . , R , that serve to initial- 

ize the partial parametric solution of the optimization problem in 

the offline phase could lead to multiple evaluations of the same 

critical region, i.e., p i �→ R i , p j �→ R i , for p i � = p j . In such case, it 

is sufficient to store such a critical region just once. Then two op- 

tions are: (i) accept the number of the unique critical regions lower 

than the number of the feasible seeding points, or (ii) insert a new 

random feasible seeding point until the required number of the 

unique critical regions is evaluated. 

The procedure of the partial explicit MPC based on ( Katz and 

Pistikopoulos, 2020 ) is described in the following algorithms, 

where Algorithm 1 summarizes the steps of the offline phase, and 

Algorithm 2 summarizes the steps of the online phase. 

For large-scale optimization problems, it is necessary to inves- 

tigate the memory burden. In the online phase, the controller uti- 

lizes the data H, G , w , and S of the optimization problem in (3), as 

well as the partial solution represented by matrices A i , b i defining 

3 
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Algorithm 1 Offline phase of partial explicit MPC ( Katz and Pis- 

tikopoulos, 2020 ). 

Inputs: Set of R random feasible seeding points { p 1 , p 2 , . . . p R } 

Outputs: Matrices A i and b i of critical regions R i in (3), centers of 

Chebyshev balls C i , binary vectors I i , i = 1 , . . . , R 

1: for each p i do: 

2: solve the QP in (3) for θ ← p i 
2: find and store optimal active set I i 
3: construct the critical region R i in (8) 

4: store the polytope matrices A i , b i 
5: for each R i do: 

6: construct Chebyshev ball ˜ R i 

7: store Chebyshev ball center C i of ˜ R i 

Algorithm 2 Online phase of partial explicit MPC ( Katz and Pis- 

tikopoulos, 2020 ). 

Inputs: Parameter value θ , matrices A i and b i of critical regions R i , 

centers of Chebyshev balls C i , binary vectors I i , i = 1 , . . . , R , opti- 

mization problem matrices H, G , w , S in (3) 

Output: Optimal control action u � 
0 

1: for each R i do: 

2: v i = ‖ θ − C i ‖ 
3: solve v � = min v i , ∀ v i . 
4: find the region R i , associated active set I i corresponding to the 

minimal v � 
5: if θ ∈ R i : 

6: apply the optimal control action u � 
0 

using I i and (5) 

7: else : 

8: find optimal active set I � from hot-start procedure using I i 
9: apply the optimal control action u � 

0 
using I � and (5) 

the critical regions R i in (7) , see inputs of Algorithm 2 . Moreover, 

the feasible points of all stored regions, i.e., the Chebyshev centers 

C i , i = 1 , . . . , R , are saved. The problem size is given by the param- 

eter dimension n , dimension of the optimization variable m , and 

the length of the prediction horizon N. Obviously, if the problem 

size is large, then the demands on memory storage become hardly 

tractable. 

Lemma 2.3 (Memory footprint of polytopic region) . Given mpQP 

in (3). The memory footprint of the i th critical region R i ⊂ R 

n having 

a form of a polytope given by h i halfspaces defined in (7) requires fol- 

lowing number of floating-point numbers necessary to store this poly- 

tope 

n (R i ) = h i × n + h i . (9) 

Proof. Proof of Lemma 2.3 directly follows from the structure of 

the polytopic i th critical region R i , i.e., the data necessary to store 

h i halfspaces determined by a matrix A i ∈ R 

h i ×n and vector b i ∈ R 

h i 

in (7) . �

The memory footprint necessary to store the data of partial so- 

lution is not only large but it is also unpredictable. Although the 

number of the critical regions is determined by the number of ran- 

dom points R , and the upper bound on the data size defining the 

critical region is known, it is not possible to predict the exact size 

of the data that we need to store in advance before solving the op- 

timization problem. It is obvious from Lemma 2.3 , that the number 

of floating-point numbers n (R i ) in (9) necessary to store the crit- 

ical region R i is not fixed and varies from one region to another. 

Particularly, the value of n (R i ) depends on the number of halfs- 

paces h i that define the i th specific critical region. 

Theorem 2.4 (Memory footprint of polytopic partial solu- 

tion) . Given mpQP in (3). The total memory footprint of partial so- 

lution consisting of R critical regions including the optimization prob- 

lem matrices H, G , S, w , and R binary vectors of active constraints I , 

requires following number of floating point numbers 

n (∀R ) = 

R ∑ 

i =1 

( n (R i ) ) + R n + R 

c 

64 

+(m × m + c × m + c × n + c) , (10) 

where n is the parameter dimension, m is number of the optimization 

variables, c represents the number of constraints, and n (R i ) denotes 

the memory footprint of i th specific critical region in (9) . 

Proof. Proof of Theorem 2.4 directly follows from the structure of 

the polytope in (9) , dimensions of the optimization problem ma- 

trices in (3), and the number of the critical regions R . According 

to Lemma 2.3 , the memory consumption of the i th polytopic crit- 

ical regions n (R ) is defined by finite number of halfspaces h i de- 

termined by a matrix A i ∈ R 

h i ×n and vector b i ∈ R 

h i in (7) . The re- 

maining data contains: memory footprint of corresponding binary 

vectors I i , i = 1 , . . . , R and matrices of the optimization problem H, 

G , S, w in (3). Note, the memory footprint necessary to store the 

binary vector I defining the active sets is divided by 64 to trans- 

form the binary format to the double floating point numbers. �

According to Theorem 2.4 , it is necessary to solve the large- 

scale optimization problem to determine the total memory foot- 

print. 

3. Fixed complexity partial explicit MPC 

This section is devoted to the main contribution of this paper, 

i.e., designing the fixed complexity parametric solution of partial 

explicit MPC. The term “fixed complexity” denotes that the size of 

the memory footprint necessary to store the parametric solution 

is determined in advance, i.e., before solving the multiparametric 

optimization problem in (3). This is a groundbreaking benefit en- 

abling us to scale the solution of the partial explicit MPC to respect 

the limited memory of the hardware, where the controller will be 

installed. 

We recall that in the MPC framework introduced in ( Katz and 

Pistikopoulos, 2020 ), the partial solution of explicit MPC is eval- 

uated. The critical regions are stored in the form of polytopes 

R i in (7) , and also the Chebyshev balls centers C i are stored, see 

Algorithm 1 . The centers of Chebyshev balls C i are then used in the 

online phase to evaluate the distance to the measurement θ . The 

Chebyshev ball center nearest to the measurement θ is determined 

and the corresponding critical region R i is used for initialization of 

the hot-start procedure to solve the large-scale optimization prob- 

lem in (3) for a given state measurement θ , see Algorithm 2 . 

The main idea of a fixed memory footprint is to replace the 

polytopic region R i with its maximal volume inner approximation ˜ R i using the Chebyshev ball. In other words, it is not necessary to 

store the large data A i , b i defining the polytopes R i in (7) , but only 

the light-weight data defining the Chebyshev balls ˜ R i are stored. 

As a consequence, the memory footprint of each critical region is 

fixed. Except for fixing the memory footprint, this approach leads 

to significant memory savings. Compared to storing the polytopic 

representation of the critical region R i , the memory savings are 

ensured, as just a single point (center of Chebyshev ball C i ) and 

a scalar (radius of Chebyshev ball r i ) are stored for each critical 

region, ˜ R i , ∀ i = 1 , . . . , R . 

Lemma 3.1 (Memory footprint of approximated region) . Given 

mpQP in (3). The memory footprint of the approximation of the i th 

critical region ˜ R i ⊂ R 

n using the Chebyshev ball is fixed and requires 

4 
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following number of floating-point numbers 

n ( ̃  R ) = 1 + n. (11) 

Proof. Proof of Lemma 3.1 directly follows from the fixed structure 

of the Chebyshev ball, i.e., the data necessary to store the Cheby- 

shev balls’ radius r ∈ R and coordinates of its center C ∈ R 

n . �

Remark 3.2. The fixed memory footprint of ˜ R i could be ensured 

also by other well-known maximal volume inner approximations 

of the polytopic critical region R i in (7) , e.g., by hyperboxes or 

ellipsoids. In this work, we consider the Chebyshev balls as they 

lead to a reasonable trade-off between the numerical complexity 

and the volume of the approximation 

˜ R i . Obviously, introducing in- 

ner approximation may lead to a situation when the critical region 

is not detected in the online phase, although the critical region is 

known, i.e., θ ∈ 

˜ R i ⇒ θ ∈ R i , but θ ∈ R i �⇒ θ ∈ 

˜ R i . 

As the inner approximation 

˜ R i using the Chebyshev ball of each 

critical region R i has the same fixed structure ∀ i = 1 , . . . , R , the 

fixed memory footprint of each region is enforced, see Lemma 3.1 . 

Next, the fixed-size memory footprint necessary to store all data 

utilized in the online phase is determined. 

Theorem 3.3 (Memory footprint of approximated solution) . Given 

mpQP in (3). The total memory footprint of partial solution consisting 

of R approximated critical regions, including the optimization problem 

matrices H, G , S, w , and R binary vectors indicating the set of active 

constraints I i requires following number of floating point numbers 

n (∀ ̃

 R ) = R n ( ̃  R ) + R 

c 

64 

+ (m × m + c × m + c × n + c) . (12) 

where n ( ̃  R ) denotes the memory footprint of one critical region ap- 

proximated using the Chebyshev ball in (11) . 

Proof. Proof of Theorem 3.3 directly follows from the fixed struc- 

ture of the Chebyshev ball, dimensions of the optimization prob- 

lem matrices, and the number of the critical regions R . According 

to Lemma 3.1 , the memory consumption of the approximated criti- 

cal regions n ( ̃  R ) is defined by Chebyshev balls’ radii r i and centers 

C i . The remaining data contains: memory footprint of correspond- 

ing binary vectors I i , i = 1 , . . . , R and matrices of the optimization 

problem H, G , S, w in (3). We recall, the memory footprint neces- 

sary to store the binary vector I defining the active sets is divided 

by 64 to transform the binary format to the double floating point 

numbers. �

Corollary 3.3.1. The total memory footprint of a partial solution 

n (∀ ̃

 R ) in ( 3.3 ) is an affine function of the number of the considered 

approximated critical regions R , and is independent on the solution of 

the optimization problem in (3). 

Proof. First, we show that (12) is an affine function of R . According 

to Theorem 3.3 , the total memory footprint of partial solution is 

given by (12) , that can be rewritten into an equivalent form of a 

affine function of R given by: 

n (∀ ̃

 R ) = α R + β, (13) 

where the slope is α = (n ( ̃  R ) + 

c 
64 ) and the section is β = (m ×

m + c × m + c × n + c) . Next, we show that (13) is independent on 

the solution of the optimization problem in (3). Function (13) is 

defined by α, β , and depends on variable R . The parameters α, β
are determined only by the size of the optimization problem in (3), 

and the number of feasible points R is given in advance. Therefore, 

α, β , R are evaluated without the necessity to solve the optimiza- 

tion problem in (3). �

Moreover, another benefit of this approach is that the evalua- 

tion of the nearest critical region to the current state measurement 

θ is more accurate compared to the one introduced in Katz and 

Pistikopoulos (2020) . In Katz and Pistikopoulos (2020) , the distance 

v i between the current system measurement θ and the critical re- 

gion R i is evaluated by the center of the Chebyshev ball C i , i.e., 

v i = ‖ θ − C i ‖ . In contrast, our approach evaluates the distance v i 
using the boundary of Chebyshev ball given by its radii r i , i.e., 

v i = ‖ θ − C i ‖ − r i . Therefore, the distance v i between the current 

system measurement θ and the original polytopic set R i approx- 

imated by the Chebyshev ball ˜ R i is more accurate in comparison 

to the original approach based just on a center of inscribed Cheby- 

shev ball C i . 

Remark 3.4. (Nearest critical region) Online evaluation of the 

optimal nearest critical region is hardly tractable. Analogous 

to Katz and Pistikopoulos (2020) , throughout this paper, we denote 

the “nearest” critical region the set R i that corresponds to the min- 

imum distance v � evaluated between the current system measure- 

ment θ and the approximation of the critical regions. The mini- 

mum distance v � is evaluated either using the center of the Cheby- 

shev ball (Step 2 of Algorithm 2, Katz and Pistikopoulos, 2020 ) or 

using the boundary of the Chebyshev ball, i.e., both approaches 

evaluating the distance v � are based on the Chebyshev ball. How- 

ever, the Chebyshev ball inscribed in the given polytopic critical 

region R i is not unique in general, as in some situations, multiple 

maximal volume balls can be inscribed inside the polytope, e.g., 

when the critical region has a shape of a hyperbox, trapezoid, par- 

allelotope, zonotope, etc. Boyd and Vandenberghe (2004) . More- 

over, approximation of the polytope R i need not lead to the op- 

timal evaluation of the nearest critical region in general. Therefore, 

the identification of the “nearest” critical region could be subopti- 

mal. Nevertheless, the control action u 0 applied for control is opti- 

mal thanks to the hot-start strategy. 

Finally, Algorithms 1, 2 were revisited to demonstrate the fixed 

complexity partial explicit MPC procedure. 

The offline phase procedure of fixed complexity partial explicit 

MPC is evaluated by Algorithm 3 . Compared to the original pro- 

Algorithm 3 Offline phase of fixed complexity partial explicit 

MPC. 

Input: Set of R random feasible points { p 1 , p 2 , . . . p R } 

Outputs: Centers of Chebyshev balls C i , radii of Chebyshev balls r i , 

binary vectors I i , i = 1 , . . . , R 

1: for each p i do: 

2: solve the QP in (3) for θ ← p i 
3: find and store optimal active set binary vector I i 
4: construct the critical region R i in (8) 

5: for each R i do: 

6: construct Chebyshev ball ˜ R i 

7: store center C i and radius r i of ˜ R i 

cedure in Algorithm 1 , our approach is extended by storing the 

Chebyshev ball radii r i . On the other hand, the polytopic represen- 

tations of the critical regions A i , b i in (7) are not stored. If neces- 

sary, A i , b i can be recovered in the online phase from the binary 

vector I i defining the corresponding active set A and the matrices 

H, G , S, w of the optimization problem in (3). 

The online phase of the fixed complexity partial explicit MPC 

is described in Algorithm 4 , where the distances from the bound- 

aries of the Chebyshev balls are identified ( Algorithm 4 , Step 2), in 

contrast to the original approach in Katz and Pistikopoulos (2020) , 

cf. Algorithm 2 , Step 2. 

In Algorithm 2 , if current system measurement θ lies inside 

some of the approximated critical regions ˜ R i , then the optimal 

control action is evaluated using the corresponding control law 

in (5) . Otherwise, if θ does not lie inside any of the Chebyshev 
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Algorithm 4 Online phase of fixed complexity partial explicit 

MPC. 

Inputs: Parameter value θ , centers of Chebyshev balls C i , radii 

of Chebyshev balls r i , binary vectors I i , i = 1 , . . . , R , optimization 

problem matrices H, G , S, w 

Output: Optimal control action u � 
0 

1: for each C i do: 

2: v i = ‖ θ − C i ‖ − r i 
3: if ( v i < r i ) : 

4: apply the optimal control action u � 0 using I i 
5: break 

6: solve v � = min v i , ∀ v i 
7: identify active set I i of the nearest region for v � 
8: construct the polytopic critical region R i using I i and opti- 

mization problem matrices H, G , S, w 

9: if θ ∈ R i : 

10: apply the optimal control action u � 
0 

using I i 
11: else : 

12: find optimal active set I � from hot-start procedure using I i 
13: apply the optimal control action u � 0 using I � and (5) 

Fig. 1. Fixed complexity partial solution of explicit MPC. The polytopic regions R i 

(black dashed) are not stored. Instead, the Chebyshev ball approximations ˜ R i are 

stored (blue). In the online phase, the minimum distance v � from the set of Cheby- 

shev balls (red line) to the current measurement θ is found. (For interpretation of 

the references to colour in this figure legend, the reader is referred to the web ver- 

sion of this article.) 

balls, i.e., θ / ∈ 

˜ R i , ∀ i = 1 , . . . , R , then the nearest Chebyshev ball is 

used for hot-started solution of the large-scale optimization prob- 

lem in (3). The rest of the procedure remains the same as proposed 

in Katz and Pistikopoulos (2020) . The illustration of identifying the 

nearest Chebyshev ball ˜ R i is shown in Fig. 1 . 

Note, the proposed approach interferes with the online phase 

of the original approach adapted from Katz and Pistikopou- 

los (2020) in one major step – construction of the nearest poly- 

tope, see Algorithm 4 , Step 8. After the nearest critical region is 

estimated, the rest of the online procedure remains the same. The 

remainder of the improvements represents a negligible computa- 

tional intervention compared to the construction of the polytope, 

i.e., checking whether the parameter lies in the Chebyshev ball in 

Algorithm 4 , Step 3, and subtracting the radius in Algorithm 4 , Step 

2. 

Remark 3.5 (Degeneracies in mpQP) . In practical applications, de- 

generacies in mpQP problem solutions may occur. The primal de- 

generacy occurs if linear inequality constraint qualification (LICQ) 

does not hold, see Tøndel et al. (2003) . As a consequence, it leads 

to the presence of the lower-dimensional critical regions in the 

(partial) explicit solution. These lower-dimensional critical regions 

can be excluded from the solution, as they form the facets between 

neighboring full-dimensional critical regions. Then, during the hot 

start strategy in the online phase, it is checked whether LICQ holds 

on the facet of a polytope intersecting the direction vector. If LICQ 

does not hold, a QP is solved with improved initialization based 

on the known critical region. For a more detailed overview on the 

evaluation of the online control algorithm, see Katz (2020) . The 

dual degeneracy ( Bemporad et al., 2002 ) cannot occur as H � 0 , 

see problem formulation in (1) and the corresponding assumptions 

below. 

Remark 3.6 (Accelerating the hot-start procedure) . Following the 

ideas of the concept of accelerating explicit MPC introduced 

in Holaza et al. (2020) , an alternative to the geometrical -perspective 

based on the evaluation of the distance v � , is the penalty-gap - 

driven procedure using the difference between the current value 

of some Lyapunov-function-like value function V (θ ) and its min- 

imal/maximal value V � 
i 

corresponding to each critical region R i , 

∀ i = 1 , . . . , R . Then, the “nearest” critical region is determined 

based just on using the comparison of two scalars, i.e., V � 
i 

and 

V (θ ) . This approach overcomes the main issues related to the eval- 

uation of the distance for nonlinear MPC, where non-convex criti- 

cal regions occur. Moreover, this approach also enables the pruning 

of the considered regions, see Holaza et al. (2020) . 

4. Results and discussion 

In this section, we demonstrate the main benefit of fixed com- 

plexity partial explicit MPC on three sets of randomly generated 

large-scale optimization problems. The aim is to analyze the mem- 

ory footprint of the original approach based on the polytopic rep- 

resentation of critical regions R i presented in Katz and Pistikopou- 

los (2020) and the proposed fixed complexity approach based on 

the maximum volume inner approximation using the Chebyshev 

balls ˜ R i . 

Analogous to the case study presented in Katz and Pistikopou- 

los (2020) , we generated 5 sets of large-scale systems. Each set was 

represented by a specific problem size and contained 5 different 

randomly generated systems. 

Particularly, the memory footprint was determined for each 

of the 5 × 5 large-scale systems using both methods. Therefore, 

in total, 25 randomly generated large-scale systems were ana- 

lyzed using 2 methods. For each of 25 investigated large-scale sys- 

tems, the sets of random feasible seeding points were generated 

to obtain 300 unique critical regions, i.e., R i , i = 1 , . . . , 300 , see 

Remark 2.2 Then, the average values of the memory footprints 

were analyzed for each set of 5 large-scale systems using (10), (12) . 

The generated results for the considered set of 5 types of large- 

scale systems are summarized in Table 1 . The first two columns 

provide the information about the given problem size in (3), i.e., 

the number of optimization variables m and the number of opti- 

mization problem constraints c are stated. The third column con- 

tains the information about the memory footprint of the optimiza- 

tion problem matrices H, G , S, w , which is the same for both ap- 

proaches. The next two columns compare the memory footprint 

necessary to store the solution considering the polytopic approach 

6 



L. Gal ̌cíková and J. Oravec Computers and Chemical Engineering 157 (2022) 107606 

Table 1 

Results generated for the partial solution of 300 critical regions: memory footprint comparison using the polytopic regions and 

Chebyshev balls for different problem sizes. 

Optimization variables Constraints Problem matrices [kB] Memory footprint of solution[kB] Memory savings [%] 

Polytopic regions Chebyshev balls Solution Total 

765 6 030 44 578 31 813 349 98.9 41.2 

900 6 300 55 007 33 056 359 98.9 37.3 

990 6 480 62 445 32 781 365 98.9 34.2 

1 125 6 750 74 332 39 472 376 99.0 34.6 

1 350 7 200 96 088 35 312 392 98.9 26.7 

(using Lemma 2.3 ) and the novel fixed-complexity approach (us- 

ing Lemma 3.1 ). Finally, the last two columns focus on memory 

savings which arise from the fixed complexity approach, while the 

first column contains the memory savings of the solution (using 

Lemma 3.1 ), and the second one contains the total memory sav- 

ings considering also the problem matrices (using Theorem 3.3 ). 

The results presented in Table 1 were generated using MATLAB 

R2020b, YALMIP R20200930 ( Löfberg, 2004 ) and solver GUROBI 9.1. 

The results were performed on a computer running 8 cores and 

AMD Ryzen 7 PRO 4750U at 4.1 GHz, and 16 GB RAM. 

The generated results collected in Table 1 confirmed that con- 

sidering the proposed fixed memory approach significantly out- 

performed the original method presented in Katz and Pistikopou- 

los (2020) . Particularly, when considering just the solution of the 

partial explicit MPC, the memory footprint necessary to store the 

fixed memory solution composed of the Chebyshev balls centers 

C i and radii r i , and corresponding binary vectors indicating active 

constraints I i is dramatically reduced compared to the memory 

footprint needed to store the polytopic solution composed of the 

polytopes R i , binary vectors I i , and centers of the Chebyshev balls 

C i , ∀ i = 1 , . . . , 300 . 

The memory footprint necessary to store the solution consid- 

ering the fixed memory approach requires only around 1% of the 

memory footprint corresponding to the original method, i.e., the 

memory savings of fixed memory partial solution reach up to 99%, 

see Table 1 . 

We recall, that also the matrices H, G , S, w of large-scale opti- 

mization problem in (3) have to be stored to evaluate the online 

phase, see inputs of Algorithms 2,4 . 

Note, the contribution of the large-scale optimization problem 

matrices H, G , S, w to the total memory consumption is signifi- 

cant and given, see Theorems 2.4, 3.3 . Therefore, it is necessary to 

evaluate the memory savings also considering the large-scale opti- 

mization problem matrices H, G , S, w . 

Moreover, with increasing problem size, the contribution of the 

large-scale optimization problem to the total memory footprint 

significantly increases, see Table 1 , column “Problem matrices”. 

Therefore, the gap between the total memory footprints of the con- 

sidered two methods is lower, see Table 1 , column “Total mem- 

ory savings”. Nevertheless, considering the smallest problem size 

(765 optimization variables and 6 030 constraints), when the prob- 

lem data requires the lowest memory, the memory savings are the 

highest and reach up to 41.2%, see Table 1 , column “Total memory 

savings”. 

The generated results in Table 1 demonstrate that the proposed 

fixed complexity partial explicit MPC is not only an effective ap- 

proach to determine the size of the partial solution in advance, 

but this method also provides a significant improvement in the 

memory savings compared to the original method in Katz and Pis- 

tikopoulos (2020) . 

5. Conclusion 

The proposed method improved the original partial explicit 

MPC method presented in Katz and Pistikopoulos (2020) in 3 main 

properties: (i) fixed structure of the partial explicit solution, (ii) 

significant memory savings, and (iii) improved initialization of the 

hot-start procedure to solve the large-scale optimization problem. 

Particularly, we propose the novel approach of the partial solu- 

tion of the explicit MPC while fixing the size of the memory foot- 

print. It is provided by approximation of the critical regions using 

the fixed-structured maximal volume inner approximation based 

on the Chebyshev balls. As the approximation has a fixed struc- 

ture, the data size necessary to store the partial solution is deter- 

mined in advance. We suggest storing the Chebyshev ball center 

and radius, together with a binary vector defining the optimal ac- 

tive set of the associated critical region. The proposed fixed com- 

plexity method significantly increases the memory savings, which 

were demonstrated using 5 sets of 5 randomly generated large- 

scale systems. Third, the initialization of the hot-start procedure 

to solve the large-scale optimization problem was improved as the 

nearest critical region was evaluated using more relevant informa- 

tion of the Chebyshev ball boundary, in contrast to considering 

only its center. 
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a b s t r a c t

Real processes with heat exchange have usually complex behaviour and are energy intensive. In practical
applications, the process variables are always bounded, and it is suitable to include these boundaries into
the controller design. The soft-constrained robust model predictive controller has been designed to
improve the control performance and energy consumption in comparison with the robust model pre-
dictive control with only hard constraints. Experimental application of soft-constrained robust model
predictive control (SCR MPC) for a laboratory plate heat exchanger is presented in this paper. The plate
heat exchanger is a non-linear process with asymmetric dynamics and is modelled as a system with
parametric uncertainties. The controlled variable is the temperature of the heated fluid at the outlet of
the heat exchanger and the manipulated variable is the volumetric flow rate of the heating fluid. The
actuator is a peristaltic pump and the influence of the linear and non-linear actuator characteristics on
the control performance is also investigated. The set-point tracking using SCR MPC is studied for the
laboratory plate heat exchanger in an extensive case study. The experimental results confirmed the
improvement of the control responses and reduction of energy consumption by introducing the soft
constraints into MPC design.

© 2019 Elsevier Ltd. All rights reserved.

1. Introduction

Optimal control of heat exchangers is one of the most important
aspects of industrial production, as their operation is really energy
intensive and the heat transfer represents the crucial phenomena
for all thermal energy applications [1]. Model Predictive Control
(MPC) represents a state-of-the-art optimal control strategy for
multivariable constrained systems [2]. The values of the manipu-
lated variables are optimized in each control step subject to various
constraints on system states, controlled variables, and manipulated
variables [3]. Current MPC originates in Dynamic Matrix Control
(DMC) and Generalized Predictive Control (GPC) [4]. The develop-
ment and implementation of DMC and GPC began in the 1970s in
chemical and petrochemical industries. The tractable formulation
of control problem was focused on the plants with relatively slow
dynamics enabling to solve the optimization problems within the

sampling time.
The drawback of the original MPC setup was that uncertain

process parameters were not taken into account. This drawback
was overcome by introducing Robust MPC, e.g., see Ref. [5]. The
tractable formulation of the optimization problem was ensured by
using the linear matrix inequalities (LMIs) by the pioneer work [6].
This work was further developed, e.g., see Ref. [7], and references
therein.

It was demonstrated by plenty of research works and industrial
applications that MPC and/or robust MPC improved control per-
formance and optimized energy consumption for a wide class of
energy-intensive processes. In Ref. [8], MPC was used to design
multivariable temperature control of a continuous fermentation
unit. The manipulated variables were the feed flow rate and the
flow rate of the cooling fluid. Simulation results confirmed the
improved control performance. The on-line control maximizing the
heat recovery of the heat exchanger network was investigated in
Ref. [9]. The accurate model of the considered plant was derived
and the closed-loop control performance was evaluated. The well-
tuned PID controller-based heat recovery maximization of the heat* Corresponding author.
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exchanger network coupled with a crude distillation unit in the
presence of fouling was investigated in Ref. [10]. The authors of [11]
investigated the improvement of the closed-loop control perfor-
mance of an air-to-water heat pump ensured by the predictive
control. Global optimization method, particularly the genetic al-
gorithm, was used to optimize the design of a high-temperature
heat exchanger for waste heat cascade recovery from exhaust flue
gases in Ref. [12]. In Ref. [13], the proposed cascade control intro-
duced theMPC in themaster loop to optimize the thermal response
of a nuclear superheated-steam system. The simulation results
confirmed the improved control performance. The authors of [14]
designed MPC for a cycle plant combined with integrated solar
collectors. The proposed MPC strategy outperformed the consid-
ered PI controller in energy consumption. The energy savings in an
air-cooled steam condenser were ensured by introducing optimi-
zation into the closed-loop control design in Ref. [15]. For the
process of waste heat energy conversion with organic Rankine cy-
cle, the robust H2 control was designed in Ref. [16] to improve the
operating efficiency. Robust MPC design for a heat exchanger
network was analysed in Ref. [17]. The fouling was handled via
parametric uncertainty and the designed robust MPC ensured the
significant energy savings compared to the conventional PID con-
trol. In Ref. [18], the robust MPC subject to non-symmetric hard
constraints was designed and the closed-loop experimental results
were analysed. The implementation of non-symmetric hard con-
straints improved control performance. The implementation of soft
constraints was not considered.

Between heat exchangers, the plate heat exchangers attract the
attention of engineers and researchers as they are more efficient
than the shell and tube exchangers. The simplified dynamical
input-output modelling of plate heat exchangers was developed in
Ref. [19]. The experimental results confirmed the advantages of the
proposed strategy also for the advanced controller design. Control
performance of the adaptive cascade control for liquid-liquid plate
heat exchanger was investigated in Ref. [20]. The laboratory
implementation confirmed that the designed controller out-
performed the conventional PID controller. The implementation
and control performance of the alternative approaches of robust
MPC design for a laboratory plate heat exchanger were analysed in
Ref. [21].

This paper significantly extends the results of the works
[22e24]. The concept of LMI-based soft-constrained robust MPC
design was introduced in Ref. [22] and the theoretical results and
numerical examples were presented. The simulation results
confirmed the significantly improved control performance.
Although the possibility to use the soft-constrained robust (SCR)
MPC was studied intensively by simulation experiments [22], there
was still a lack of experimental studies in this field. Moreover, the
developed SCR MPC did not have an integral action and was not
able to ensure the offset-free reference tracking. The mathematical
model of the laboratory plate heat exchanger was identified and the
SCR MPC without integral action was implemented for control of
this heat exchanger in Ref. [23]. The closed-loop experimental re-
sults were analysed and they confirmed improved control perfor-
mance. Although the control performance was improved, the
experimental results showed the necessity to add an integral action
to the SCR MPC in the future to ensure the offset-free control
response. In the paper [24], SCR MPC with integral action was
designed. The soft-constraints on the manipulated variable (MV)
and controlled variable (CV) were considered simultaneously.
Simulations results were obtained and improved control perfor-
mancewas confirmed. But, the control performance evaluationwas
based only on simulation results and no experimental validation
was performed.

This paper brings new results in comparison with previously

mentioned papers. More control scenarios of SCRMPCwith integral
action are analysed, in which the soft-constraints are implemented
simultaneously for CV and MV, and also separately just for MV, and
just for CV. All control scenarios were tested experimentally on the
laboratory plate heat exchanger and totally new experimental re-
sults were obtained.

The laboratory plate heat exchanger was a non-linear process
with asymmetric dynamics and was modelled as a system with
parametric uncertainties. The controlled variable (CV) was the
temperature of the heated fluid at the outlet of the heat exchanger
and the manipulated variable (MV) was the volumetric flow rate of
the heating fluid. The actuator was a peristaltic pump and the in-
fluence of the linear and non-linear actuator characteristics on the
control performance was also investigated. In comparison to the
paper [23], the integral action was added to the soft-constrained
robust model predictive controller and the control performance
of the laboratory plate heat exchanger ensured by the designed SCR
MPC with integral action was investigated experimentally. The
controller with integral action removed the steady-state error. In
comparison to the paper [24], more control scenarios and influence
of various soft constraints on control performance were experi-
mentally studied. The soft-constraints were implemented simul-
taneously for CV and MV, and also separately only for MV, and only
for CV. All experimental results were obtained in an extensive case
study for the plate laboratory heat exchanger using SCR MPC with
integral action in the set-point tracking. Various quality criteria
were evaluated to judge the quality of the achieved results. The
experimental results confirmed improvements of control responses
and reduction of energy consumption by introducing the soft
constraints into the robust MPC design.

The paper is organized as follows. Section 2 introduces the main
properties of the controlled plate heat exchanger and its mathe-
matical model. The implemented control strategy is described in
Section 3. The experimental results are discussed in Section 4 fol-
lowed by concluding remarks in Section 5.

2. Plate heat exchanger

2.1. Description of a laboratory plate heat exchanger

The controlled process was a laboratory heat exchanger of the
Armfield Process Control Trainer PCT23 (Fig. 1), see Ref. [25].

Fig. 1. Plate heat exchanger (I), peristaltic pump for heated fluid (II), peristaltic pump
for hot water (III), tank for cold fluid (IV), tank with heating for preparing hot water
(V).
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Specifically, it was the three-stage indirect liquid-liquid plate heat
exchanger (PHE) (Fig. 1 device (I)). These three stages were sepa-
rated, but interconnected, and were able to provide (i) cooling, (ii)
heating, and (iii) feed preheat/regeneration. For the control design,
the heating stagewas considered. The heat exchanger's outer width
was 90mm, the length was 103mm and the height was 160mm.

The heated fluid e cold water was stored in a retention tank
(Fig. 1 device (IV)). The heating fluid e hot water was preheated to
the fixed temperature Thot ¼ 70 +C in the heating tank (Fig.1 device
(V)). Two peristaltic pumps pumped heated (Fig. 1 device (II)) and
heating (Fig. 1 device (III)) fluids into the plate heat exchanger. The
flow rate of cold water was constant, meanwhile, the flow rate of
hot water was a manipulated variable. The peristaltic pump
pumping the hot water into the heat exchanger was an actuator.

The peristaltic pumps had flexible tubing made from the silicon
rubber. The wall thickness was 1.6mm and inner diameter was
3.2mm. The temperature of the heated fluid in the outlet stream
was measured by the type K thermocouple operating within 0�
150 +C.

The scheme of the Armfield PCT23 arrangement is presented in
Fig. 2, where (I) is the plate heat exchanger, (II) is the peristaltic
pump for cold fluid, (III) is the peristaltic pump for hot fluid, (IV) is
the tank for heated fluid, (V) is the tank with heating for preparing
hot fluid, (L1, L2) are the level sensors, (T1 e T5) are the tempera-
ture sensors, (S1 e S5) are the solenoid valves, and (W) is the heat
supply for preparing hot fluid, see Refs. [21,25]. Further technical
specifications of the plate heat exchanger can be found in Ref. [25].

2.2. Static characteristics of the controlled process and actuator

An advanced controller design requires a thorough knowledge
of the behaviour of the controlled plant. Therefore, experimental
analysis of the steady-state operating modes of the laboratory plate
heat exchanger (PHE) was performed first and the static charac-
teristics of the controlled process and actuator were measured. The
static characteristic is the dependence of the output variable on the
input variable in steady operating modes.

The results are shown in Fig. 3. Fig. 3(a) presents the static
characteristic of the PHE. The output variable of the PHE is the
temperature of the heated fluid at the outlet of the PHE, T, and the
input variable is the volumetric flow rate of the hot fluid entering
the plate heat exchanger, _Vhot. The measured data are represented
by blue circles and the green curve is the quadratic approximation

of the measured data. This static characteristic demonstrates the
non-linearity of the PHE. Fig. 3(b) shows two static characteristics
of the actuator, which is the peristaltic pump (PP) feeding the hot
fluid to the PHE. The output variable of the PP is the volumetric flow
rate of the hot fluid entering the plate heat exchanger, _Vhot, and the
input variable is the voltage, U, in the range 1� 5 V. The real
measured static characteristic of the pump is linear (blue line). To
compensate for the non-linearity of the PHE, the non-linear equal
percentage characteristic of the PPwas also considered (green line).
This characteristic was obtained as an approximation of the
measured data, see Ref. [26].

The mathematical description of the linear static characteristic
of the PP (Fig. 3(b), blue) has the form:

_Vhot ¼0:1338 U � 1:8633: (1)

The mathematical description of the non-linear characteristic of
the PP (Fig. 3(b), green) is following:

_Vhot ¼
eh

t _Vmax
; h ¼ Unorm logðtÞ; t ¼

_Vmax
_Vmin

; (2)

where _Vmin and _Vmax are the minimum and maximum volumetric
flow rates of the heating fluid, respectively. Unorm is the normalized
voltage manipulating the PP, i.e., the voltage recalculated to the
range 0� 1 V.

Another result of this analysis was the determination of the
boundary values of the controlled variable (CV) and the manipu-
lated variable (MV). The CV is the temperature of the heated fluid in
the outlet stream of the plate heat exchanger, T, and its range is 30�
54+C. The manipulated variable (MV) is the volumetric flow rate of
the hot fluid entering the plate heat exchanger, _Vhot, and its range is
0� 11:5+ml+s�1. These boundary values represent the hard con-
straints of the variables.

Based on the results described above, the reference value Tref ¼
40+C was selected for the PHE control.

Static characteristics of the actuator (Fig. 3(b)) also served to
find mathematical descriptions of the calibration curves needed to
convert the value of the MV, i.e., the volumetric flow rate _Vhot,
calculated by the control algorithm to the voltage U controlling the
PP. Mathematical descriptions of the calibration curves were ob-
tained as inverse models for the models in (1) and (2).

Fig. 2. Scheme of Armfield PCT23: PHE (I), peristaltic pump for cold water (II), peristaltic pump for hot water (III), tank for cold water (IV), tank with heating for preparing hot water
(V), liquid level sensors (L1, L2), temperature sensors (T1 e T5), solenoid valves (S1 e S5), and heat supply for preparing hot fluid (W) [21].

J. Oravec et al. / Energy 180 (2019) 303e314 305



2.3. Mathematical model of the plate heat exchanger for the soft-
constrained robust model predictive control design

Soft-constrained robust model predictive control (SCR MPC)
design requires a mathematical model of a controlled process with
uncertainties in the form of a state space system in the discrete
time domain:

xðkþ 1Þ¼AðlÞxðkÞ þ BðlÞusatðkÞ; xð0Þ ¼ x0; (3a)

yðkÞ ¼ CxðkÞ; (3b)

½AðlÞ;BðlÞ�2A;A ¼ convhull
�h

AðvÞ;BðvÞ
i�

; (3c)

where k � 0 is a time instant in the discrete-time domain for the
sampling time ts ¼ 5 s, xðkÞ2Rnx are states of the controlled sys-
tem, usatðkÞ2Rnu are saturated control inputs, yðkÞ2Rny are system
outputs, x0 are initial conditions. Following the linear control

theory principles, the control inputs usatðkÞ and system outputs
yðkÞ, respectively, are MVs and CVs in the incremental form, i.e.,
they are given by:

usatðkÞ¼D _VhotðkÞ ¼ _VhotðkÞ � _V
s
hot; (4a)

yðkÞ¼DTðkÞ ¼ TðkÞ � Ts; (4b)

where _VhotðkÞ is MV, TðkÞ is CV, and _V
s
hot, T

s are corresponding
steady-state values.

Matrices AðlÞ2Rnx�nx and BðlÞ2Rnx�nu in (3a) are state and
input matrices of the controlled system given by

AðlÞ¼
X
v¼1

nv

lvAðvÞ; BðlÞ ¼
X
v¼1

nv

lvBðvÞ;
X
v¼1

nv

ln ¼ 1; (5)

where the parameter 0� lv � 1, superscript ðvÞ represents the v-th
vertex, v ¼ 1;2;…;nv. Parameter nv is the total number of vertices
of the uncertain system A .

Matrix C2Rny�nx in (3b) is the output matrix. The uncertain
system A in (3c) is a polytop represented as a convex hull
(convhull) of vertex systems, see e.g. Ref. [27], chap. 2.1.4.

The mathematical model of the laboratory PHE was obtained by
step-response identification techniques, e.g., see Ref. [28]. As the
PHE is a non-linear process with asymmetric behaviour, several
step responses were measured within the whole range of the
operating conditions. The identified transfer functions were
transformed into the form of a state-space systemwith parametric
uncertainty. Technical details related to the heat exchanger iden-
tification can be found in Ref. [23].

3. Soft-constrained robust MPC design with integral action

For the PHE, the soft-constrained robust model-based predictive
control (SCR MPC) was designed. For the controller design, the
mathematical model representing a nominal system is needed. The
nominal system is an idealized system in which the influence of
uncertainties can be neglected and has the form

xðkþ 1Þ¼Að0ÞxðkÞ þ Bð0ÞusatðkÞ; xð0Þ ¼ x0; (6a)

yðkÞ ¼ CxðkÞ: (6b)

The matrix pair ½Að0Þ; Bð0Þ� can be obtained as the analytic centre
of a polytope A (see e.g. Ref. [27], chap. 8.5.3).

3.1. SCR MPC design with integral action

To improve control, an integral action was added to the SCR
MPC. The basis for adding the integral action is augmentation of the
state vector of the process model in (3) and obtaining an
augmented system. The augmented vector of states has the form

zðkÞ ¼

2
64

xðkÞX
i¼0

k

eðiÞ

3
75; (7)

where the control error is calculated as eðkÞ ¼ wðkÞ� yðkÞ, and w2

Rny is the set-point. For the PHE, the control error is calculated:
eðkÞ ¼ Tref ðkÞ� TðkÞ.

The model of the augmented system is:

Fig. 3. Static characteristics of the controlled process and actuator.
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zðkþ 1Þ¼ ~AðlÞ zðkÞ þ ~BðlÞ uðkÞ; zð0Þ ¼ z0; (8a)

yðkÞ ¼ ~C zðkÞ; (8b)

h
~AðlÞ; ~BðlÞ

i
2 ~A; ~A ¼ convhull

�h
~A
ðvÞ
; ~B

ðvÞi�
; (8c)

where:

~A
ðvÞ ¼

�
AðvÞ 0
�ts C I

�
; ~B

ðvÞ ¼
�
BðvÞ
0

�
; ~C ¼ ½C 0 �: (9)

The matrices in (9) for the laboratory PHE had the form:

~A
ðvÞ ¼

�
0:6649±0:1470 0

�0:1833 1

�
; (10a)

~B
ðvÞ ¼

�
4:0886±0:4249

0

�
; (10b)

~C ¼ ½0:1833 0 �: (10c)

More technical details can be find, e.g., in Ref. [18].

3.2. Hard and soft constraints

Hard constraints are real-world boundaries onMVs and CVs that
cannot be overcome, e.g., the minimum/maximum flow rate, the
minimum/maximum temperature, see Fig. 3(b), and others.

The considered SCR MPC design procedure takes into account
the symmetric hard constraints on MVs and the mathematical
representation of the constraints on the MVs may have the form:

usat 2Umax; Umax ¼ fusat : jjusatjj � jjumaxjjg; (11)

where umax2Rnu are the maximal admissible values of control
inputs.

So, the control inputs generated by the SCRMPC are in the range
between the minimum and maximum boundary value of the input.
It is possible to define a saturation function fsatðuðkÞ;umaxÞ to
calculate the saturated control input usat in (11), e.g., see Ref. [23].

The mathematical representation of the symmetric hard con-
straints on the system outputs may have the form:

yðkÞ2Y; Y ¼ fy : jjyjj � jjymaxjjg; (12)

and ymax2Rny are the maximal admissible values of the system
outputs.

Besides the hard constraints, there are also soft constraints that
can be used if necessary. The mathematical representation of soft
constraints can be following:

uðkÞ2Usoft3Umax; y2Ysoft3Ymax; (13)

where the boundaries of soft-constraints are determined by the
sets:

Usoft ¼
n
u2Rnu : kuk �

������usoft������o; (14a)

Ysoft ¼
n
y2Rny : jjyjj �

���ysoft���o; (14b)

where usoft2Rnsu , ysoft2Rnsy are the symmetric soft constraints on
control inputs and system outputs, respectively. The technical

details were discussed, e.g., in Ref. [22].

3.3. Feedback control law

The developed SCR MPC design procedure is based on the
minimization of the LQR-based quadratic cost function

J ¼
X
k¼0

nk �
zðkÞu ~QzðkÞ þ uðkÞuRuðkÞ

�
; (15)

where ~Q2RðnxþnyÞ�ðnxþnyÞ _0 is the weighting matrix for the
augmented vector of states z in (7) and R2Rnu�nu is the weighting
matrix for the control input u.

The cost function in (15) is minimized using the closed-loop
control of the system in (8) calculated as

uðkÞ¼ ½ FPðkÞ FIðkÞ �zðkÞ ¼ ~FðkÞ zðkÞ; (16)

where FP, FI are the proportional and the integral parts of the state-
feedback linear control law, respectively. ~F2Rnu�2nx is the gain
matrix in the compact form.

3.4. Optimization problem in SCR MPC design

The aim of SCR MPC design is to determine a state-feedback
control law in (16) for the system in (8) so that the control is
optimal and takes into account the hard constraints in (11)e(12),
and soft constraints in (14). This aim can be mathematicaly trans-
formed to the optimization problem of the semidefinite program-
ming (SDP):

min
g;X;Y;Z;~su;~sy

gþQu
soft ~sy þ Rusoft ~su (17a)

s:t

2
664

Xk + + +

Að0ÞXkþBð0ÞKk Xk + +ffiffiffiffi
Q

p
Xk 0 gkI +ffiffiffi

R
p

Kk 0 0 gkI

3
775_0; (17b)

�
Xk +

AðvÞXk þBðvÞKk Xk

�
_0; (17c)

�
1 +
zk Xk

�
_0; (17d)

�
Umax +
Zuk Xk

�
_0; (17e)

� Xk +

C
h
AðvÞXk þBðvÞKk

i
Ymax

�
_0; (17f)

�
Xk +
EuYk Usoft;k

�
_0; (17g)

"
Xk +

EyC
�
AðvÞXk þBðvÞYk

�
Ysoft;k

#
_0: (17h)

for cv ¼ 1;2;…;nv. In 17, the symbol + is used as an element of a
matrix and denotes symmetric structure of a matrix. The subscript
k represents the discrete-time dependence. In (17b), I is an identity
matrix and 0 is a zero matrix of appropriate dimensions.
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Optimization problem in (17) is resolved in each control step to
optimize the values of the following variables: g, X, Y, Z, K, Usoft, Ysoft
~su, ~sy. The robust closed-loop system stability is guaranteed via the

Lyapunov function VðxÞ ¼ xuPx, where P ¼ Pu_0, X ¼ gP�1.
Variables ~su and ~sy are square values of overruns of the soft con-
straints onMV and CV, respectively. Matrices Z, K ensure the closed-
loop stability subject to the control input saturation.

The feedback gain matrix in (16) is calculated from the feasible
solution of the optimization problem in (17) using the optimized
variables X;Y:

~F ¼ Y X�1: (18)

The technical details were discussed in Ref. [23].

4. Results and discussion

This section presents the main results obtained implementing
the SCR MPC for the laboratory plate heat exchanger. At first, the
considered experiment setup is introduced. Then, various control
strategies are implemented to control the PHE, and the closed-loop
control trajectories are analysed. Finally, the analytical criteria are
compared.

4.1. Experimental setup of robust SCR MPC

The scheme of the closed-loop SCR MPC with integral action
implemented for control of the Plate Heat Exchanger is shown in
Fig. 4, where the closed-loop input was the Reference temperature
Tref , the closed-loop output was the Controlled Variable, i.e., the
temperature of the heated fluid at the outlet of PHE and the
Manipulated Variable was the volumetric flow rate of the hot fluid.
As the robust Controller and the Integrator needed information
about the controlled system States, see (3), the Observer ensuring
State Estimation was used. The steady-state error was removed
using the Integrator. SCR MPC in each control step calculated the
optimal value of Manipulated Variable.

The aim of robust SCR MPC of the PHE was to ensure offset free
set-point tracking for the reference temperature Tref ¼ 40+C. The
initial temperature of the heated fluid was 30+C. For comparison of
results, the time of control was treg ¼ 400 s. The hard constraints on
MVwere the boundaries of the interval [0,11.5] ml s�1, and the hard
constraints on CV were the boundaries of the interval [30, 54]

�
C.

According to the considered soft-constraints, four robust MPC
scenarios were investigated:

1 Robust MPC designed without soft constraints;
2. Robust MPC designed for the soft-constrained controlled

variable;
3 Robust MPC designed for soft-constrained controlled variable

and manipulated variable;
4 Robust MPC designed for soft-constrained manipulated

variable.

Each control scenario was implemented considering both, the
linear and the non-linear characteristics of the peristaltic pump.

The real-time control of the PHE was accomplished using
MATLAB/Simulink R2018b environment, CPU i5 1.7 GHz and 6 GB
RAM. The soft-constrained robust model-based predictive con-
trollers were designed using MUP toolbox [29]. The semidefinite
optimization problems in the robust MPC designwere parsed using
the YALMIP toolbox [30] and solved by solver MOSEK [31]. The real-
time WiFi-based communication with the plant was provided by
eLab Manager, as a part of the concept of the Laboratory of Things,
see Ref. [32].

4.2. Robust MPC without soft constraints

In this control scenario, the robust MPC was designed without
soft constraints, i.e., only hard constraints were considered. The
control performance ensured by this control scenario served as the
reference performance for investigating the impact of the soft
constraints. The closed loop control trajectories obtained using
robust MPC without soft constraints are depicted in Fig. 5. The
possibility to compensate for the non-linearity of the controlled
process with a non-linear actuator was also tested. The trajectories
of the controlled variable are plotted in Fig. 5(a), where the results
are presented for both, the actuator with linear static characteristic
(Fig. 5(a), blue) and the actuator with non-linear equal percentage
static characteristic (Fig. 5(a), green). As can be seen in Fig. 5(a), the
robust MPC with both actuators assured the set-point tracking
without steady-state error. But, control using both types of actua-
tors led to significant overshoots in the control responses. The
actuator with linear static characteristic allowed greater overshoot
than the actuator with the non-linear characteristic. On the other
hand, the settling time increased when the actuator with non-
linear static characteristic was used. The trajectories of the
manipulated variable are shown in Fig. 5(b). The flow rate of hot
water pumped by the actuator with the linear characteristics is
represented by the blue line and the flow rate pumped by the
actuator with non-linear characteristic is represented by the green
line.

4.3. SCR MPC with soft-constrained controlled variable

To avoid the overshoots in robust MPC (Fig. 5), the intuitive way
is to implement the soft constraints on the controlled output to
force the value of the controlled variable into the close neigh-
bourhood of the set-point. Therefore, the following soft constraints
on the controlled variable were considered:

Ysoft ¼ fyj �2� y�2g; (19)

The soft constraints were chosen not to allow the controlled
temperature to overcome the reference temperature more than
2 +C. The penalisation matrix in (17a) was:

Qsoft ¼ ½0:07 3 �u � 103: (20)

Fig. 4. Scheme of the closed-loop PHE control using SCR MPC with integral action.
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The control trajectories are depicted in Fig. 6, where the results
obtained using the actuator with linear (Fig. 6(a), blue) and the
non-linear (Fig. 6(a), green) characteristics are presented. SCR MPC
with constrained CV ensured the set-point tracking without
steady-state error with both actuators. SCR MPC and the actuator
with the linear characteristic reduced the overshoot in about 2

�
C,

meanwhile, SCR MPC with the actuator with the non-linear char-
acteristic removed the overshoot. But, reducing of overshoots
caused increasing of the settling time. The trajectories of the
manipulated variables are shown in Fig. 6(b), where the volumetric
flow rate of hot water pumped by the actuator with linear char-
acteristics is drawn by the blue line and the volumetric flow rate of
hot water dosed by the actuator with non-linear characteristics is
presented by the green line.

4.4. SCR MPC with soft-constrained controlled and manipulated
variables

This subsections investigates SCR MPC of the PHE with soft-

constrained both, the controlled variable and the manipulated
variable. The soft constraints on CV had the form (19) and the
penalisation matrix Qsoft was the same as in (20). The soft con-
straints on the manipulated variable were

Usoft ¼ fuj �0:7�u� 0:7g; (21)

to keep the volumetric flow rate close to its value corresponding to
the set-point. The penalisation matrix in (17a) was:

Rsoft ¼
h
30�103

i
: (22)

The control trajectories are depicted in Fig. 7. The trajectory of
the controlled temperature obtained using SCR MPC and the
actuator with the linear characteristic is represented by the blue
line and the trajectory obtained by SCR MPC with the actuator with
the non-linear characteristic by the green line. The trajectories of
the controlled temperature were obtained without steady-state
error in both cases, but the control responses are unacceptably

Fig. 5. Control performance with robust MPC without soft-constraints: actuator with
linear (blue) and non-linear (green) characteristics, set-point (dash-dotted), and
allowed control inaccuracy (dashed). (For interpretation of the references to colour in
this figure legend, the reader is referred to the Web version of this article.)

Fig. 6. Control performance with SCR MPC and with soft-constrained CV: actuator
with linear (blue) and non-linear (green) characteristics, set-point (dashed-dotted),
allowed control inaccuracy (dashed), soft constraints on CV (dotted). (For interpreta-
tion of the references to colour in this figure legend, the reader is referred to the Web
version of this article.)
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slow. As far as the overshoots, the results presented in Fig. 7(a) are
comparable to the results in Fig. 6(a). The trajectories of the
manipulated variable are shown in Fig. 7(b). The trajectory of the
volumetric flow rate pumped into the PHE by the actuator with the
linear characteristic is represented by the blue line and by the
actuator with the non-linear characteristics by the green line.

4.5. SCR MPC with soft-constrained manipulated variable

This subsection investigates the SCR MPC with soft constraints
on the manipulated variable. These soft constraints had the same
form as in (21) and the penalisation matrix Rsoft was as in (22). The
aim was to minimize the overshoots by the optimized soft-
constrained manipulated variable.

The control trajectories obtained by the SCR MPC with the soft-
constrained MV are shown in Fig. 8. The controlled output obtained
using the actuator with linear static characteristic is represented by
the blue line and using the actuator with the non-linear

characteristics by the green line, see Fig. 8(a). The controlled output
reached the setpoint without a steady-state error in both cases. In
comparison to the control trajectories in Figs. 6(a) and 7(a), this
approach significantly reduced the settling time. The settling time
is even shorter than in robust MPC without soft constraints, cf.
Fig. 5(a). The trajectories of the manipulated variable are shown in
Fig. 8(b). The volumetric flow rate of the hot fluid dosed by the
actuator with the linear characteristic is represented by the blue
line and with the non-linear characteristic by the green line.

4.6. Analytical criteria of the control performance

Robust MPC of the PHE in all investigated control scenarios was
analysed also using various analytical criteria. The performance of
CV was evaluated by the maximum overshoot smax, the settling
time tset, and the integral criterion ISE. These criteria were calcu-
lated using the following formulas. The maximum overshoot is
given as:

Fig. 7. Control performance of robust MPC with soft-constrained CV and MV: actuator
with linear (blue) and non-linear (green) characteristics, set-point (dashed-dotted),
allowed control inaccuracy (dashed), and soft constraints (dotted). (For interpretation
of the references to colour in this figure legend, the reader is referred to the Web
version of this article.)

Fig. 8. Control performance of SCR MPC with soft-constrained MV: actuator with
linear (blue) and non-linear (green) characteristics, set-point (dashed-dotted), allowed
control inaccuracy (dashed), and soft constraints (dotted). (For interpretation of the
references to colour in this figure legend, the reader is referred to the Web version of
this article.)

J. Oravec et al. / Energy 180 (2019) 303e314310



smax ¼ Tmax � Tref
Tref � Tinit

� 100 %; (23)

where Tmax is the maximum value of CV, Tref is the reference value
of CV, and Tinit is the initial value of CV. The settling time tset is the
time that is needed to assure control with the required accuracy. In
the PHE control, it was the time that CV needed to settle inside the
interval ½39:5;40:5�+C, i.e., the allowed control inaccuracy was
±0:5+C The integral criterion ISE is defined as:

ISE¼
ð∞
0

eðtÞ2 dtz
X
k¼0

nk

eðkÞ2 ts; (24)

where e is the control error given by the difference between SP and
CV, i.e., eðkÞ ¼ Tref � TðkÞ, nk is the total number of the control steps,
and ts is the sampling time.

The performance of MV was evaluated by the integral criterion
ISU, the total consumption of hot fluid Vhot, and the energy con-
sumption E during control. The values of these criteria were
calculated using the following formulas. The integral criterion ISU is
given as:

ISU¼
ð∞
0

�
_VhotðtÞ � _V

s
hot

�2
dtz

X
k¼0

nk �
_VhotðkÞ � _V

s
hot

�2
ts; (25)

where _Vhot is MV and _V
s
hot is its steady-state value corresponding to

the set-point. The total consumption of hot fluid Vhot is calculated
as:

Vhot ¼
ð∞
0

_VhotðtÞ dtz
X
k¼0

nk
_VhotðkÞ ts; (26)

The total energy consumption E was calculated using following
formula:

E¼mhot cp DT ¼ rhot Vhot cp DT ; (27)

where mhot is the total mass of hot fluid consumed during control,
cp is the specific heat capacity of the hot fluid, rhot is the density of
the hot fluid, and DT is the temperature difference between the
temperature of the hot fluid used for heating T ¼ 70 +C and the
initial temperature of the hot fluid Tinit ¼ 20 +C entering the
heating tank. The total energy consumption E is represented as the
heat needed for preparing hot water.

From the control viewpoint, the aim was to reach minimum

values of all introduced quality criteria. The values of all criteria are
summarized in Tables 1 and 2, where the data in the first row, i.e., in
the robust MPC design without soft constraints, served as the
reference values.

As can be seen in Table 1, the overshoot smax was reduced by
introducing soft constraints into robust MPC design. When soft-
constraints on controlled variable were active (scenario 2 and 3),
the overshoot was twice reduced. The zero value of overshoot smax

was ensured when only soft-constraints on manipulated variable
were considered (scenario 4). The settling time tset was reduced
when only soft-constrained controlled variable (scenario 2) or only
soft-constrained manipulated variable (scenario 4) was used. The
minimum value of the settling time tset was ensured when only
soft-constraints on manipulated variable were considered (sce-
nario 4). Considering both, the constraints of CV and MV gave the
worst results. The integral criteria ISE and ISU increased when soft
constraints on the controlled variable were active (scenarios 2 and
3). The minimum values of integral criteria were ensured by the
soft-constrained manipulated variable (scenario 4). Analogous
performance analysis holds also for the total consumption of hot
fluid Vhot and total energy consumption E. To conclude, the
analytical quality criteria confirmed the improved control perfor-
mance and energy savings ensured by introducing the soft con-
straints on manipulated variable into robust MPC design.

As can be seen in Table 2, the overshoot smax was reduced by
introducing soft constraints into robust MPC design. The zero
values of the overshoot smax were ensured when only soft-
constrained controlled variable (scenario 2) or only soft-
constrained manipulated variable (scenario 4) was used. The
overshoot was four times smaller with soft constraints on CV and
MV (scenario 3). The settling time tset was reduced only with the
soft constraints on the manipulated variable (scenario 4). The in-
tegral criteria ISE and ISU increased when soft constraints were
introduced (scenarios 2, 3, 4). The minimum increasing of ISE and
ISU was reached with the soft-constrained manipulated variable
(scenario 4). Analogous performance analysis holds also for the
total consumption of hot fluid Vhot and total energy consumption E.

The relative squared errors of the soft-constraints’ violation
resulting from the implementation of SCR MPC with integral action
on PHE were also investigated. The relative squared errors were
calculated as follows

εT ¼
ðtreg
0

�
max

�
0; T �

�
Tref þ Tsoft

���2
dt; (28a)

Table 1
Values of the quality criteria for robust MPC of PHE using the actuator with the linear static characteristic.

scenario soft constraints smax ½%� tset ½s� ISE [�C2 s] ISU [ml2] Vhot [ml] E [kJ]

1 not used 44 107 1163 12166 2082 428
2 CV 20 85 2160 24132 3081 634
3 CV & MV 22 181 5961 22659 2980 613
4 MV 0 64 1035 5650 1313 417

Table 2
Values of the quality criteria for robust MPC of PHE using the actuator with the non-linear static characteristic.

scenario soft constraints smax ½%� tset ½s� ISE [
�
C2 s] ISU [ml2] Vhot [ml] E [kJ]

1 not used 43 104 845 11015 2036 418
2 CV 0 182 1793 23482 3058 629
3 CV & MV 12 565 6653 22551 2972 612
4 MV 0 51 1286 11406 2106 438
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εV ¼
ðtreg
0

�
max

�
0; _Vhot �

�
_V
s
hot þ _Vhot;soft

���2
dt; (28b)

εtotal ¼ εT þ εV ; (28c)

where εT, εV, εtotal, respectively, are the relative squared error of the
CV soft-constraints’ violation, the relative squared error of the MV
soft-constraints’ violation, and the total relative squared error of
the CV and MV soft-constraints’ violation. Tsoft ¼ 2 +C and
_Vhot;soft ¼ 0:7ml s�1 are the soft-constraints on CV and MV,

respectively. Tref ¼ 40 +C is the reference temperature and _V
s
hot ¼

5:3 ml s�1 is the steady-state value of MV corresponding with the
reference temperature. treg ¼ 400 s is the total time of control. The
values εT, εV, εtotal were calculated also in the cases if soft con-
straints on CV and/or MV were not active and therefore the errors
are denoted as relative. Table 3 summarizes the computed relative
squared errors of the soft-constraints’ violation for the actuator
with the linear static characteristic. The minimum value of εtotal
was ensured considering only soft-constrained MV (scenario 4).
The larger value of εV than εT was obtained only in the scenario 1
when no soft constraints were active. The biggest relative squared
errors of the soft-constraints’ violation εT and εtotal resulted in the
scenario 3 when simultaneously soft constraints on CV and MV
were active. Table 4 shows the errors for the actuator with the non-
linear static characteristic. The results are analogous to the results
presented in Table 3.

The analytical quality criteria confirmed that SCRMPCwith soft-
constrained manipulated variable together with the actuator with
the non-linear characteristic ensured the best control performance
subject to the maximum overshoot and the minimum settling time.
The other quality criteria had the minimum values when SCR MPC
with soft-constrained MV and the actuator with the linear char-
acteristic was used. Using the actuator with the non-linear char-
acteristic ensures the minimum values of all quality criteria only in
robust MPC without soft constraints.

5. Conclusions

The main contributions of this paper can be summarized as
follows: (i) design of SCR MPC with integral action for the labora-
tory plate heat exchanger; (ii) experimental closed-loop control of
the laboratory PHE using SCR MPC with integral action; (iii) using

the actuator with the linear and non-linear static characteristics;
the second one used for compensation of the non-linear behaviour
of the plate heat exchanger; (iv) extensive analysis of the control
performance of the PHE using various quality criteria in various SCR
MPC scenarios in the set-point tracking.

The overshoot of the controlled variable, i.e., the temperature of
the heated fluid at the outlet of the PHE was removed by intro-
ducing the soft constraints on the manipulated variable, i.e., the
volumetric flow rate of the heating fluid. Simultaneously, all other
quality criteria and the energy consumption were minimum when
the actuator with the linear static characteristic was used. Using the
actuator with the nonlinear characteristic outperformed the actu-
ator with linear static characteristic only in robust MPC without
soft constraints. The integral action ensured the offset-free control
performance in all investigated control scenarios.

Finally, using soft constraints onmanipulated variable improved
the control performance and is recommended. Compensation of
the non-linearity of the controlled process using the actuator with
the non-linear static characteristic did not offer better values of the
quality criteria in comparison with the actuator with the linear
static characteristic.

Further research will be focused on the design and imple-
mentation of the advanced robust MPC strategies for the complex
interconnected systems, such as heat exchanger networks. From an
implementation viewpoint, the aim is to develop the complexity
reduction techniques to make the real-time application of robust
MPC more attractive.
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Nomenclature

Symbols

A: system matrix of the state space system
Að0Þ: system matrix of the nominal state space system
AðvÞ: vertex system matrix of the uncertain state space system
~A: system matrix of the augmented state space system
~A
ðvÞ
: vertex system matrix of the augmented uncertain state space system

A: set of uncertain state space systems
~A: set of augmented uncertain state space systems
B: input matrix of the state space system
Bð0Þ: input matrix of the nominal state space system
BðvÞ: vertex input matrix of the uncertain state space system
~B: input matrix of the augmented state space system
~B
ðvÞ
: vertex input matrix of the uncertain augmented state space system

C: output matrix of the state space system
~C: output matrix of the augmented state space system
cp: specific heat capacity, kJ kg�1 K�1

e: control error,
�
C

E: total energy consumption, kJ
Eu: auxiliary matrix of soft constraints evaluation
Ey: auxiliary matrix of soft constraints evaluation
~F: gain of the state-feedback control law
FI: integral gain of the state-feedback control law
FP: proportional gain of the state-feedback control law
h: auxiliary variable of non-linear static characteristic
I: identity matrix
J: quadratic quality criterion
k: sample of discrete time domain, s
K: auxiliary matrix of controller design
mhot: total mass of hot fluid, kg
nk: number of control steps
nu: total number of system inputs
nv: total number of system vertices
nx: total number of system states
ny: total number of system outputs
P: Lyapunov matrix
Q: weighting matrix of system states
Qsoft : weighting on soft-constrained controlled variable
~Q: weighting matrix of the augmented system states
R: weighting matrix of system inputs
Rsoft : weighting on soft-constrained manipulated variable
R: Euclidean space of real numbers
~su: squared value of soft constraints violation on MV
~sy: squared value of soft constraints violation on CV
t: time, s
treg: total time of control, s
ts: sampling time, s
tset : settling time, s
T: controlled temperature,

�
C

Tinit : initial value of temperature,
�
C

Thot : temperature of hot fluid,
�
C

Tmax: maximal value of temperature,
�
C

Tref : reference temperature,
�
C

Tsoft : soft constraints on temperature,
�
C

Ts: steady-state temperature of hot fluid,
�
C

DT: temperature difference,
�
C

u: inputs of the state space system, ml s�1

umax: maximal value of the control input, ml s�1

usat : saturated control input of the state space system, ml s�1

U: voltage, V
Unorm: normalized voltage, 1
Umax: auxiliary matrix of controller design
Umax: set of hard constraints on the controlled variables
Usoft : auxiliary matrix of controller design
Usoft : set of soft constraints on the manipulated variables
v: vertex system
V: Lyapunov function
Vhot : total consumption of hot fluid, ml
_Vhot : volumetric flow rate, ml s�1

_Vhot;soft : soft constraints on volumetric flow rate, ml s�1

_V
s
hot : steady-state volumetric flow rate, ml s�1

_Vmin: minimum volumetric flow rate, ml s�1

_Vmax: maximum volumetric flow rate, ml s�1

D _Vhot : volumetric flow rate difference, ml s�1

w: set-point,
�
C

x: states of the state space system,
�
C

x0: initial conditions of the state space system,
�
C

X: weighted inverted Lyapunov matrix
y: outputs of the state space system,

�
C

ymax: maximal value of output variable,
�
C

Y: auxiliary matrix of controller design
Ymax: set of hard constraints on the controlled variables
Ymax: auxiliary matrix of controller design
Ysoft : auxiliary matrix of controller design
Ysoft : set of soft constraints on the controlled variables
z: states of the augmented state space system,

�
C

z0: initial conditions of the augmented state space system
Z: auxiliary matrix of controller design
0: zero matrix

Greek letters

εtotal: relative squared error of total soft constraints violation
εT : relative squared error of soft constraints violation on temperature
εV : relative squared error of soft constraints violation on volumetric flow rate
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g: weighting parameter of Lyapunov matrix
l: auxiliary weighting parameter of convex combination
r: density, kg m�3

smax: maximal overshoot, %
t: auxiliary parameter of non-linear characteristic

Abbreviations

CV: controlled variable
DMC: dynamic matrix control

GPC: generalized predictive control
ISE: integral square error of controlled variable
ISU: integral square error of manipulated variable
LMI: linear matrix inequality
MPC: model predictive control
MV: manipulated variable
PHE: plate heat exchanger
PP: peristaltic pump
SCR MPC: soft-constrained robust model predictive control
SDP: semidefinite programming
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A B S T R A C T   

Advanced, optimization-based control methods are implemented at each level of industrial production. Although 
the model predictive control (MPC) represents a state-of-the-art control strategy maximizing profit, and, 
simultaneously, minimizing the energy losses, its industrial implementation is limited by the requirements on the 
software and hardware resources. This paper proposes an approximated MPC for such cases when the imple-
mentation of implicit MPC has a prohibitive effort on industrial hardware and its explicit counterpart is limited 
by its memory footprint requirements. The recursive random shooting-based approach is introduced to eliminate 
the conventional optimization and minimize the memory requirements, meanwhile guarantying the asymptotic 
stability subject to the physical constraints on control inputs and system states. The benefits of the proposed 
method are significantly reduced computational complexity by 93%, and decreased energy consumption by 93%, 
compared to non-recursive random shooting, while the performance loss is approximately 8%.   

1. Introduction 

In recent years, model predictive control (MPC) became a standard 
control approach for plants in the various fields of industry (Qin and 
Badgwell, 2003). MPC is the most effective method for control of com-
plex multivariable systems, where technological constraints and control 
performance optimization are requested (Mayne, 2014). The optimal 
control problem of conventional MPC is solved in a receding-horizon 
manner, meaning that it is solved repeatedly over a finite sequence of 
control inputs{u0, u1,⋯, uN− 1} for prediction horizonN at each sample, 
while the current states of the system are updated. After the state 
measurement, only the first control input out of the sequence is applied 
to the controlled plant. 

When considering the widely-used LQR-like penalty function, then 
the MPC formulation leads to the problem of the quadratic programming 
(QP), e.g., see Boyd and Vandenberghe (2004). The problem of 
large-scale QPs in the MPC design framework was investigated in Bar-
tlett et al. (2002), where an effective method to solve large-scale QPs 
using the Schur complement algorithm is proposed. In Brand et al. 
(2011), another method to speed-up solving QPs was presented. The 
evaluation time was significantly reduced using the parallel computa-
tions to solve the QPs. In the framework of the embedded MPC design, 

the active set method based on nonnegative least squares to solve strictly 
convex QPs was presented in Bemporad (2016). The benefits of the 
proposed method are the reduced evaluation time, ease of imple-
mentation, and an effective evaluation of the optimization problem 
feasibility. 

Embedded hardware is becoming increasingly popular due to its low- 
cost, open architecture, and a wide range of relevant applications. 
However, the computational power and memory storage of the 
embedded hardware is still low compared to other devices used in the 
industry. As the consequence, there is a significant requirement to 
implement such control strategies that provide inexpensive and low- 
power consuming controllers. For instance, the well-known propor-
tional-integral-derivative (PID) controllers. In Youness et al. (2014) a 
detailed case study analyzing the implementation of various PID con-
trollers considering multiprocessor system-on-chip and multicore 
microcontrollers is conducted. The designed controllers are compared in 
terms of design time, design effort, and closed-loop control performance. 
The paper also summarizes the rules for handling the multiprocessor 
systems for embedded control design. 

A robust fuzzy PID controller implemented using a low-cost micro-
controller for an uncertain model of an inverted pendulum was designed 
in El-Nagar and El-Bardini (2014). The laboratory implementation 
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demonstrates that even with the limited memory and computational 
capacity of the embedded hardware, the implemented controller suc-
cessfully stabilized a strongly uncertain system. 

Although the PID controllers are suitable for embedded platforms, 
they lack the guarantees of constraints satisfaction and the closed-loop 
system stability. To overcome this obstacle, the MPC design method 
were implemented on the embedded hardware. Among other methods, a 
dynamic matrix control (DMC) and a generalized model predictive 
control (GPC) were designed and investigated. In Chaber and Law-
rynczuk (2019), the fast DMC and fast GPC variants of MPC were pro-
posed and analyzed using a microcontroller. Compared to the 
conventional MPC, considering DMC and GPC methods ensured a sig-
nificant reduction in evaluation time. 

A recent paper (Ndje et al., 2021) presents a computationally effec-
tive method of a nonlinear DMC implemented on a microcontroller. This 
approach reduces the computational burden by solving an optimal 
control action just if it is necessary, otherwise, applies a solution of 
unconstrained optimization. 

Although various modifications of MPC controllers were designed for 
embedded platforms, there are still barriers limiting its widescale 
implementation, especially, when handling the multivariable systems 
with fast dynamics. Therefore, there is still a significant requirement to 
design and implement an MPC-like control strategy ensuring close-to- 
optimal control performance on embedded hardware that is inexpen-
sive and low-power consuming, simultaneously, guaranteeing the con-
straints satisfaction, recursive feasibility, and the closed-loop system 
stability. 

A significant number of methods were introduced to decrease the 
computational effort of a conventional MPC. One way to reduce the 
computational effort is to solve the optimal control problem offline. It is 
possible to determine the optimal control law for every possible com-
bination of initial conditions utilizing parametric programming. This 
technique is also known as explicit MPC, see Bemporad et al. (2002). The 
main benefit of explicit MPC is preserving the optimality of the solution, 
and, simultaneously, removing the real-time optimization. 

Practical issues of hardware synthesis of explicit MPC controllers are 
analyzed in Johansen et al. (2007). In this work, the small-scale explicit 
MPC was designed with a special focus on the implementation on the 
application-specific integrated circuit (ASIC) and field-programmable 
gate array (FPGA). One of the showcases of the direct implementation 
of MPC in embedded hardware is presented in Hrustic and Prljaca 
(2020). 

The case study presented in Shoukry et al. (2010), performs the 
implementation of MPC in safety-critical automotive systems. In Krish-
namoorthy and Skogestad (2022), the authors provide an overview of 
various different approaches that also aim to preserve the optimal so-
lution of the MPC controller, without the need to solve optimization 
problems online. The main limitation of these control methods is a hardly 
tractable memory footprint required to store the explicit solution. 
Moreover, the corresponding point-location problem can become overly 
time-demanding. 

To overcome these obstacles, various methods introducing an 
approximation of the optimal feedback control law were developed. In 
Chen et al. (2018), the neural networks were considered in the design of 
an explicit linear feedback law. The downside of these types of methods 
is the loss of optimality and the lack of any stability guarantee. More-
over, one still needs to evaluate the sufficiently large set of optimal 
control problems to generate the data for the neural network training. 

In the past two decades, the stochastic methods as random shooting- 
based (RS) method gained popularity. The RS-based approach in the 
robust controller design framework was analyzed in Vidyasagar 
(2001a). Here, the statistical learning theory was considered to intro-
duce the randomized algorithms for a wide class of controller design 
problems. The detailed tutorial overview on randomized algorithms for 
robust controller synthesis using statistical learning theory was pre-
sented in Vidyasagar (2001b). A generalized approach to solve the 

convex optimization problems using the randomized algorithms was 
introduced in Dyer et al. (2014). Here, under some mild assumptions, 
the proposed algorithm evaluated a close-to-optimal solution in a 
number of iterations that is limited by a polynomial function. 

Similar to the neural-network-based MPC, RS leads to a suboptimal 
solution and lacks any type of stability guarantee. In contrast with the 
neural-network-based MPC, it does not require solving any type of 
optimal control problem. Therefore, it is fully implementable on 
embedded platforms widely used in industrial applications and so-called 
industrial internet of things (IIoT) services. 

The control performance ensured by designing RS-based controllers 
was analyzed in several case studies. The numerical simulation of the 
closed-loop control of the nonlinear chemical reactor governed by an 
RS-based controller was investigated in Bakaráč and Kvasnica (2018). 
The RS-based approach significantly reduced the complexity of the 
prediction of the nonlinear behavior of the chemical reactor. In Piove-
san and Tanner (2009), the problem of nonlinear MPC design was 
approximated using the randomized algorithms. In Fedorová et al. 
(2019), the agile maneuvers of a pendulum on a cart were controlled by 
RS-based approximation of nonlinear MPC. Here, the control perfor-
mance was investigated by the implementation of the designed RS-based 
controller on the laboratory plant. Based on the results presented in 
these papers, and the references therein, the RS-based approach can be 
considered a close-to-optimal controller design method suitable for 
challenging systems and for the systems with fast dynamics. 

The RS method is based on random generation of control sequences. 
Randomly generated control sequences are inquired for feasibility, i.e., 
constraint satisfaction, and their performance indices. The feasible 
random sequence with the best performance index is determined at the 
end of the runtime and the first element of this sequence is applied to the 
system. Even though the selected control sequence is suboptimal, it is 
still feasible, thus guaranteeing a safe operation. Suboptimality of the 
solution decreases with an increasing number of generated control se-
quences. Specifically, if the considered optimization problem is convex, 
runtime and the suboptimality of the solution can be estimated in 
advance (Dyer et al., 2014). The versatility of this method does not end 
there. It allows to solve problems, where the prediction model or cost 
function are discontinuous, or even the constraints are non-convex. 

The main contribution of this work is to propose extremely light- 
weight implementation of close-to-optimal RS-based control on the 
embedded/industrial hardware. The aim is to merge the benefits of both 
methods, i.e., optimal evaluation of control input using MPC and RS- 
based approximation of optimal solution enabling library-free, and 
easy-to-implement computation of close-to-optimal control input on 
embedded platforms. This method results in straightforward and 
extremely fast implementation of control input. 

In this work, we introduce a novel recursive RS-based control 
approach overcoming the main drawbacks of its well-known counter-
part limiting its wide industrial application. Namely, the presented 
method provides guarantees on the physical constraint satisfaction, 
recursive feasibility, and asymptotic stability. 

Technically, we introduce a so-called support controller to guarantee 
these closed-loop system properties, e.g., see Oravec et al. (2017) and 
references therein. The idea of a support (backup) controller is 
widely-known, but to the best authors’ knowledge, this approach has not 
been introduced in the random shooting-based approximation of MPC 
design, yet. 

The benefit of this approach, compared to the earlier works is, that 
we use the precomputed support controller just to initialize the evalu-
ation of an asymptotically stable controller, and its closed-loop perfor-
mance is continuously improved by recursive learning strategy. 

Moreover, the other significant benefit of the proposed method is 
scaling of the time necessary to evaluate close-to-optimal control input, 
while, simultaneously, preserving the above-listed benefits. 

The paper is organized as follows: first, the preliminaries containing 
the concepts of MPC and its formulations are introduced. In the 

P. Bakaráč et al.                                                                                                                                                                                                                                



Computers and Chemical Engineering 165 (2022) 107928

3

following section, the novel method of recursive random shooting 
computing the close-to-optimal control input is presented. The next 
section analyses the case study generated using the embedded hardware, 
together with a discussion focused on the main benefits of the proposed 
control strategy. Finally, the main conclusions are summarized. 

2. Preliminaries 

2.1. Model predictive control 

The MPC represents the state-of-the-art optimization-based control 
method worth implementing in the industrial conditions to increase the 
yields and the associated profit, and, simultaneously, minimize the en-
ergy consumption and reduce the corresponding carbon footprint. 
Throughout this paper, we consider a following MPC formulation: 

min
u0 ,u1 ,…,uN− 1

x⊺
NPxN +

∑N− 1

k=0

(
x⊺

kQxk + u⊺
kRuk

)
(1a)  

s.t. : xk+1 = A xk + B uk, (1b)  

uk ∈ U , (1c)  

xk ∈ X , (1d)  

xN ∈ T , (1e)  

x0 = x(t), (1f)  

k = 0, 1,…,N − 1, (1g)  

whereN is prediction horizon,P ∈ Rnx×nx ,Q ∈ Rnx×nx ,R ∈ Rnu×nu are ter-
minal, state, and input penalty matrices, respectively. Prediction model 
in (1b) has the form of linear time invariant (LTI) system for given state 
matrixA ∈ Rnx×nx and input matrixB ∈ Rnx×nu . In LTI system 
(1b),x ∈ Rnx ,u ∈ Rnu are vectors of corresponding system states and 
control inputs, respectively.U ⊆ Rnu ,X ⊆ Rnx are sets of physical con-
straints on inputs and system states, respectively.T ⊂X is set of terminal 
constraint. 

Assumption 2.1. Let MPC problem (1) be asymptotically stable and 
recursively feasible. Assume, in (1) hold:  

1. setsU ,X ,T are closed convex polyhedra containing the origin in 
their strict interiors,  

2. matricesP ≻ 0,Q ≻ 0,R ≻ 0 are positive definite, 
3. terminal setT ⊂X is control invariant set, where no physical con-

straints in (1c)–(1d) are active. 

From the first point of Assumption 2.1, it follows that the domain of 
the optimization variables represents a convex set. From the second 
point of Assumption 2.1, it directly follows that the objective function is 
strictly convex. Therefore, solving the MPC problem in (1) leads to the 
strictly convex optimization problem of quadratic programming having 
a unique optimizer, see Boyd and Vandenberghe (2004). 

For a sake of simplicity, we introduce a simplified notation for 
penalty function in (1a) as follows: 

J = x⊺
NPxN +

∑N− 1

k=0

(
x⊺

kQxk + u⊺
kRuk

)
= ℓN(xN) +

∑N− 1

k=0
ℓ(xk, uk), (2)  

whereℓN : Rnx →R1 is a quadratic terminal penalty function andℓ : Rnx ×

Rnu →R1 is a quadratic stage cost function. 
The MPC is implemented in so-called receding horizon fashion, i.e., 

in each control step just the first control input is applied to the controlled 
plant and the optimization problem is resolved in the next control step 
for the updated system measurement, see Maciejowski (2000). The MPC 
formulation in (1) considers an idealized system without a significant 

impact of uncertain parameters. If the inherent robustness of the 
receding horizon framework is not sufficient, then we may robustify the 
MPC controller, e.g., see Bemporad and Morari (1999). 

Remark 2.2. (Robust terminal set) In case the MPC formulation in (1) 
is implemented on the plant, where plant-model mismatch threatens the 
invariant properties of the maximal control invariant setT in (1f) 
(Borrelli, 2017), the robust control invariant setT robust can be con-
structed and substituted into (1e), e.g., see Kvasnica et al. (2015). 

Finally, we formulate the controller design problem. 

Problem 2.3. (Problem statement) The problem is to approximate the 
solution of the MPC problem in (1) in a finite number of optimization- 
free iterations, such that the evaluated control input guarantees satis-
faction of physical constraints in (1c)–(1d), recursive feasibility of 
optimization problem in (1), and the asymptotic stability for admissible 
measurements of system states, i.e.,∀x ∈ X . 

Remark 2.4. (Application range) Although the MPC formulation in 
(1) represents a simple regulatory problem, the control method pro-
posed in this paper is not limited just to this MPC formulation. Any 
stabilizing MPC formulation satisfying Assumption 2.1 can be consid-
ered for its recursive-random shooting-based approximation as 
described in Section 3, among others: the reference tracking problem, 
soft-constraints, slew-rate control (Maciejowski, 2000), robust MPC 
(Kvasnica et al., 2015), etc. 

2.2. Random shooting 

In this section, we describe the approximation of the MPC control 
problem in (1) considering the stochastic approach of the so-called 
random shooting-based method. In this paper, the random shooting- 
based approach is considered in its formulation presented in Bakaráč 
and Kvasnica (2018). This method evaluates a randomized sequence of 
the feasible control inputs with the best performance index, i.e., the 
minimum cost function value in (1a). 

The enumeration of the feasible control input is performed consid-
ering a large number of randomly generated sequences. Obviously, the 
selected control sequence{ũ0, ũ1,…, ũN− 1} is suboptimal compared to 
the exact solution of MPC problem in (1). Compared to original 
approach in Bakaráč and Kvasnica (2018), the asymptotic stability of the 
closed-loop system is guaranteed. 

First, the Algorithm 1 explains the basic principles of the random 
shooting method in its original formulation. In Algorithm 1,û, x̂, Ĵr are 
variables for particular random shoot, andũ, J̃ are variables corre-
sponding to the close-to-optimal solution of random shooting based 
approximation of MPC problem in (1). Scalari is a counter for random 
shoots,r is a counter for feasible random shoots, binaryδ is a feasibility 
indicator (flag), andNF is maximal number of feasible random shoots. 
The remaining variables in Algorithm 1 came from MPC problem in (1). 

The problem of implementing Algorithm 1 is, that this approach does 
not guarantee to findNF feasible random shoots during a given sampling 
timets, i.e., the reaching suboptimality level is not guaranteed. Even 
worse, in general, Algorithm 1 does not guarantee finding any feasible 
solution. Therefore, it may happen, in the worst-case, that there will be 
no available feasible control inputu0. Moreover, when comes to recur-
sive feasibility, Algorithm 1 does not guarantee that there will be found 
any feasible solution in the next control step. 

This paper aims to address the above-mentioned issues preserving 
the benefits of random shooting-based approximation of the MPC 
problem solution. 

3. Recursive random shooting-based evaluation of MPC 

This section is devoted to the main contribution of this paper, i.e., 
designing the recursive random shooting-based evaluation of MPC. The 
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INPUT: system state measurement x0, number NF of feasible random shoots, maximal number of random shoots Nmax, MPC
problem (A, B,N,U,X,T , `(x, u), `N(xn)) in (1)

OUTPUT: sequence of control inputs {̃u0, ũ1, . . . , ũN−1}
1: J̃ ← ∞; Ũ ← ∅; r ← 0, i← 0 // Initialize random shooting

2: while r < NF and i < Nmax do
3: x̂0 ← x0, Ĵr ← 0, δ← 1, i← i + 1 // Reset variables

4: for j = 0, 1, . . . ,N − 1 do
5: if x̂ j ∈ X then
6: û j ← random {û : û ∈ U} // Random shoot

7: Ĵr ← Ĵr + `(x̂ j, û j) // Penalty update

8: x̂ j+1 ← A x̂ j + B û j // System state update

9: else
10: δ← 0 // Primal infeasible

11: break
12: end if
13: end for
14: if δ == 1 and xN ∈ T then
15: Ĵr ← Ĵr + `N(xN) // Terminal penalty update

16: r ← r + 1 // Update primal feasibility counter

17: if Ĵr < J̃ then
18: Ũ ← {û0, û1, . . . , ûN−1} // Update approximated solution

19: J̃ ← Ĵr // Update reference penalty

20: end if
21: end if
22: end while
23: return {̃u0, ũ1, . . . , ũN−1} ← Ũ

Algorithm 1. Random shooting-based approximation of MPC problem Bakaráč and Kvasnica (2018).  
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term “recursive” points out the learning-like self-improvement of the 
closed-loop control performance. 

3.1. Principles of recursive random shooting-based control 

Compared to standard random shooting implementation in Algo-
rithm 1, the essential difference of the recursive random shooting-based 
method is that we do not erase the best solution of the previous control 
step. In the conventional random shooting approach, in each control 
step, the best-found solution is “forgotten”. In contrast to Algorithm 1, 
we reuse the best solution of the previous control step to be reconsidered 
in the current control step. If no better solution is found then we reapply 
the so far best solution in receding horizon control fashion, see Macie-
jowski (2000). 

The so-called dual-mode control approach is introduced to ensure 
asymptotic stability, see Darup and Mönnigmann (2018). The 
dual-mode control as described in Algorithm 2, consists of two modes: 
(i) Mode I: LQ optimal control that is implemented when the system 
statesx ∈ T and (ii) Mode II: otherwise, apply the control input evalu-
ated by a random shooting. 

Compared to the conventional implementation of MPC, introducing 
the dual-mode control approach enables drastic reduction of the average 
real-time effort of the evaluation of the control input, as the enumera-
tion of the control input melts down just into a simple matrix multipli-
cation in (3), once the system statesx enter the invariant terminal setT . 
It improves the resources-aware policy of controller operation, e.g., 
significantly prolonged battery life plugging the embedded hardware, 
etc. 

The asymptotic stability of Mode I is ensured by design, see Darup 
and Mönnigmann (2018). First, we construct a terminal setT according 
to Assumption 2.1. Having a proper terminal set, we construct a stabi-
lizing controllerFLQ above this terminal setT . 

Definition 3.1. (Terminal set controller) The terminal set con-
trollerFLQ ∈ Rnx×nu of state-feedback control law: 

u(k) = FLQ x(k) (3)  

is given by the solution of discrete matrix algebric Riccati equation for 
LTI system in (1b), e.g., see Borrelli (2017). 

Lemma 3.1. (Stabilizing terminal controller Borrelli (2017)) LetT 

satisfy Assumption 2.1. The terminal set controllerFLQ in (3) guarantees the 
asymptotic stability of LTI system in (1b) for∀x ∈ T . 

The task is to guarantee the asymptotic stability of Mode II. There-
fore, we introduce the support control law. 

Definition 3.2. (Support controller) The support con-
trollerκ : Rnx →Rnu of support control law 

u(k) = κ(x(k)), (4)  

whereκ(x(k)) is constructed to guarantee the asymptotic stability of LTI 
system in (1b) for∀x ∈ X . 

Assumption 3.2. (Stabilizing controller)  Consider that there exists a 
support controllerκ(x) such that the LTI system in (1) is asymptotically 
stable according to Mayne et al. (2000) for∀x subject to the physical 

constraints in (1c)–(1d). 

Note, the proper design method of the support controller according 
to Definition 3.2 is beyond the scope of this paper. Nevertheless, there 
are various methods available in the literature. 

In this paper, we propose the approach of (robust) MPC design 
proposed in Kothare et al. (1996). Then, the following optimization 
problem of semidefinite programming (SDP) is obtained: 

min
γ,X,Y ,U

γ (5a)  

s.t. :

[
1 ★

x0 X

]

⪰0, (5b)  

⎡

⎢
⎢
⎢
⎢
⎢
⎣

X ★ ★ ★

AX + BY X ★ ★

Q1/2X 0 γI ★

R1/2Y 0 0 γI

⎤

⎥
⎥
⎥
⎥
⎥
⎦

⪰0, (5c)  

[
X ★

Y U

]

⪰0, Ui,i ≤ usat,i, ∀i = 1, 2,…, nu, (5d)  

[
X ★

(AX + BY) x2
satI

]

⪰0, (5e)  

where the decision variables are:X = X⊤ ∈ Rnx×nx the positive definite 
weighted inverse-matrix of the Lyapunov matrix,Y∈Rnu×nx ,U∈Rnu×nu ,γ∈R 

the weight parameter ofX, and symbol★ denotes a symmetric structure of 
linear matrix inequalities (LMIs). Note, just the symmetric constraints are 
considered in (5d), (5e). Therefore, the conservative inner box approxima-
tion of the sets of physical constraints in (1c), (1d) is considered for in (5d), 
(5e): 

usat = min{|umin|, |umax|}, xsat = min{|xmin|, |xmax|} (6)  

Following the approach in Kothare et al. (1996), the support controller 
has the form of state feedback controller given by 

F = Y X− 1, (7)  

and the corresponding closed-loop control law in (4) is 

u(k) = F x(k), (8)  

see Kothare et al. (1996) for the stability proof and further technical 
details. 

As the mathematical model is imperfect, the predicted behavior of 
the plant differs from the real system behavior. If the controlled plant is 
affected by the serious impact of uncertain parameters, then the 
plant–model is non-negligible. In such cases, it is recommended to 
design the support controller using the means of the robust controller 
design methods, e.g., following the procedure in Kothare et al. (1996). 

In general, the support controllerF in (8) is designed subject to the 
conservative subset of physical constraints and leads to the suboptimal 
control performance. Nevertheless, the support controller serves just to 

INPUT: system state measurement x0, terminal set T in (1), LQ optimal controller FLQ, and inputs of Algorithm 3
OUTPUT: control input u0
1: if x0 ∈ T then
2: u0 = FLQ x0 // LQ optimal control input

3: else
4: u0 ← recursive random shooting (Algorithm 3) // Approximate MPC solution

5: end if
Algorithm 2. Dual mode control.  
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provide a backup control input in case no better solution is found. 
Finally, we introduce the recursive random shooting-based approach 

in Algorithm 3. 
In Algorithm 3, bar-symbol (⋅) denotes variables recursively passed 

into random shooting, hat-symbol (̂⋅) denotes variables of the current 
random shoot, and tilde-symbol (̃⋅) denotes variables corresponding to 
the approximated solution of MPC problem in (1). 

Compared to Algorithm 1, Algorithm 3 enters two auxiliary 
inputs:U,J. These variables are initialized before running the closed-loop 
control and introduce the recursive improvement of random shooting- 
based evaluation. 

The sequence of support control inputsU = {u0, u1,…, uN− 1} is 
initialized using a state-feedback control law given by: 

uk = κ(xk), ∀k = 0, 1,…,N − 1, (9)  

whereκ is a support controller according to Definition 3.2. 
Support penaltyJ(x, u) is evaluated by 

J(x, u) =
∑N− 1

k=0
ℓ(xk, uk) + ℓN(xN), (10)  

whereuk, xk for∀k = 0,1,…,N − 1, are vectors of support control inputs 
and the corresponding support system state trajectory, respectively. 

We point out that compared to Algorithm 1, Algorithm 3 aims to 
evaluate(NF − 1) random shoots, i.e., Algorithm 3 skips evaluation of 
one random shoot. The difference is given by the availability of a sup-
port (backup) sequence of control inputsU that ensures evaluation ofŨ 
satisfying the physical constraints, recursive feasibility, and the 
asymptotic stability. 

Lemma 3.3. (Satisfaction of physical constraints)  Given MPC design 
problem in (1) and the support controller defined according to Definition 3.2. 
Assume that Assumption 3.2 holds. Then the control inputu(k) evaluated by 
Algorithm 3 satisfies the physical constraints in (1c)–(1d) for all control 
stepsk ≥ 0. 

Proof. First, we prove the satisfaction of physical constraints on con-
trol inputs in (1c). The control input applied to the controlled plantu0 is 
evaluated either by recursive random shooting approach in Algorithm 3, 
or by a support controller. Any feasible random shoot in Algorithm 3 
satisfies the constraints in (1c). If no feasible random shoot is found, 
then the support controller enumeratesu0 using (8). According to Defi-
nition 3.2, the support controller satisfies the constraints in (1c) by 
design. Next, we need to prove the satisfaction of physical constraints on 
system states in (1d). As the control inputu0 is either feasible random 
shoot evaluated subject to (1d), or enumerated using the support 
controller in (8) constructed subject to (1d), then (1c) holds.□ 

Lemma 3.4. (Recursive feasibility)  Given MPC design problem in (1) 
and the support controller defined according to Definition 3.2. Assume 
Assumption 3.2 holds. Then the control inputu(k) evaluated by Algorithm 3 
ensures recursive feasibility of MPC problem in (1) for all control stepsk ≥ 0. 

Proof. Proof of Lemma 3.4 directly follows from the Lemma 3.3. If for 
anyx0 ∈ X the physical constraints in (1c)–(1d) hold for∀k ≥ 0, then the 
recursive feasibility condition holds.□ 

Theorem 3.5. (Asymptotic stability)  Given MPC design problem in (1) 
and the support controller defined according to Definition 3.2. Assume 
Assumption 3.2 holds. Then the control inputu(k) evaluated by Algorithm 3 
ensures asymptotic stability of problem in (1) for all control stepsk ≥ 0. 

Proof. Proof of Lemma 3.5 directly follows from the Lemmas 3.3, 3.4, 
andxN ∈ T in (1e), whereT is control invariant set. For anyx0 ∈ X ,u0 
is evaluated either using random shooting in Algorithm 3, or using the 
support controllerκ in (8). In the both cases,u0 is such thatxN ∈ T hold. 
According to dual-mode control in Algorithm 2, oncex0 ∈ T , thenu0 is 
evaluated using LQ optimal control input in (3). The asymptotic stability 

of LQ optimal control is given by design, see Borrelli (2017).□ 

Lemma 3.6. (Sample size bound for worst-case performance Bakaráč and 
Kvasnica (2018), Tempo et al.(2013)) If the number of feasible random 
shootsNF satisfies 

NF ≥
log 1

1− α
log 1

1− ε
(11)  

for anyε ∈ (0, 1) andα ∈ (0, 1), then the control sequence{ũ0, ũ1,…, ũN− 1}

generated b Algorithm 3 is byε⋅100% suboptimal approximation of the so-
lution to MPC problem in (1) with a confidence ofα⋅100%. 

Proof. The proof of Lemma 3.6 directly follows from the proof of 
Theorem 8.1 in Tempo et al. (2013), p. 118.□ 

Fig. 1 shows the exponential dependence of the number of feasible 
random shootsNF on the suboptimality levelε and confidence valueα 
given by (11). As can be seen in Fig. 1, the minimum number of feasible 
random shootsNF necessary to guarantee the required level of perfor-
mance increases exponentially with increasing value of confidenceα and 
decreasing value of the suboptimality levelε. 

Remark 3.7. (Scaling of time evaluation)  Given MPC design problem 
in (1) and the support controller according to Definition 3.2. Assume 
Assumption 3.2 holds. Then the evaluation of the control inputu(k)
evaluated by Algorithm 3 is scaleable within an interval[tmin, tmax] for all 
control stepsk ≥ 0, wheretmin,tmax are the minimum and maximum 
portion of time available within one control step determined by the 
sampling timets. 

Corollary 3.7.1. (Current suboptimality)  For anyα ∈ (0, 1) and given 
number of feasible random shootsr generated by Algorithm 3, the sub-
optimality levelε⋅100% of the MPC problem in (1) is given by 

ε = 1 − (1 − α)1/r
. (12)   

Proof. The proof of Corollary 3.7.1 directly follows from the Lemma 
3.6 by substitutingr intoNF and evaluatingα from (11), see (4.3) in 
Vidyasagar (2001a), p.5.□ 

Remark 3.8. (Suboptimality level)  Compared to an optimal control 
input evaluated by MPC problem in (1) (denoted byu★), the evaluation 
of approximated control inputũ using Algorithm 3 leads to suboptimal 
solution. The required level of suboptimality could be enforced ac-
cording to Lemma 3.6 by evaluation of specific number of random 
shootsNF, see Piovesan and Tanner (2009), Dyer et al. (2014). We point 
out, the sampling timets needs to be sufficiently long to proceed such 
number of random shoots. Otherwise, the realized number of random 
shootsr determines an upper bound on the reached suboptimality level 
according to Corollary 3.7.1. 

Remark 3.9. (Approximation of nonlinear MPC)  We point out that the 
proposed method of recursive random shooting-based approximation of 
MPC is not limited to linear systems, as it can be directly extended into 
the framework of nonlinear MPC. 

Remark 3.10. (Approximated terminal set)  In case the polytopic 
terminal setT in (1e) requires significant portion of time to evaluate the 
point location problem, i.e., the terminal setT has relatively high 
number of facets (polytopic halfspaces), then its maximal volume inner 
approximationT̃ can be implemented to reduce the real time effort of 
evaluationx ∈ X , and, simultaneously, preserving the invariant prop-
erties of original setT . Various approximation methods can be consid-
ered, e.g., Chebyshev ball, ellipsoidal approximation, box 
approximation, etc. Boyd and Vandenberghe (2004). 

Remark 3.11. (Approximation of Robust MPC)  Following up Remark 
2.2, in the case the controlled plant is affected by a serious impact of 
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INPUT: system state measurement x0, number NF of feasible random shoots, maximal number of random shoots Nmax, MPC
problem (A, B,N,U,X, `(x, u), `N(xn)) in (1), LQ optimal controller FLQ, support controller F̄, initialization of support control
inputs Ū

OUTPUT: sequence of control inputs {̃u0, ũ1, . . . , ũN−1}, support control inputs Ū, support penalty J̄
1: r ← 0, i← 0 // Initialize random shooting

2: Ũ ← Ū, ūN ← ∅ // Initialize recursive random shooting

3: for i = 0, 1, . . . ,N − 1 do
4: J̄ ← J̄ + `(x̄i, ũi) // Penalty update

5: x̄i+1 ← A x̄i + B ũi // System state update

6: end for
7: J̄ ← J̄ + `N(x̄N) // Terminal penalty update

8: J̃ ← J̄
9: while r < (NF − 1) and i < Nmax do
10: x̂0 ← x0, Ĵr ← 0, δ← 1, i← i + 1 // Reset variables

11: for j = 0, 1, . . . ,N − 1 do
12: if x̂ j ∈ T then
13: û j ← FLQ x̂ j // LQ optimal control input

14: else
15: û j ← random {û : û ∈ U} // Random shoot

16: end if
17: if x̂ j ∈ X then
18: Ĵr ← Ĵr + `(x̂ j, û j) // Penalty update

19: x̂ j+1 ← A x̂ j + B û j // System state update

20: else
21: δ← 0 // Primal infeasible

22: break
23: end if
24: end for
25: if δ == 1 and x̂N ∈ T then
26: Ĵr ← Ĵr + `N(x̂N) // Terminal penalty update

27: r ← r + 1 // Update primal feasibility counter

28: if Ĵr < J̃ then
29: Ũ ← {û0, û1, . . . , ûN−1} // Update approximated solution

30: J̃ ← Ĵr // Update reference penalty

31: ūN ← FLQ x̃N // Update support control input

32: x̄N+1 ← A x̃N + B ūN , ¯̀N(x̄N+1) // Update terminal penalty

33: end if
34: end if
35: end while
36: if ūN == ∅ then
37: ūN ← FLQ x̄N // Update recursive support control input

38: end if
39: return {̃u0, ũ1, . . . , ũN−1} ← Ũ, Ū ← {̃u1, ũ2, . . . , ūN}, J̄

Algorithm 3. Recursive-random shooting-based approximation of MPC problem.  
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uncertain parameters threatening the system stability, and/or the 
implementation of support sequence of control inputsU in open-loop 
fashion when no better solution is found by random shooting-based 
strategy, then MPC formulation in (1) should be reformulated to some 
relevant Robust MPC strategy, e.g., Kvasnica et al. (2015), Mayne et al. 
(2005), etc. 

3.2. Properties of the recursive random shooting-based control 

The properties of the main state-of-the-art methods are briefly 
summarized in Table 1, where we judge the properties of the conven-
tional implicit (non-explicit) MPC (Maciejowski, 2000), conventional 
explicit MPC (EMPC) (Bemporad et al., 2002), random shooting-based 
approximation of MPC (RS) (Bakaráč and Kvasnica, 2018), and the 
proposed recursive random shooting-based approximation of MPC 
(recursive RS). To make the results comparable, the term “conventional” 
denotes the well-known formulation, i.e., there is no implemented spe-
cial method focused on improving the selected property. Obviously, 
introducing such a specific method improving selected property (e.g., 
complexity reduction techniques) could decline the other judged prop-
erty (suboptimality, etc.). 

We point out that MPC and EMPC evaluate the optimal solution of 
the optimization problem in (1). On the other hand, the evaluation of 
both RS and recursive RS methods does not guarantee reaching the 
optimal solution. We recall, that evaluating a given number of random 
shootsNF leads to specific confidence of the suboptimality level, see 
Lemma 3.6. 

MPC and EMPC satisfy the physical constraints on control inputs and 
system states in  (1c), (1d) and the associated recursive feasibility by 
design, as they are directly integrated in the optimization problem in 
(1). If the original RS approach finds any feasible solution, then this 
method guarantees satisfaction of the physical constraints. But, it does 
not imply the recursive feasibility, i.e., that there will find any feasible 
solution in the next control step. Therefore, the main drawback of the 
original RS method is that, in general, this approach does not guarantee 
finding any feasible solution of the problem in (1) and the ability to find 
it also in the next control step. On the other hand, recursive RS addresses 
the both limitations of the original RS method: (i) the satisfaction on the 
physical constraints in  (1c), (1d) is guaranteed by the support controller 
in (9), and (ii) the recursive feasibility is enforced by the support 
sequence of control inputsU evaluated by (9). 

If the formulation of MPC problem in (1) ensures stability conditions 
according to Mayne et al. (2000), then MPC and EMPC guarantee 
asymptotic stability by design. Due to the absence of the guarantee of 
finding any feasible solution using the RS method, this method does not 
guarantee asymptotic stability. On the other hand, recursive RS provides 
a stability guarantee via the existence of the support controller in (9). 

The MPC outperforms EMPC by the ability of the real-time tuning of 
the penalty factorsQ,R in (2). In contrast to MPC, EMPC enables the real- 
time tuning of the penalty matricesQ,R in (1). Similar to MPC approach, 
RS and recursive RS methods also enable real-time tuning of penalty 
matricesQ,R. 

The real-time solving/enumeration of optimization problem in (1) 
limits the implementation of MPC on the embedded hardware for the 
large-scale systems. 

Although the complexity of the optimization problem decreases the 
ability to find any feasible solution by the random shooting-based ap-
proaches, the support controller enforces the availability of the feasible 
solution. The random shooting-based approach enables scaling of the 
suboptimality level subject to the available portion of the sampling time, 
see Remark 3.8. Moreover, implementation of the dual mode control 

Fig. 1. Number of feasible random shoots NF as a function of the suboptimality level ε and confidence value α in (11).  

Table 1 
Properties of considered methods: MPC, explicit MPC (EMPC), standard random 
shooting (RS), recursive random shooting (recursive RS).  

method MPC ( 
Maciejowski, 
2000) 

EMPC ( 
Bemporad 
et al., 2002) 

RS (Bakaráč 
and Kvasnica, 
2018) 

Recursive 
RS 

solution of  
(1) 

optimal optimal suboptimal suboptimal 

physical 
constraints 

guaranteed guaranteed non- 
guaranteed 

guaranteed 

recursive 
feasibility 

guaranteed guaranteed non- 
guaranteed 

guaranteed 

stability guaranteed guaranteed non- 
guaranteed 

guaranteed 

realtime 
tuning 

tunable non-tunable tunable tunable 

enumeration intensive negligible negligible negligible 
memory 

footprint 
low high low low  
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approach in Algorithm 2 significantly reduces the real-time effort 
necessary to find an optimal control input by solving a simple matrix 
equation in (3). Analogous to random shooting-based approaches, EMPC 
enables the evaluation of (optimal) control input by a negligible 
enumeration effort. These control methods are easy-to-implement 
without the need for special libraries. If the controlled problem is of 
modest size, the implementation of EMPC seems to be an optimal option, 
until it comes to the limits of the memory footprint. In such a case, the 
random shooting-based approach outperforms the EMPC method. 

4. Experimental case study 

In this section, we demonstrate the efficiency of the proposed control 
approach. The properties were investigated using the inverted 
pendulum benchmark. The successful closed-loop control of this plant 
also demonstrates that this approach is suitable for systems with fast 
dynamics with multiple states. Moreover, the proposed control strategy 
was implemented using embedded platforms. 

4.1. Mathematical model of the inverted pendulum 

To investigate the properties of the proposed recursive RS control 
approach, the laboratory inverted pendulum device was considered, see 
Bakaráč et al. (2017). The inverted pendulum device has fast dynamics 
and the corresponding sampling time ists =20× 10− 3 s. Therefore, the 
inverted pendulum device is an appropriate candidate for validation of 
the properties of the proposed recursive random shooting-based 
approximated MPC. The inverted pendulum device has four system 
states and one control input. Technically, the system states are the angle 
of the pendulumx1, angular velocityx2, cart positionx3, and speed of the 
cartx4. The control inputu is the acceleration of the cart. The 
discrete-time state-space matrices of the linearized LTI system in (1b) 
acquire the following form: 

A =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

1.01 0.02 0 0

0.70 0.99 0 0

0 0 1.00 0.02

0 0 0 1.0

⎤

⎥
⎥
⎥
⎥
⎥
⎦

, B =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

7

709

2

200

⎤

⎥
⎥
⎥
⎥
⎥
⎦

× 105. (13) 

The inverted pendulum device has two natural equilibrium points, 
both in the vertical position of the pendulum’s rod. The upward position 
of the pendulum represents the unstable equilibrium point, that repre-
sents a challenging stabilizing control problem. 

4.2. Control setup 

In this experimental case study, the offset-free regulatory problem of 
the inverted pendulum device was investigated considering two control 
strategies: (i) recursive RS-based evaluation of MPC described in Section 
3 and (ii) conventional MPC described in Section 2.1. In order to make 
the results comparable, both control methods shared the same values of 
the prediction horizonN = 3, number of evaluated control stepsNsim =

300, and the same initial conditions of system statesx0 =

[0.2, 0, − 0.1, 0]⊤. The penalty matricesP,Q,R of cost function in (1a) 
were systematically tuned to have the following values: 

P =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

1.22 0.13 − 0.13 − 0.18

− 0.13 0.02 − 0.02 − 0.4

− 0.13 − 0.02 − 0.09 − 0.07

− 0.18 − 0.4 − 0.07 − 0.1

⎤

⎥
⎥
⎥
⎥
⎥
⎦

× 105, (14a)  

Q =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

104 0 0 0

0 1 0 0

0 0 102 0

0 0 0 1

⎤

⎥
⎥
⎥
⎥
⎥
⎦

, (14b)  

R = 10. (14c) 

The implemented control methods were designed to respect the 
physical constraints on system states and control inputs given by: 

⎡

⎢
⎢
⎢
⎢
⎢
⎣

− 15

− 20

− 0.25

− 2

⎤

⎥
⎥
⎥
⎥
⎥
⎦

≤ x(k) ≤

⎡

⎢
⎢
⎢
⎢
⎢
⎣

15

20

0.25

2

⎤

⎥
⎥
⎥
⎥
⎥
⎦

, (15a)  

− 15 ≤ u(k) ≤ 15. (15b) 

For the controller design purposes, the control input, state, and 
control output of the system were defined in the form of deviation 
variables, which explains the negative values in (15) and in the vector of 
initial conditionsx0. In this case study, the regulatory problem was 
solved by random shooting-based method (Section 2.2) and recursive 
random shooting-based method (Section 3). Both RS-based controllers 
were implemented using a 32-bit microcontroller. Specifically, the 
ESP32 DevKit V4 microcontroller was considered. It operates with 4 MB 
of Flash memory. A Flash memory of this size enables solving quadratic 
programs for smaller systems. The proposed recursive RS control 
approach (Algorithms 2, 3), was exported to the programming language 
C, which is fully compatible with the considered microcontroller device. 

As described in Algorithm 3, the proposed approach also considered 
the required number of feasible shootsNF = 29, which was determined 
using (11) to satisfyϵ= 0.1 suboptimality level with a confidence ofα =
0.95. The maximal number of random shoots was limited byNmax = 182.
The gain of the support controller in (8) was designed as follows: 

F = [ − 52.50, − 2.49, 1.163, 1.73]. (16)  

The LQ optimal controller gainFLQ in (3), was evaluated as follows: 

FLQ = [ − 45.89, − 5.84, 2.64, 4.42]. (17)  

The conventional MPC described in Section 2.1 was implemented using 
MATLAB/Simulink R2021b on a PC with an i5 CPU (2.7 GHz) and 8 GB 
RAM. The optimization problems were solved using MATLAB pro-
gramming environment (MATLAB Optimization Toolbox, 2019). The 
optimal control problems were formulated by Multi-Parametric Toolbox 
(Herceg et al., 2013) and solved by Quadprog a built-in QP solver of 
MATLAB. We point out, that the implementation of the MPC approach 
served solely to evaluate the optimal control performance. This refer-
ence control performance serves to evaluate the suboptimality level of 
the proposed recursive RS-based approach. The implicit MPC controller 
was not implemented on the embedded platform, because the con-
structed QP corresponding to the MPC design problem in (1) had larger 
computational time than the sampling time of the controlled system. 
Simultaneously, the explicit MPC is not applicable on this embedded 
platform, as the explicit solution map has greater size than the available 
flash memory. 

4.3. Results 

In this section, we demonstrate the main benefits of the proposed 
recursive RS control method by using the benchmark model of the 
inverted pendulum. Four control strategies (Table 1) were investigated 
in this case study and two of them were analyzed from the closed-loop 
control performance point of view. First, the proposed recursive RS- 
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based evaluation of MPC described in Section 3 was implemented. To 
compare the recursive RS control method in terms of suboptimality 
level, conventional MPC described in Section 2.1 was implemented. 

Fig. 2 depicts the closed-loop control trajectories evaluated by 
recursive RS-based method and of MPC approach. These data were 
generated an embedded platform - 32-bit microcontroller. As can be 
seen in Fig. 2, the offset-free regulatory problem of the inverted 
pendulum device was ensured in both cases. 

According to Algorithm 3, the sequence of control inputs is generated 
considering by one of the following: (i) random shoot, (ii) support 
controller in (4), (iii) LQ optimal controller in (3). Figure 2 depicts a 
control trajectory in dashed blue, which was generated considering Al-
gorithm 3. The initial four steps of the control input trajectory were 
enumerated using the support controller in (4) and the following five 
control steps were computed using random shooting. Although the 
generated control actions may differ from the optimal control actions 
computed by the conventional MPC method, the evaluated control ac-
tions still guarantee the closed-loop stability and satisfaction of physical 
constraints of system inputs and states. Then, in the tenth step of the 
closed-loop simulation, the system states entered the terminal setT . 
Since then, the control inputs were evaluated by LQ optimal controller 
in (3), see Algorithm 3. As the consequence, such control actions do not 
differ from the optimal control actions evaluated by the conventional 
MPC method. 

Table 2 summarizes the numerical results of the investigated 
methods. The parametertavg represents an average time required to 
compute the control input. This parameter is computed for all control 
stepsNsim evaluated using the microcontroller. 

The parameterJtotal represents the total sum of all penalty functions 
computed in each step of the closed-loop control: 

Jtotal =
∑Ncl

i=1
Jcl,i. (18)  

In case of conventional MPC (Section 2.1) and EMPC, the criterionJcl,i is 
defined asJ in (1a). In case of the random shooting-based methods 
(Section 2.2, Section 3), the criterionJcl,i is defined asJ̃ in Algorithm 1 
and Algorithm 3, respectively. 

Moreover, the energy consumption of the controller during the 
computation of control input was evaluated. The parameterE, represents 
the electric power consumed within one sampling period to perform the 
operations necessary to compute the control input. It is computed ac-
cording to the following formula: 

E = Icon Usup tavg, (19)  

whereIcon = 57.38 mA is the value of measured electric current 
consumed by the microcontroller during the computation of control 
input andUsup = 5 V is the supply voltage of the microcontroller. 

The symbol† in Table 2 denotes that the corresponding criterion was 
not applicable. In the case of EMPC, the parameterstavg andE were not 
evaluated because the flash memory of the considered microcontroller is 
4 MB, and the control law of EMPC in form of partitions has a memory 

Fig. 2. The control performance of stabilizing the inverted pendulum from non-zero initial conditions into origin (the regulatory problem) using: the proposed 
recursive RS-based controller (dashed blue), the conventional MPC controller (solid red). The physical constraints on control input are depicted in black-dotted lines. 
(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Table 2 
Comparison of the selected methods: MPC, explicit MPC (EMPC), standard 
random shooting (RS), recursive random shooting (Recursive RS).  

method MPC EMPC RS Recursive RS 

tavg [ms] † † 18.21 1.20 
Jtotal[ × 104] 6.33 6.33 28.97 6.88 
E[mJ] † † 5.23 0.34  
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footprint of 21 MB. This size of memory footprint prevents the imple-
mentation of EMPC for the inverted pendulum benchmark on the 
considered microcontroller. A different obstacle occurred, when 
implementing the conventional MPC. Although the corresponding 
quadratic program has a memory footprint of 665 kB, the corresponding 
average computational time wastavg = 113× 10− 3 s, which is far greater 
then the sampling time of the inverted pendulumts =20 × 10− 3 s. Thus, 
conventional MPC is not an option when it comes to control of the 
inverted pendulum benchmark on the considered microcontroller. 

Comparing RS and recursive RS methods, the implementation of 
recursive RS decreased thetavg. Simultaneously, the corresponding en-
ergy consumptionE was reduced by 93%. The time and energy savings 
are ensured by the dual mode control of recursive RS, i.e., a computa-
tionally cheap linear control law is evaluated once the system states 
enter the terminal setT , see Algorithm 2. This reduction could signifi-
cantly prolong the battery life of the embedded platforms and reduce the 
associated carbon footprint. 

The suboptimality level of the closed-loop performance, judged by 
the parameterJtotal, was approximately 8%. This value corresponds to the 
suboptimality levelϵ required in (11) leading toNF = 29 which was 
determined based on the requirementϵ = 0.10 with confidence level ofα 
= 0.95 in (11). 

5 Conclusion 

This paper proposes the recursive random-shooting-based approxi-
mation of the MPC problem suitable for implementation on the 
embedded hardware. The method is focused on systems, where the 
implementation of implicit MPC or explicit MPC is limited due to high 
computational complexity or strict memory requirements on embedded 
platforms, i.e., microcontrollers or programmable logic controllers. The 
main contribution of the proposed approach is the guarantee of 
asymptotic stability with respect to the physical constraints, despite its 
stochastic nature. To investigate the properties of the proposed 
approach, a case study using an inverted pendulum benchmark was 
conducted. This multivariable system is naturally unstable and has fast 
dynamics. The regulatory problem of the inverted pendulum benchmark 
was implemented on the 32-bit microcontroller. The results of the 
implementation were analyzed considering the average computational 
time and energy consumption of the microcontroller. The criteria were 
computed considering four controller design methods: the proposed 
method, the non-recursive random shooting method, the implicit MPC, 
and the explicit MPC. The proposed method reduced computational time 
and energy consumption by 93%, when compared to the non-recursive 
random shooting method. The implementation of an explicit MPC 
controller or implementation of an implicit MPC controller was 
restricted due to the strict memory requirements of the microcontroller 
and the fast dynamics of the inverted pendulum. Considering the results 
of the optimal control action evaluated by MPC, the suboptimality of the 
closed-loop performance was approximately 8%. Thus, the generated 
control trajectories could be considered close to optimal. Future work 
will include the implementation and validation of the proposed method 
on the laboratory plant. 
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a b s t r a c t

Robust model predictive control (MPC) with integral action is designed for the shell-and-tube heat ex-
changers that are a part of an industrial heat-exchanger network. The advanced control strategy is used
for optimizing the control performance as fouling influences operation of the heat exchangers and causes
changes of the heat exchangers' parameters. The time-varying parameters of the heat exchangers are
considered as parametric uncertainties and robust MPC is used as it is able to handle processes with
uncertainties. Integral action is implemented in the robust MPC to assure offset-free control responses.
The extensive simulation case study of the robust MPC and proportional-integral-derivative (PID) control
of the shell-and-tube heat exchangers confirms significantly improved control performance and energy
savings when the newly designed robust MPC with integral action is used.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

Optimal supply and efficient use of energy are important for
sustainable development of economies [1]. Recently, advanced
strategies have been developed and applied to ensure efficient
operation and energy savings in energy-intensive processes. In
Ref. [2], the sequential and simultaneous approaches were pre-
sented to solve the problem of heat exchanger network (HEN)
synthesis. A new methodology combining economic and control
system design is proposed for HENs in Ref. [3]. The closed-loop
optimized control saved more energy in air-cooled steam
condenser units [4]. In Ref. [5], the adaptive controller was
designed for the liquid-liquid heat exchangers and implemented in
the PLC system.

Model predictive control (MPC) is one of the most developed
advanced model-based control strategies. The idea of receding
horizon is accepted and the optimal control input is calculated in
each control step subject to various input, state or output

constraints and control requirements [6]. MPC is widely used for
optimal energy utilization in various fields of industry, and various
energy-intensive plants were controlled by MPC as it enabled
simultaneously to optimize both, control performance and energy
consumption. Multi-layer perception based MPC was used for the
thermal power of nuclear superheated-steam supply systems [7].
The results showed the satisfactory improvement in optimizing the
thermal power response. MPC for temperature in an industrial
electric heating furnace was designed in Ref. [8]. The design is
based on the fractional order modelling and the control signals are
the results of minimization of the fractional order performance
index. The MPC-based scheme of the reference governor was pro-
posed in Ref. [9], where a boiler-turbine system was controlled by
the set of interconnected PI controllers. The simulation results
confirmed that the proposed strategy improved safety and eco-
nomic performance. A dynamic simulator was developed for a cycle
plant combined with integrated solar collectors and the simulation
results in Ref. [10] showed that, in general, fuel consumption was
lower under the supervision of the MPC strategy in comparison
with the PI controller. Despite intensive research in MPC of thermal
processes, there is a lack of applications of this advanced control
strategy to optimize the control performance of heat exchangers
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(HEs) or heat exchanger networks (HENs). Among the reasons, the
complex non-linear and non-symmetric behaviour affected by
disturbances, measurement noise and other uncertainties play
important role [11]. Moreover, the operation of heat exchangers is
deteriorated by fouling [11] that is the accumulation of foreign
matter on the solid internal or external heat transfer surfaces of
processing units. Fouling is determined by the material of the unit
as well as hydraulic characteristics of the flows and physical
properties of heat-exchanging media [12]. Fouling is also a very
important source of uncertainties in the heat exchanger operation
as it causes changes of various heat exchangers' parameters.
Mathematical description of these phenomena in heat exchangers
brings significant complications in control system design and rep-
resents a challenging field of research [13]. As HEs have a lot of
uncertain parameters, a robust control strategy can be used to
optimize their control performance and to ensure energy savings.
Robust control represents promising control strategy as it is able to
take into account process uncertainties in the controller design and
to assure stability and performance for the whole range of uncer-
tain parameters. The robust control of HEs was compared with
conventional control in Ref. [14]. Here, the unstructured uncer-
tainty in the controlled process was considered and robust H∞
approach was used for robust controller design. Improvement of
operating efficiency of waste heat energy conversion systems with
organic Rankine cycle was achieved by robust H2 control [15].
RobustMPC combines advantages of robust control treating various
types of uncertainties in the controlled process with the benefits of
MPC. The process model that is used for prediction of future
controlled outputs includes the description of uncertainties and the
optimized control inputs are calculated to ensure the robust sta-
bility and robust performance for the whole range of uncertain
parameters. Robustness analysis with model predictive control for
a hybrid ground-coupled heat pump system was studied in
Ref. [16]. The robustness analysis is done with respect to state
estimation uncertainty. Explicit computations to assure robustness
are computationally demanding, therefore, not widely applied. A
key problem in robust MPC design is a formulation of the robust
MPC problem in terms of a solvable convex optimisation. Linear
matrix inequalities (LMIs) represent an effective tool that can be
used to reformulate the non-convex optimization problem into a
convex one, e.g., in the form of a semidefinite programming (SDP).
Intensive research in this field was done in last years. LMI-based
robust MPC for the heat exchanger network was designed in
Ref. [17]. Possibility to ensure energy savings was demonstrated by
simulation results of the closed-loop control. Various alternative
robust MPC strategies were studied and energy savings using an
alternative robust MPC design for a laboratory heat exchanger were
experimentally investigated in Ref. [18].

Although intensive research in robust MPC and its applications
has been done, there are still open problems that have to be solved.
Robust MPC is a state-feedback-based strategy and the offset-free
control response is not ensured when only the proportional (P)
state-feedback controller is used. Robust MPC design supposes
symmetric constraints on control inputs and controlled outputs
and this requirement does not correspond to the situation in
practice where non-symmetric constraints are more typical. It is
also very important to study robust MPC and its applications from
three points of view: control optimization, energy saving and
economic operation. This paper aims to optimize control of heat
exchangers with uncertainties caused by fouling and to improve
the control performance in comparison with conventional PID
control. The second goal is to improve the design strategy by adding
the integral action to the state-feedback controller and to design
the state-feedback proportional-integral (PI) controller instead of
only P controller. And the third goal is to find relations between

factors interesting for heat exchangers' operation, i.e., control per-
formance, energy saving and economic operation.

The paper extends the previous works [19] and [20]. In Ref. [19],
a detailed mathematical model of the heat-exchanger unit was
developed. The model was validated using the data that were
experimentally recorded during three-year operation of the plant.
Proportional-integral-derivative (PID) controllers were designed
for four heat exchangers to reduce the impact of fouling. In Ref. [20],
robust MPC for the heat exchanger network is introduced. As heat-
exchanger fouling leads to burning of extra fuel, reduction in heat
recovery, increasing costs caused by cleaning interventions, as well
as non-satisfactory PID control, the robust MPC was developed to
overcome these drawbacks and to improve control performance in
comparison with conventional PID control. One of the original re-
sults is the development of the advanced robust MPC with integral
action leading to the design of the robust state-feedback PI
controller. This controller was used for control of the shell-and-tube
heat exchangers. The other benefit is the extensive simulation case
study of the PID control and the robust MPC of the heat exchangers.
Compared to the previous work [20], the theoretical derivations
and the case study have been significantly extended. Control per-
formance of the heat-exchanger units in the set-point tracking was
analysed in detail. The problem of disturbance rejection in the heat-
exchanger units was also investigated and the control performance
was evaluated. The simulation results were used for comparison of
the performance assured using robust MPC and the conventional
PID control. Moreover, energy consumed during control and
economy of heat exchangers' operation were compared.

The next sections of the paper are organised as follows. Section 2
presents the considered shell-and-tube heat exchangers from the
heat exchanger network coupled with a crude-oil distillation unit
(CDU). The advanced robust MPC control strategy is presented in
Section 3. The obtained results are discussed in Section 4. The main
conclusions are summarized in Section 5.

2. Controlled shell-and-tube heat exchangers

The considered industrial network of heat exchangers is coupled
with CDU that processes 220 kg s�1 of crude oil. The model pa-
rameters were identified using the data measured during three-
year operation of the real plant in the Polish Oil Company ORLEN.
The technical details of the network, determination of the thermal
resistance of fouling and mathematical model of the heat
exchanger operation were described in Ref. [21].

The controlled process is represented by four selected units
from the network [19]. Two shell-and-tube heat exchangers in se-
ries create each unit, see Fig. 1. Here, _Mt, _Ms are the tube-side and
the shell-side stream flow rates, Tti, Tsi, are the tube-side and the
shell-side inlet temperatures and Tto, Tso are the tube-side and the
shell-side outlet temperatures.

The scheme of the heat exchanger control is depicted in Fig. 2,
where all streams are process streams, i.e., no utility stream is
involved. The tube-side stream is a crude oil feed and the shell-side
stream is a pumparound, i.e., a circulating reflux from the distilla-
tion tower. The pumparound is not a product stream, it is used to
remove heat from the distillation column. The stream at a higher
temperature that is taken out of the column exchanges heat with
the crude oil feed and heats it. Then, it returns back to the column at
some higher position in the column with a lower temperature. In
this case, there are no upstream or downstream heat exchangers in
the pumparound stream. The flow rate of the pumparound changes
in a certain flow range by the control valve with no worries that
production in a distillation tower will be disturbed.

Assuming no phase change in both liquids, physical properties
dependence only on the temperature, negligible heat losses into
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the environment and negligible thermal resistance of the tube
walls, the lumped-parameter approach was used to model the heat
exchange in each unit [21]. The steady-state energy balance of a
volume considering the changes in the state of the shell-side fluid,
tube walls and tube-side fluid was applied to describe the heat
exchangers:

_Mtcp;tðTti � TtoÞ ¼ nbpdinlhtðTto � TtwÞ; (1a)

_Mscp;sðTsi � TsoÞ ¼ nbpdoutlhsðTsw � TsoÞ; (1b)

where cp is the specific heat capacity, h is the surface film
conductance, nb is the number of tubes in one exchanger pass, l is
the length of the heat exchanger, din, dout respectively are inner and
outer tube diameters. The subscripts t, s, w denote tube-side, shell-
side and wall, respectively.

In the above described control configuration, each heat
exchanger cell has four inputs and two outputs. The inputs are the
tube-side inlet temperature Tti, the shell-side inlet temperatures
Tsi, the tube-side mass flowMt and the shell-side mass flowMs. The
outputs are tube-side and shell-side outlet temperatures Tto, Tso.
Therefore, the mathematical model of each heat-exchanger cell can
be represented by eight transfer functions.

For controller design, the models in the form of transfer func-
tions were identified so that the controlled variable was the tube-
side outlet temperature, Tto. The manipulated variable was the
shell-side stream flow rate, _Ms. This modelling approach had an
advantage of yielding simple analytical relationships between the
control inputs and the controlled outputs. The models in the form
of transfer functions were validated using the data measured dur-
ing three-year operation of the real plant. The identification is
described in detail in Ref. [19]. Disturbances affecting the heat-
exchanger unit may be represented by changes of the tube-side
inlet temperature Tti, the shell-side inlet temperature Tsi, and the
tube-side mass flow _Mt. If the shell-side outlet temperature Tso
changes, it represents a disturbance to the distillation unit.

The PID control strategy was applied to the heat exchangers at

Fig. 1. Flow arrangement in two series-connected heat exchangers, TEMA type AES
with floating head: (1) shell, (2) tube sheet, (3) floating head, (4) tubes, (5) pass divider,
(6) baffles, and (7) nozzle [19].

Fig. 2. Scheme of heat exchanger control [19].
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first. As the heat exchangers have non-linear behaviour and their
gains change with respect to the operating conditions [22], the PID
controllers were not able to reflect this phenomenon explicitly
during the tuning procedure and an advanced control strategy that
was able to perform self-tuning adaptation of the controller gain
was needed.

Other serious problems in the industrial operation and control
of heat exchangers are caused by fouling build-up. Because of
fouling, the operational costs and energy losses increase, the effi-
cacy of the heat exchangers decreases [23], the parameters change
in time and an advanced robust control strategy that is able to
optimize processing and to handle time-varying parameters is
required.

3. Design of the offset-free robust model predictive control

The alternative robust MPC strategy that is able to optimize the
operation of process units, to handle time-varying process pa-
rameters and to ensure offset-free control was developed.

3.1. State-space model of the controlled process

The robust MPC design procedure requires the linear time-
invariant state-space mathematical model of the controlled pro-
cess in the discrete-time domain that is able to include un-
certainties of the controlled process. Such model has the form

xððkÞ þ 1Þ ¼ A xðkÞ þ B uðkÞ; xð0Þ ¼ x0; (2a)

yðkÞ ¼ C xðkÞ; (2b)

½A;B�2A; (2c)

A ¼ convhull
nh

AðvÞ;BðvÞ
i
;cv

o
; (2d)

where k � 0 is a discrete-time instant, xðkÞ2ℝnx are system states,
uðkÞ2ℝnu are manipulated variables, yðkÞ2ℝny are outputs of the
system, x0 are initial conditions, A2ℝnx�nx denotes a system ma-
trix, B2ℝnx�nu is an input matrix, C2ℝny�nx is an output matrix,
and v ¼ 1;…;nv. Parameter nv stands for the number of the vertices
of the uncertain system. The matrix superscript ðvÞ denotes the v-th
vertex system of A and AðvÞ, BðvÞ, v ¼ 1;…;nv are the matrices from
the linear state-space models of the vertices of the uncertain pol-
ytopic system (2).

The model (2) of the controlled process was derived with
respect to three years of fouling and four vertex systems represent
the heat exchanger (1) at the beginning of operation; (2) after a
one-year operation; (3) after a two-year operation; and (4) after a
three-year operation.

The task is to design the robust feedback control law

uðkÞ ¼ FðkÞ xðkÞ; (3)

that robustly stabilizes the uncertain system in (2). The matrix FðkÞ
in (3) is the gain matrix of the robust controller in the k-th control
step.

Control performance can be quantified using an analytical in-
tegral quality criterion

J0/nk
¼

Xnk

k¼0

JðkÞ ¼
Xnk

k¼0

�
xðkÞuQxðkÞ þ uðkÞuRuðkÞ

�
; (4)

where nk is the number of the evaluated control steps. Analogous to
the linear-quadratic (LQ) optimal control approach, the considered

robust MPC strategy assumes the infinity control horizon, see
Ref. [24]. The matrices Q , R are the square positive-definite
weightings of the states xðkÞ and the control inputs uðkÞ, respec-
tively. The goal of robust MPC design is to find the gain matrix FðkÞ
assuring robust stability for all considered system vertices. Simul-
taneously, the quadratic criterion J (4) has to be minimized.

The quality of control can be improved when symmetric con-
straints on the system outputs yðkÞ and inputs uðkÞ are taken into
account in the form

�usat 3uðkÞ3usat; �ysat 3 yðkÞ3 ysat; ck � 0; (5)

where usat2ℝnu and ysat2ℝny are the symmetric limit values.

3.2. Augmented state-space model

To assure offset-free set-point tracking, the robust MPC was
supplemented by integral action. To implement the robust MPC
with integral action, the augmented state-space model was
considered with the augmented vector of system states z2ℝðnxþnyÞ

having the form:

zðkÞ ¼
� xðkÞXk

i¼0
eðiÞ

�
; (6)

where e is the control error given as: e ¼ w� y, and w2ℝny is the
reference value.

The control law in (3) was augmented with respect to the in-
tegral action:

uðkÞ ¼ ½ FPðkÞ F IðkÞ �zðkÞ ¼ ~FðkÞ zðkÞ; (7)

where FP, F I are the proportional and the integral parts of the linear
control law, respectively, i.e. the proportional and the integral gains
of the PI controller. Hereafter, the proportional and the integral
gains are joined into one gain ~F2ℝnu�ðnxþnyÞ.

To ensure offset-free control and to add integral action to the
robust MPC, the augmented state-space system was used in the
robust control design. This state-space system is described as fol-
lows (8)

zðkþ 1Þ ¼ ~A zðkÞ þ ~B uðkÞ; zð0Þ ¼ z0; (8a)

yðkÞ ¼ ~C zðkÞ; (8b)

h
~A; ~B

i
2 ~A; (8c)

~A ¼ convhull
�nh

~A
ðvÞ
; ~B

ðvÞi
;cv

o�
; (8d)

where:

~A
ðvÞ ¼

�
AðvÞ 0
�ts C I

�
; ~B

ðvÞ ¼
�
BðvÞ

0

�
; ~C ¼ ½C 0 �: (9)

The quality criterion (4) was modified subject to the augmented
system in (8) to design the robust MPC with integral action

~J0/nk
¼

Xnk

k¼0

�
zðkÞu ~QzðkÞ þ uðkÞuRuðkÞ

�
; (10)

where ~Q2ℝ2 nx�2 nx _0 is theweighting matrix for the augmented
vector of states z (6), and has the form:
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~Q ¼
�
Q 0
0 Q I

�
: (11)

where Q I is the weigting matrix of integral action.

3.3. Design of robust MPC with integral action

The advantage of the proposed design of the robust MPC with
integral action is the possibility to reformulate originally non-
convex optimization problem to the convex optimization one and
to solve it using the convex programming. The optimal solution is
obtained as a result of the convex optimization. Moreover, the
robust MPC enables computing the manipulated variables so that
the constraints on inputs and outputs are respected and the un-
certain parameters of the controlled process are taken into account.
The receding horizon principle requires solving the optimization
problem in each control step and so the process-model mismatch is
minimized. In such a way, the robust MPC is able to ensure optimal
performance of the controlled process with minimum energy
consumption.

The following conditions hold for the controller FðkÞ and the
symmetric positively defined Lyapunov matrix PðkÞ

P ¼ gðkÞXðkÞ�1
; YðkÞ ¼ FðkÞXðkÞ0FðkÞ ¼ YðkÞXðkÞ�1

; (12)

where X ¼ Xu2ℝnx�nx is the weighted inverse-matrix of the
quadratic Lyapunovmatrix P, g2ℝ is theweighting parameter of X,
and Y2ℝnu�nx is the auxiliary matrix of the robust feedback
controller FðkÞ design.

The newly formulated design problem of the robust MPC with
integral action was solved as the convex optimization problem
formulated in the form of the following SDP:

ming;X;Y ;Ug (13a)

s:t: :
�

1 +
zðkÞ X

�
_0; (13b)

2
66666666664

X + + +

~A
ð0Þ

X þ ~B
ð0Þ�

EðmÞY þ ~E
ðmÞ

U
�

X + +

~Q
1
2X 0 gI +

R
1
2

�
EðmÞY þ ~E

ðmÞ
U
�

0 0 gI

3
77777777775
_0; (13c)

� X +
~A
ðvÞ
X þ ~B

ðvÞ�
EðmÞY þ ~E

ðmÞ
U
�

X

�
_0; (13d)

�
X +

u2
satI U

�
_0; (13e)

� X +
~C
�
~A
ðvÞ
X þ ~B

ðvÞ�
EðmÞY þ ~E

ðmÞ
U
��

y2satI

�
_0; (13f)

where v ¼ 1;…;nv denotes vertices and g2ℝ, X, Y , U2ℝnu�nx , EðmÞ,
~E
ðmÞ

are the decision variables. Between them, EðmÞ are the diagonal
matrices with all variations of 1 and 0 on the principal diagonal and
zeroes elsewhere. The complement matrices ~E

ðmÞ
are calculated

from EðmÞ ¼ I� ~E
ðmÞ

. The symbol + in (13) denotes symmetric
structure of the matrix. I is the identity matrix and 0 is the zero
matrix with appropriate dimensions. u2

sat, y
2
sat stand for element-

wise power of two. Note, the LMI-based optimization problem in
(13) has a simplified notation, i.e., all the decision variables are
discrete-time-dependent: XðkÞ, YðkÞ, UðkÞ, and gðkÞ.

The design procedure of the robust MPC strategy is based on
optimization of the control performance with respect to a nominal
system. Although the theoretical nominal system is an idealized
systemwithout an influence of uncertainties, it is possible to create
it using mean values of the uncertainties' intervals. The nominal-
system-based optimization is represented by (13c). Despite the
nominal-system-based optimisation in the robust MPC design, the
robust stability is guaranteed for the whole family of uncertain
systems represented as the convex hull of all vertex systems, i.e., all
combinations of the boundary values of the interval uncertainties.
This guaranty is represented by (13d). LMIs in (13e)e(13f) represent
optimization of the manipulated variable subject to all combina-
tions of constrained and unconstrained control inputs and
controlled outputs. Further details related to the solution of such
optimization problem are discussed in Ref. [25]. One of the benefits
of this paper is extending the design of the robust MPC with inte-
gral action.

Finally, the procedure for the alternative robust MPC with in-
tegral action is formulated in Algorithm 1. The scheme of robust
MPC with integral action is depicted in Fig. 3, where the state
estimation is realised using the model in (2).

Fig. 3. Control scheme of robust MPC with integral action.

Algorithm 1
Design of the alternative robust MPC with integral action.

Require: measured/estimated xðkÞ, cost function weight matrices ~Q , R,
constraints usat, ysat.

Ensure: control action u
1: solve optimization problem in (13)

2: ~F)YX�1 using (3)

3: u)~Fz

J. Oravec et al. / Energy 159 (2018) 1e10 5



4. Results and discussion

4.1. Control objectives and methods

The paper extends and analyses the results of the PID control of
heat exchangers proposed in Ref. [19] and robust MPC designed in
Ref. [20]. Particularly, the novelty of this extensive case study lies in
the proposal of the advanced robust MPC with integral action for
the heat exchangers affected by fouling and analysis of the closed-
loop control performance, energy saving and economic operation
in the set-point tracking and disturbance rejection. To investigate
the control performance of the proposed robust MPC strategy and
PID control, the control setup was considered as it is shown in Fig. 2
to obtain comparable results. 4 heat exchangers were considered,
each of themwith 4 levels of fouling, i.e., clean and after 1, 2, and 3
years of operation. In total, this case study investigated 16
controlled systems in both: set-point tracking (servo) and distur-
bance rejection (regulatory) problems. Robust MPC with integral
action is compared with PID control based on the control perfor-
mance, energy consumption represented by hot fluid consumption
during control and energy needed for preparing it, and economy of
operation represented by the price of energy consumed during
control. The controlled variable in each heat exchanger was the
tube-side outlet temperature, Tto. The manipulated variable was
the shell-side stream flow rate, _Ms. The objective of advanced
robust MPC was to optimize the control performance, to minimize
energy consumption and to minimize the operation costs.

4.2. Model of heat exchangers

Four heat exchanger units denoted E11AB, E15AB, E30AB, E35AB
represent the controlled system. The mathematical model of the
heat exchangers was derived in Ref. [21] in the form of transfer
functions and had to be transformed into the form of (2) to design
the robust MPC. The sampling period ts ¼ 5 s was considered. Four
components of the system-state vector x in (2) corresponded to the
states of the heat exchangers: E11AB, E15AB, E30AB, E35AB. The
system matrix A2ℝ4�4 was a diagonal matrix with the elements
Ai;i on the main diagonal, where i ¼ 1;2;3;4 represented the heat
exchanger E11AB, E15AB, E30AB, and E35AB, respectively. Analo-
gous, the input matrix B2ℝ4�4 and the output matrix C2ℝ4�4

were the diagonal matrices with elements Bi;i; Ci;i; i ¼ 1;…;4; on
the main diagonals and zeroes elsewhere.

Modelling of each of the controlled heat exchangers with three-
year fouling led to four vertex systems that represent the heat
exchanger (1) at the beginning of operation; (2) after a one-year
operation; (3) after a two-year operation; and (4) after a three-
year operation. Parameters of the vertex systems were different
as fouling caused changes of the heat exchanger parameters in time
and the matrices of system in (2) had 4 vertices AðvÞ, BðvÞ, CðvÞ, v ¼
1;2;3;4, representing the considered levels of fouling. The nu-
merical values of these matrices are given in Table 1. The advanced
robust MPC design needed also the nominal models of the heat
exchangers. Parameters of the nominal model of each heat
exchanger were calculated as the mean values of the parameters of
corresponding 4 vertex systems. From the robust control view-
point, the fouling led to the time-varying parametric uncertainty.
To remove the steady state error, integral action was added to the
robust model predictive controller. Therefore, thematrices ~A, ~B, ~C of
the augmented system in (8) were computed according to (9).

4.3. Control setup

The closed-loop control performance was investigated using
MATLAB/Simulink R2014b environment, CPU i5 1.7 GHz and 6 GB

RAM. MUP toolbox [26] was used to design robust MPC with in-
tegral action, the optimization problems were parsed using the
YALMIP toolbox [27] and solved by the means of the solver MOSEK
[28].

The PID control was designed using models in the form of
transfer functions identified for 4 heat exchangers and for 4 above
mentioned levels of fouling. The PID controllers were tuned using
the Ziegler Nichols method [29] and the transfer functions of the
PID controllers had the form

GCðsÞ ¼ KP þ
KI

s
þ KDs; (14)

where s is the operator of Laplace domain, KP is the proportional, KI
is the integral and KD is the derivative gain. The parameters of the
PID controllers designed in Ref. [19] are presented in Table 2. These
parameters were used for PID control of the heat exchangers also in
this case study.

Tuning of PID controllers was simple, implementation of PID
controllers was not computationally demanding, and the well-
tuned PID controllers ensured satisfying control performance.
But, the control inputs were not optimizedwith respect to the input
and output constraints, the process-model mismatch, the system
uncertainties, and minimization of energy consumption. All these
requirements can be ensured using robust MPC.

The robust MPC with integral action was designed considering

Table 1
Parameters of the mathematical model (2) of the heat exchangers.

Fouling Model parameters E11AB E15AB E30AB E35AB

clean Að1Þ
i;i

0.9248 0.9498 0.9460 0.9083

Bð1Þ
i;i

0.1250 0.1250 0.1250 0.2500

Cð1Þ
i;i

0.1804 0.0924 0.0865 0.1760

1 year Að2Þ
i;i

0.8991 0.9281 0.9311 0.8926

Bð2Þ
i;i

0.1250 0.1250 0.1250 0.2500

Cð2Þ
i;i

0.1453 0.0978 0.0082 0.2148

2 years Að3Þ
i;i

0.9237 0.9270 0.9200 0.9260

Bð3Þ
i;i

0.2500 0.2500 0.2500 0.2500

Cð3Þ
i;i

0.1556 0.1459 0.1535 0.1658

3 years Að4Þ
i;i

0.9116 0.9160 0.8991 0.9131

Bð4Þ
i;i

0.1250 0.1250 0.1250 0.1250

Cð4Þ
i;i

0.1839 0.1680 0.1776 0.2086

mean Að0Þ
i;i

0.9148 0.9302 0.9241 0.9100

Bð0Þ
i;i

0.1563 0.1563 0.1563 0.2188

Cð0Þ
i;i

0.1663 0.1260 0.1064 0.1913

Table 2
PID controller parameters designed by the Ziegler-Nichols method [19].

Fouling PID Parameters E11AB E15AB E30AB E35AB

clean KP 69.8 2.4 38.2 32.5
KI 4.6 0.1 1.9 2.4
KD 255.5 13.8 182.3 106.7

1-year operation KP 70.7 3.4 41.5 35.8
KI 3.6 0.1 2.0 1.9
KD 334.2 19.2 209.3 158.5

2-year operation KP 73.9 3.5 44.1 51.1
KI 3.7 0.1 2.0 2.4
KD 358.5 20.4 230.1 261.8

3-year operation KP 88.7 3.9 49.7 62.2
KI 4.2 0.2 2.2 2.7
KD 451.7 22.9 275.2 342.1
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the quality criterion J in (10), where the weighting matrices were
tuned as Q ¼ 100� I, Q I ¼ 0:936� I, R ¼ 10� I. Here, I is the 4�
4 identity matrix.

The closed-loop control performance of the designed PID con-
trollers and the advanced robust MPC were investigated in the set-
point tracking problem and the disturbance rejection problem. The
step change of the set-point 0/1 �C in time t ¼ 0 s was considered,
and the disturbance 0/0:2 �C in time t ¼ 150 s represented
increasing of the temperature of the tube-side flow coming from
the upstream unit.

4.4. Closed-loop control performance

The closed-loop system responses obtained using both, the PID
control and the robust MPC (RMPC) are shown in Figs. 4e7. The
control trajectories of the temperature are depicted in the
normalized form, i.e., variable D temperature represents the change
of the temperature from its steady-state value.

Two types of uncertain parameters were considered in the
presented case study. The first uncertainty was fouling that
changed parameters of HEs and represented the parametric un-
certainty included in the system model. As 3 years of fouling were
considered, four vertex systems were assumed in (2). The second
uncertainty was the external disturbance represented by an un-
expected change of the temperature of the tube-side flow coming
from the upstream unit. Robustness of the designed controllers was
investigated subject to external disturbance in the disturbance
rejection problem. As fouling was taken into account in the process
model as the parametric uncertainty, the controller robustness was
verified in both, the set-point tracking and disturbance rejection.

In comparison with the results of PID control presented in
Ref. [19], this case study considered the simplified linear models of
the heat exchangers. The heat exchangers were described using the
set of transfer functions for simulation of PID control and in the
form of the linear state-space models (2) for robust MPC.

The control performance was evaluated also using various
analytical quality criteria. The integral criterion ISE is defined as
follows:

ISE ¼
Z∞

t¼0

eðtÞ2dtzts
Xnk

k¼0

eðkÞ2; (15)

where e ¼ w� y is the control error given as the difference be-
tween the set-point w and the controlled variable y, ts is the sam-
pling time, and nk is the number of control steps. The lower the ISE
value is, the better closed loop control performance is achieved.

Table 3 shows the computed values of ISE in the set-point
tracking using the PID control and RMPC. The data are presented
for the clean heat exchangers, and for the heat exchangers after 1, 2
and 3 years of fouling. The last row summarizes the mean values of

Fig. 4. Closed-loop step response of E11AB model ensured by PID controllers (blue)
and robust MPC (red) for clean E11AB (solid) and for E11AB after 1 year (dashed), after
2 years (dash-dotted), and after 3 years (dotted) of fouling. (For interpretation of the
references to colour in this figure legend, the reader is referred to the Web version of
this article.)

Fig. 5. Closed-loop step response of E15AB model ensured by PID controllers (blue)
and robust MPC (red) for clean E15AB (solid) and for E15AB after 1 year (dashed), after
2 years (dash-dotted), and after 3 years (dotted) of fouling. (For interpretation of the
references to colour in this figure legend, the reader is referred to the Web version of
this article.)

Fig. 6. Closed-loop step response of E30AB model ensured by PID controllers (blue)
and robust MPC (red) for clean E30AB (solid) and for E30AB after 1 year (dashed), after
2 years (dash-dotted), and after 3 years (dotted) of fouling. (For interpretation of the
references to colour in this figure legend, the reader is referred to the Web version of
this article.)
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ISE. The evaluated values of ISE in the disturbance rejection are
summarized in Table 4.

Based on the results presented in Table 3, the PID controllers
ensured better closed-loop control of the heat exchanger E30AB
during the whole time of operation. PID control was also better for
E11AB and E35AB at the beginning of their operation, when fouling
was small, i.e. clean E11AB and 1-year operation of E11AB and clean
E35AB. PID control was worse in E15AB control. The RMPC assured
better control performance subject to ISE in E15AB control, in
E35AB control with the exception of the clean heat exchanger and
in E11AB with fouling after 2 and 3 years of operation. In distur-
bance rejection, the RMPC approach outperforms the PID control-
lers in all the investigated cases except clean E30AB and E30AB
after the 1-year operation, see Table 4. This behaviour is typical for

the robust controllers that are designed to minimize the influence
of uncertain parameters. Uncertainty in the controlled heat ex-
changers is caused by fouling and disturbances.

The control performance was judged also using the maximal
overshoot that is given by:

smax ¼ ymax � yð∞Þ
yð∞Þ � yð0Þ � 100 %; (16)

where ymax is the maximal value of the controlled variable, yð0Þ is
the initial value of controlled variable, and y∞ is its steady-state
value. The results were obtained considering again the clean heat
exchangers and the heat exchangers after 1, 2, and 3 years of
fouling, respectively. The overshoot of the temperature response
decreases the quality of control and in the worst case, it may lead to
the thermal degradation of the final product. Therefore one of the
goals of control was to minimize the overshoots.

Table 5 shows the obtained values of smax in the set-point
tracking considering both strategies, i.e., the PID control and
RMPC. The values of smax ensured in the disturbance rejection are
in Table 6. As it can be seen in Figs. 4e7, significant overshoots are
presented in the PID control responses. The implementation of
RMPC removed or significantly decreased the overshoots for each
heat exchanger in set-point tracking, see Table 5. The control per-
formance in disturbance rejection led to the overshoots or un-
dershoots in both considered control strategies, see Table 6. RMPC
ensured lower values of smax in all control scenarios, except control
of the clean E15AB, E15AB after 1 year of fouling and clean E35AB.
On the other hand, under the same control conditions, the PID
controllers ensured rather poor control performances in both
investigated control conditions, i.e., the set-point tracking and the
disturbance rejection problems, cf. Figs. 5 and 7 (blue).

Finally, the amount of energy needed for control is very
important in practice. The energy has to be minimized and can be
measured by the control input or some variables calculated based
on the control input. Therefore, the control performance of the heat
exchangers was analysed based on the consumption of the heating
medium. Particularly, the overall consumption of the shell-side
medium DMs;total was evaluated as the integral of the normalized
shell-side flow rate given by:

Fig. 7. Closed-loop step response of E35AB model ensured by PID controllers (blue)
and robust MPC (red) for clean E35AB (solid) and for E35AB after 1 year (dashed), after
2 years (dash-dotted), and after 3 years (dotted) of fouling. (For interpretation of the
references to colour in this figure legend, the reader is referred to the Web version of
this article.)

Table 3
ISE values in the set-point tracking.

ISE (
�
C2 s)

Heat Exchanger E11AB E15AB E30AB E35AB

Fouling/Strategy PID RMPC PID RMPC PID RMPC PID RMPC

clean 2.9 4.0 18.4 6.0 4.4 7.5 3.0 3.4
1 year 3.9 4.5 15.4 8.2 4.6 9.5 4.7 4.1
2 years 4.8 4.6 15.7 8.9 4.8 10.4 6.2 4.5
3 years 5.0 4.8 15.1 10.0 4.6 11.1 6.4 4.8
mean 4.1 4.5 16.1 8.3 4.6 9.6 5.1 4.2

Table 4
ISE values in the disturbance rejection.

ISE (
�
C2 s)

Heat Exchanger E11AB E15AB E30AB E35AB

Fouling/Strategy PID RMPC PID RMPC PID RMPC PID RMPC

clean 0.10 0.10 1.30 0.22 0.16 0.25 0.11 0.09
1 year 0.15 0.10 0.76 0.17 0.17 0.19 0.18 0.08
2 years 0.18 0.10 0.81 0.10 0.18 0.10 0.23 0.06
3 years 0.19 0.10 0.73 0.05 0.17 0.04 0.24 0.06
mean 0.16 0.10 0.90 0.13 0.17 0.15 0.19 0.07

Table 5
Maximum overshoot in the set-point tracking.

Maximum overshoot (%)

Heat Exchanger E11AB E15AB E30AB E35AB

Fouling/Strategy PID RMPC PID RMPC PID RMPC PID RMPC

clean 14.6 1.0 6.3 1.7 14.8 0.0 16.0 0.5
1 year 13.9 0.0 10.4 0.0 14.4 0.0 16.4 0.1
2 years 15.9 0.0 10.5 0.0 14.6 0.0 18.7 0.0
3 years 16.4 0.0 9.8 0.0 13.5 0.0 18.6 0.0
mean 15.2 0.2 9.2 0.3 14.3 0.3 17.4 0.1

Table 6
Maximum overshoot in the disturbance rejection.

Maximum overshoot (%)

Heat Exchanger E11AB E15AB E30AB E35AB

Fouling/Strategy PID RMPC PID RMPC PID RMPC PID RMPC

clean 13.8 10.5 7.5 20.0 13.9 6.6 14.8 16.2
1 year 13.3 9.9 12.8 19.1 13.7 4.2 15.6 12.9
2 years 15.4 8.0 13.0 6.5 13.9 2.9 18.1 11.8
3 years 15.8 5.6 11.6 6.4 12.7 2.8 18.0 11.1
mean 15.2 6.8 11.2 13.0 13.6 4.1 16.6 10.4
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DMs;total ¼
Z∞

0

D _MsðtÞ dtzts
Xnk

k¼0

_MsðkÞ: (17)

where D _Ms is the normalized shell-side flow rate represented as
the change of the shell-side flow rate from its steady-state value.
The aimwas to minimize the overall consumption of the shell-side
medium DMs;total. The values of DMs;total ensured by PID controllers
and RMPC are summarized in Table 7.

As the advanced controller ensured lower consumption of the
shell-side medium, it led to the reduced energy consumption in the
distillation column. Analysis of the energy consumption in the
distillation column is a very complex problem, so energy con-
sumption was evaluated in a simplified way, as in the case of
heating themedium in the furnace. The considered heating value of
heavy fuel oil burned in the process furnaces to produce hot me-
dium was approximately 40� 103 kJ kg�1, see Ref. [21]. Then, the
total energy consumption needed to preheat the calculated amount
of the hotmedium given byDMs;total is summarised in Table 8. From
the energy consumption viewpoint, as it can be seen in Table 8, the
control performance of the RMPC strategy for each heat exchanger
outperforms twice the performances of the PID controllers for all
considered cases of fouling. The economy of HEs operation is also
important. Based on the total energy consumption evaluated in
Table 8 and using the approximated price of heavy fuel oil 0.4 EUR/
kg (see Ref. [21]), RMPC ensured significant operation cost savings
from 113 600 EUR in the worst-case, up to 139 200 EUR in the best-
case.

5. Conclusions

Robust MPC of shell-and-tube heat exchangers with fouling was
studied and compared with conventional PID control. The
advanced robust MPC strategy with integral action was developed
that enabled the design of the robust state-feedback PI controller.
This controller was used for control of the shell-and-tube heat
exchangers and the simulation results confirmed that robust MPC
with integral actions ensured offset-free control performance.
Extensive simulation case study of PID control and robust MPC of

the heat exchangers was done to study not only control perfor-
mance but also energy saving and operational economy. The results
of 32 simulation experiments are presented to compare the robust
and PID controller properties in the set-point tracking (servo
problem) and the results of the same number of experiments are
presented for the disturbance rejection (regulatory problem). Ac-
cording to the maximum overshoot, robust MPC assured smooth
control responses in the set-point tracking and smaller overshoots
almost in all experiments in the disturbance rejection. According to
the analytical quality criterion ISE, the robust MPC outperformed
conventional PID control in most of the experiments in both, the
set-point tracking and disturbance rejection. PID control was able
to assure better results only for some clear HEs and HEs with low
fouling. Energy consumption was measured by consumption of the
shell-side medium during control as the flow rate of this medium
was the manipulated variable. Energy consumption was calculated
also as the energy needed for preparing the hot shell-side medium.
Robust MPC outperformed almost twice conventional PID control
in all experiments according to these two criteria and assured en-
ergy savings. The price of consumed energy served for evaluating
economy of HEs operation. RMPC ensured operation cost savings
from 113 600 EUR in the worst-case, up to 139 200 EUR in the best-
case.

Robust MPC with integral action is a very promising strategy for
the control of energy-intensive processes. It is able to ensure
optimal control performance, minimum energy consumption and
economic operation of these processes. The disadvantages of this
strategy are much more complicated controller design, much
higher computational load and more complex implementations on
convection control systems.
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Nomenclature

Symbols

A: system matrix of the state space system
~A: system matrix of the extended state space system
A: set of all state space systems
B: input matrix of the state space system
~B: input matrix of the extended state space system

C: output matrix of the state space system
~C: output matrix of the extended state space system
cp: specific heat capacity, J kg�1 K�1

din: inner tube diameter, m
dout : outer tube diameter, m
e: control error, �C
E: auxiliary matrix of controller design
~E: complementary auxiliary matrix of controller design
F: gain of the state-feedback control law
~F: proportional and integral gains of the state-feedback control law
F I : integral gain of the state-feedback control law
FP: proportional gain of the state-feedback control law
GC: transfer function of PID controller
h: surface film conductance, W m�2 K�1

I: identity matrix
J: quadratic quality criterion
~J: extended quadratic quality criterion
k: sample of discrete time domain, s
KD: derivative gain of PID controller
KI: integral gain of PID controller
KP: proportional gain of PID controller
l: length of heat exchanger, m
_Ms: shell-side mass flow, kg s�1

_Mt: tube-side mass flow, kg s�1

nb: number of tubes in one exchanger pass
nk: number of control steps
nu: total number of system inputs
nv: total number of system vertices
nx: total number of system states
ny: total number of system outputs
P: Lyapunov matrix
Q : weighting matrix of system states
~Q : weighting matrix of the extended system states
Q I: weighting matrix of integral action
R: weighting matrix of system inputs
ℝ: Euclidean space of real numbers
s: operator of Laplace domain
t: time, s
ts: sampling time, s
Tti: tube-side inlet temperature, �C
Tto: tube-side outlet temperature, �C
u: inputs of the state space system, kg s�1

usat : constraints on the manipulated variables, kg s�1

U: auxiliary matrix of controller design
v: vertex system
w: set-point temperature, �C
x: states of the state space system, �C
x0: initial conditions of the state space system, �C
X: weighted inverted Lyapunov matrix
y: outputs of the state space system, �C
ymax: maximal value of output variable, �C
ysat : constraints on the controlled variables, �C
Y: auxiliary matrix of controller design
z: states of the extended state space system, �C
0: zero matrix

Greek letters

g: weighting parameter of Lyapunov matrix
D _Ms: normalized shell-side mass flow, kg s�1

DMs;total: normalized mass of the shell-side medium, kg
smax: maximal overshoot, %

Abbreviations

CDU: crude-oil distillation unit
HE: heat exchanger
HEN: heat exchanger network
ISE: integral square error
LMI: linear matrix inequality
MPC: model predictive control
PID: proportional-integral-derivative
RMPC: robust model predictive control
SDP: semidefinite programming
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