
Slovak University of Technology in Bratislava
Institute of Information Engineering, Automation, and Mathematics

PROCEEDINGS
17th International Conference on Process Control 2009

Hotel Baník, Štrbské Pleso, Slovakia, June 9 – 12, 2009

ISBN 978-80-227-3081-5

http://www.kirp.chtf.stuba.sk/pc09

Editors: M. Fikar and M. Kvasnica

Sekaj, I.: The Use of Matlab Parallel Computing Toolbox for Genetic Algorithm-Based MIMO Controller
Design, Editors: Fikar, M., Kvasnica, M., In Proceedings of the 17th International Conference on Process
Control ’09, Štrbské Pleso, Slovakia, 277–280, 2009.

Full paper online: http://www.kirp.chtf.stuba.sk/pc09/data/abstracts/098.html

THE USE OF MATLAB PARALLEL COMPUTING TOOLBOX FOR
GENETIC ALGORITHM-BASED MIMO CONTROLLER DESIGN

S. Kajan*, I. Sekaj**, M. Oravec***

Institute of Control and Industrial Informatics,
Faculty of Electrical Engineering and Information Technology,

Slovak University of Technology in Bratislava, Ilkovičova 3, 812 19 Bratislava
e-mail : * slavomir.kajan@stuba.sk,** ivan.sekaj@stuba.sk,

 *** michal.oravec@stuba.sk

Abstract: The paper describes the use of Matlab’s Parallel Computing Toolbox for
parallel genetic algorithm-based design of a MIMO controller. Parallel genetic
algorithms (PGA) represents a stochastic optimization approach which is computed in
more co-operating and interconnected computation nodes in a parallel mode. Each node
of the PGA can be located on the same processor, on more processors or on more
computers respectively. This approach is able to solve very complex
search/optimization/design tasks, but on the other hand, it requires a high computation
power. From that reason the distribution of computation complexity to more processors
under Matlab environment is presented.

Keywords: Matlab Parallel Computing toolbox, parallel genetic algorithms, MIMO
controller design

1 INTRODUCTION

Genetic algorithm (GA) is a powerful stochastic
optimization approach, which mimics the evolution
in the living nature with the aim to solve practical
problems. It is from its basic a parallel algorithm,
because it is searching the solution concurrently in a
group of potential solutions (a population). In case of
solving complex design problems it sometimes
happen, that the current solution stagnates in a local
optimum (suboptimal solution). Furthermore the
computation times of solving complex problems are
long. Such drawbacks can be eliminated using a next
level of parallelism in - parallel GA (PGA). Such a
parallelism is able to increase the information
diversity in the population and to redirect the
solution process to the global optimum. The
drawback of the required high computational effort
of PGA's can be eliminated by distribution of the
algorithm to more processors/computers. In Matlab
for that reason the Parallel Computing toolbox may
be used.

2 THE PRINCIPLE OF PGA

The basic principle of the PGA is the parallel run of
more GA's, which are performed on isolated
subpopulations - nodes (Cantú-Paz, E., 1995, Sekaj,
I., 2004). Each subpopulation is handled using its
own GA. These subpopulations in defined time
periods (number of generations) or in some
asynchronous events exchange information between
some nodes according defined interconnections. That
is, some individuals from some subpopulations are
copied into other subpopulations. This process is
called migration. The migration management is
defined in the migration architecture and migration
time schedule. Various migration architectures are
depicted in Fig.1. Each circle represents a node with
its own GA.

17th International Conference on Process Control 2009
June 9–12, 2009, Štrbské Pleso, Slovakia Po-We-9, 098.pdf

277

Fig. 1. Various migration architectures of PGA

3 MIMO CONTROLLER PARAMETER DESIGN
USING PGA

Consider a MIMO controller design, which is
depicted in fig. 2. The control scheme consists from
the controlled system with two inputs and two
outputs, two PID controllers and two correctors. Let
us consider the following performance index

(∑
=

+++=
N

k
kkkk dydyeeJ

1
2121 αα) (1)

where e1, e2 are control errors, dy1, dy2 are derivatives
of the controlled variables and α is a weight constant.
The use of output derivatives can damp the output
oscillations.

t

time

t11.s+1

t12.s+1

t21.s+1

t22.s+1
dy1

dy2

Step2

Step1

w2

Reference v. 2

w1

Reference v. 1

PID

PID Controller2

PID

PID Controller1

y2

Output system 2

y1

Output system 1

u1

u2

y 1

y 2

MIMO System

k1

k2 du/dt

du/dt

u2

Control value 2

u1

Control value 1

e2

Control error 2

e1

Control error 1 Clock

Fig. 2. The MIMO control loop simulation scheme

in Matlab/Simulink

The aim of the design is the search for optimal
controller parameters from the defined parameter
space, which minimize the performance index (1).
The evaluation of the cost function consists of two
steps. The first step is the computer simulation of the
closed-loop time-response, and the second one is the
performance index evaluation.

3.1 Genetic algorithm

Genetic algorithms are described in e.g. (Goldberg,
D.E., 1989, Man, K.F, 2001, Sekaj, I., 2005) and

others. Each chromosome represents a potential
solution, which is a linear string of numbers, whose
items (genes) represent in our case the designed
controller parameters. Because the controller
parameters are real-number variables, real-coded
chromosomes have been used. The chromosome
representation in this case can be in form

ch={ P1,I1,D1, P2,I2,D2,k1,t11,t12, k2,t21,t22}

where the first 6 genes are parameters of the two PID
controllers and the rest genes are the gains and time
constants of the two lead-lag feed-forward
correctors.

A general scheme of a GA can be described by
following steps:

1. Initialization of the population.

2. Evaluation of the cost function for each
chromosome (simulation, performance index
evaluation).

3. Parent chromosomes selection

4. Crossover and mutation of parents

5. Completion of the new population from the new
children and selected members of the old population.
Jump to the step 2.

3.2 The PGA realization

For the PGA demonstration three subpopulations
running on three PC’s have been used. They are
marked S1-Slave1, S2-Slave2 and M-Master. In the
Master node the migration and the computation
management is realized. The used migration
connections are shown in fig. 3.

Fig. 3. Migration schemes with tree subpopulations

For the parallel computing implementation the
Matlab Parallel Computing Toolbox with the Matlab
Distributed Computing Engine (MDCE) are needed.
In the fig.4 the block scheme of the computation
management is depicted (The Mathworks. 2006).

17th International Conference on Process Control 2009
June 9–12, 2009, Štrbské Pleso, Slovakia Po-We-9, 098.pdf

278

Fig. 4. The block scheme of distributed computing

sessions using PCT and MDCE

The parallel computation can be described in
following steps:

1. On the client PC required computation tasks are
created using PCT.

2. The job manager will provide the task
management on particular workstations where the
Matlab MDCE must be installed.

3. After finishing of the jobs the manager will collect
all responses from workstations and send it to the
client.

Based on this the parallel genetic algorithm can be
realized as follows:

1. Creation of the function - genetic algorithm, which
input is the initial population in form of a real matrix
(rows are chromosomes, columns are genes) and the
output is the population after N generations of the
GA run.

2. On the PC client the initialization of 3 independent
populations is performed.

3. The parallel run of the 3 GA’s is performed until
the required number of generations is computed.

4. Migrations between subpopulations according the
defined migration architecture are performed.

5 CASE STUDY

Next the results of MIMO controller design (Fig.2)
using the proposed PGA structure are demonstrated.
All migration architectures have been tested. In fig.5
graphs of the cost function (1) evolution wtih the
migration scheme fig.3c are shown. The migration
period was 5 generations.

0 10 20 30 40 50
0

2000

4000

6000

8000

10000

12000

Generacie

Fi
tn
es
s

Slave1
Slave2
Master

F
i
t

Fig. 5. Cost function evolution during the
controller design procedure for all 3
subpopulations.

The final solution is the best individual of the
population in the node Master after performing
defined number of populations. The obtained results
are follows:

P1=53.899, I1=78.2064, D1=1.8854, P2=24.7023,
I2=19.4204, D2=17.2952, k1=-0.064, t11=29.235,
t12=89.2842, k2=-0.1227, t21=19.8595, t22=54.4186

The appropriate time-responses are shown in fig.6
and fig.7.

0 10 20 30 40 50 60 70 80 90 100
-0.5

0

0.5

1

1.5

2

2.5

3

3.5

Cas [s]

w
,y

w1
w2
y1
y2

Fig. 6. Time-responses of the reference variables
w1, w2 and controlled variables y1, y2

0 10 20 30 40 50 60 70 80 90 100
-100

-50

0

50

100

150

200

Cas [s]

u

u1
u2

Fig. 7. Time-response of the control values u1, u2

17th International Conference on Process Control 2009
June 9–12, 2009, Štrbské Pleso, Slovakia Po-We-9, 098.pdf

279

6 CONCLUSIONS

The aim of this paper was to demonstrate the
application of parallel genetic algorithms running on
a more computer configuration (cluster) using
Parallel Computing toolbox of Matlab. The solved
problem was an optimal parameter design of a
MIMO control system. Using this means it is
possible to solve complex search/optimization tasks
from control engineering area like non-linear
controller design, robotics etc., but also from other
technical and non-technical application areas. The
condition of using this approach is the possibility of
the cost function evaluation in each point of the
searched space. This requires the existence of a
computer model of the solved problem. Using the
PGA it is possible to reduce the computation time
from hours to minutes or form days to hours
respectively. Furthermore the PGA allows eliminate
the premature convergence of the solution process to
a local optimum (to suboptimal solution).

ACKNOWLEDGMENTS

The work has been supported by the grants agency
VEGA no. 1/0544/09 and no. 1/0690/09. This
support is very gratefully acknowledged.

7 REFERENCES

Cantú-Paz, E. (1995). A summary of research on
parallel genetic algorithms, IlliGAL Report No.
95007, Illinois Genetic Algorithms Laboratory,
University of Illinois at Urbana Champaign

Cantú-Paz, E. (2001). Migration polices, selection
pressure, and parallel evolutionary algorithms, In:
Journal of heuristics 7(4), 2001, pp. 311-334.

Dorf, R.C. (1990). Modern Control Systems.
Addison-Wesley publishing Company, 5th edition

Goldberg, D.E. (1989). Genetic Algorithms in
Search, Optimization and Machine Learning.
Addisson-Wesley.

Man, K.F. Tang, K. S. Kwong, S. (2001). Genetic
Algorithms, Concepts and Deign. Springer

Sekaj, I. (2003). Genetic Algorithm Based
Controller Design", In: 2nd IFAC conference
Control System Design'03, Bratislava

Sekaj, I. (2004). Robust Parallel Genetic Algorithms
with Re-Initialization, In: PPSN VIII, September
18-22, Birmingham

Sekaj, I. (2005). Evolučné výpočty a ich využitie v
praxi. Iris Bratislava

The Mathworks. (2006). MATLAB Distributed
Computing Engine, System Administrator’s
Guide, Natick

17th International Conference on Process Control 2009
June 9–12, 2009, Štrbské Pleso, Slovakia Po-We-9, 098.pdf

280

