Title: Robust Model Predictive Control Meets Robotics
Project code: APVV SK-CN-2015-0016
Partners:
Duration: 2016-2017
Abstract:
China and Slovakia have an enormous potential for innovative research in robotics and control. The goal of this project is to bring together a group of young researchers whose aim is to create robust model predictive controllers with emphasis on the implementation of advanced control procedures and applications in robotics. We will build upon advanced linear matrix inequality techniques and real-time control software to develop novel types of autonomous and intelligent control algorithms for uncertain processes that are far beyond the state-of-the-art. The research shall be carried out by scientist and PhD students in Slovakia and China, who will visit each other on a regular basis, thereby creating channels for technological as well as intercultural exchange. At the same time, we will showcase innovative research on modern technologies that shall educate the next generation of control and robotic scientists in China and Slovakia, thereby creating a huge potential for academic breakthroughs as well as successful spin-offs in both countries.
Project description:
Model predictive control (MPC) is an advanced control strategy that is widely used in industrial process control due to its ability to cope with pyhsical process models as well as models for the input- and output constraints. Recent advances in the field of embedded hardware platforms as well as fundamental improvements in the field of optimization algorithms have opened the door to widespread application to systems with fast sampling times as for example found in the mechatronic and automotive sectors. However, in order to realize the full potential of model predictive control, in particular, for embedded systems and autonomous robots, we first need reliable optimization and model predictive control algorithms that can deal with the often nonlinear, uncertainty affected, and highly dynamic nature of modern industrial processes and robots. Unfortunately, robust MPC methods, which can deal with uncertainties in the context of MPC, are not yet real-time feasible for systems with high sampling time. In order to remedy this situation, this project will bring together researches from ShanghaiTech and the Slovak University of Technology in Bratislava, who are experts in the field of fast and autogenerated MPC algorithms, linear matrix inequality (LMI) based robust MPC design, and application of MPC in robotics. The scientific goals of this collaboration are to:
1. synthesize advanced robust MPC design for uncertain dynamic systems
2. develop software packages that enable the transfer of theory based robust control design to high impact applications
3. perform challenging case studies by implementing robust MPC controllers for autonomous robots in the ShanghaiTech robotics and control lab in order to illustrate the maturity of the developments and to promote wide acceptance by industry.
The two groups will collaborate closely in order to jointly develop robust optimization and robust control design technologies, software, and robotic applications. All software will be made freely available and shall be tested on real-world robots. The results will be published in top-tier journals, at jointly organized conference sessions and workshops as well as on a tri-lingual project web page.
- Month 1-6: LMI based formulation of Robust MPC, organize joint conference session
- Month 7-12: joint work on a software implementation. For this aim the first batch of PhD students will be exchanged.
- Month 13-18: testing robust MPC on real-world robot hardware. For this aim the second batch of PhD students will be exchanged.
- Month 19-24: dissemination of research results at conferences, at least one mature journal publication.
The project aim to establish a collaborative research partnership between the Chinese and the Slovak teams using the existing common research interests in topics related to advanced robust MPC and robust optimization. The complementarity of the teams comes from the fact that the Slovak partners are focused on the optimal control design, MPC design, and robust MPC design, while the Chinese partners come with their experience in the robust optimization, nonlinear optimization and the well-equipped new robotic laboratories suitable for the experimental validation of the attained results. Moreover, the Chinese partners are the main developers of the ACADO Toolkit for automatic control and dynamic optimization. ACADO is written in C++ and there is also a MATLAB interface.
----------------------------------------------------------------
CHINSESE:
摘要:
在机器人学与控制学两大学科领域,中国与斯洛伐克存在许多协同创新的机会。
此次项目旨在聚集一批两国年轻的科研工作者,
创造出强调在机器人学问题中应用与实践先进控制手段的模型预测控制器。
我们将会基于线性矩阵不等式与实时控制软件领域现有的先进成果,
针对带有不确定性的过程来研发新型的、智能的自动化控制算法,并希望超越现有的国际标杆。
这项研究会由斯洛伐克与中国的科学家与他们的博士生们携手开展。
他们会经常开展互访,以在两国间为技术和文化交流搭建桥梁并拓宽渠道。
同时,我们对这一现代技术进一步研究与创新的成果也将会陆续发表。
这些成果对中国与斯洛伐克两国下一代的控制学与机器人学人才而言,
可以起到教育示范作用,从而为两国未来在此领域的研究合作打下坚实的基础。
----------------------------------------------------------------