Autor(i):
M. Čižniar – M. Podmajerský – T. Hirmajer – M. Fikar – M. A. Latifi
Názov:
Global optimization for parameter estimation of differential-algebraic systems
Časopis:
Chemical Papers
Rok:
2009
Kľúčové slovo(á):
identifikácia parametrov, ortogonálna kolokácia, dynamická optimalizácia, globálna optimalizácia
Zväzok:
63
Číslo:
3
Strany:
274–283
Jazyk:
angličtina
Anotácia:

The estimation of parameters in semi-empirical models is essential in numerous areas of engineer- ing and applied science. In many cases, these models are described by a set of ordinary-differential equations or by a set of differential-algebraic equations. Due to the presence of non-convexities of functions participating in these equations, current gradient-based optimization methods can guarantee only locally optimal solutions. This deficiency can have a marked impact on the operation of chemical processes from the economical, environmental and safety points of view and it thus motivates the development of global optimization algorithms. This paper presents a global optimization method which guarantees ε-convergence to the global solution. The approach consists in the transformation of the dynamic optimization problem into a nonlinear programming problem (NLP) using the method of orthogonal collocation on finite elements. Rigorous convex underestimators of the nonconvex NLP problem are employed within the spatial branch-and-bound method and solved to global optimality. The proposed method was applied to two example problems dealing with parameter estimation from time series data.

ISSN:
0366-6352

Kategória publikácie:
ADD – Vedecké práce v domácich karentovaných časopisoch
V3 – Vedecký výstup publikačnej činnosti z časopisu
Oddelenie:
OIaRP
Vložil/Upravil:
Ing. Michal Čižniar
Posledná úprava:
28.3.2009 19:16:19

Plný text:
Plný text nie je prístupný verejnosti, ale môžete požiadať o kópiu niektorého z autorov

BibTeX:
@article{uiam788,
author={M. {\v{C}}i\v{z}niar and M. Podmajersk\'y and T. Hirmajer and M. Fikar and M. A. Latifi},
title={Global optimization for parameter estimation of differential-algebraic systems},
journal={Chemical Papers},
year={2009},
keyword={identifik\'acia parametrov, ortogon\'alna kolok\'acia, dynamick\'a optimaliz\'acia, glob\'alna optimaliz\'acia},
volume={63},
number={3},
pages={274-283},
annote={The estimation of parameters in semi-empirical models is essential in numerous areas of engineer- ing and applied science. In many cases, these models are described by a set of ordinary-differential equations or by a set of differential-algebraic equations. Due to the presence of non-convexities of functions participating in these equations, current gradient-based optimization methods can guarantee only locally optimal solutions. This deficiency can have a marked impact on the operation of chemical processes from the economical, environmental and safety points of view and it thus motivates the development of global optimization algorithms. This paper presents a global optimization method which guarantees ε-convergence to the global solution. The approach consists in the transformation of the dynamic optimization problem into a nonlinear programming problem (NLP) using the method of orthogonal collocation on finite elements. Rigorous convex underestimators of the nonconvex NLP problem are employed within the spatial branch-and-bound method and solved to global optimality. The proposed method was applied to two example problems dealing with parameter estimation from time series data. },
url={https://www.uiam.sk/assets/publication_info.php?id_pub=788}
}