Autor(i):
R. Paulen – A. Sharma – M. Fikar
Názov:
Dynamic Real-time Optimization of Batch Membrane Processes using Pontryagin’s Minimum Principle
Názov knihy:
28th European Symposium on Computer Aided Process Engineering
Rok:
2018
Strany:
1045–1050
Editor(i):
Anton Friedl, Jiří J. Klemeš, Stefan Radl, Petar S. Varbanov, Thomas Wallek
Zväzok:
28
Vydavateľstvo:
Elsevier
Jazyk:
angličtina
Anotácia:
This paper studies a dynamic real-time optimization in the context of model-based time-optimal operation of batch processes under parametric model mismatch. A class of batch membrane separation processes is in the scope of the presented applications. In order to tackle the model-mismatch issue, a receding-horizon policy is usually followed with frequent re-optimization. The main problem addressed in this study is high computational burden that is usually required by such schemes. We propose an approach that uses parametrized conditions of optimality in the adaptive predictive-control fashion. The uncertainty in the model predictions is treated explicitly using reachable sets that are projected into the optimality conditions.
ISBN:
978-0-444-64235-6
ISSN:
1570-7946
DOI:
10.1016/B978-0-444-64235-6.50183-2

Kategória publikácie:
AFC – Publikované príspevky na zahraničných vedeckých konferenciách
V2 – Vedecký výstup publikačnej činnosti ako časť editovanej knihy alebo zborníka
Oddelenie:
OIaRP
Vložil/Upravil:
doc. Ing. Radoslav Paulen, PhD.
Posledná úprava:
5.7.2018 21:45:47

Plný text:
1925.pdf (178.38 kB)
Príloha:
1925.pdf (263.7 kB)

BibTeX:
@inproceedings{uiam1925,
author={R. Paulen and A. Sharma and M. Fikar},
title={Dynamic Real-time Optimization of Batch Membrane Processes using Pontryagin’s Minimum Principle},
booktitle={28th European Symposium on Computer Aided Process Engineering},
year={2018},
pages={1045-1050},
editor={Anton Friedl, Ji\v{r}\'i J. Kleme\v{s}, Stefan Radl, Petar S. Varbanov, Thomas Wallek},
volume={28},
publisher={Elsevier},
annote={This paper studies a dynamic real-time optimization in the context of model-based time-optimal operation of batch processes under parametric model mismatch. A class of batch membrane separation processes is in the scope of the presented applications. In order to tackle the model-mismatch issue, a receding-horizon policy is usually followed with frequent re-optimization. The main problem addressed in this study is high computational burden that is usually required by such schemes. We propose an approach that uses parametrized conditions of optimality in the adaptive predictive-control fashion. The uncertainty in the model predictions is treated explicitly using reachable sets that are projected into the optimality conditions.},
doi={10.1016/B978-0-444-64235-6.50183-2},
url={https://www.uiam.sk/assets/publication_info.php?id_pub=1925}
}