Autor(i):
A. Szűcs – M. Kvasnica – M. Fikar
Názov:
Optimal Piecewise Affine Approximations of Nonlinear Functions Obtained from Measurements
Názov knihy:
4th IFAC Conference on Analysis and Design of Hybrid Systems, Eindhoven, Netherlands
Rok:
2012
Kľúčové slovo(á):
hybridné systémy, aproximácia, statické nelinearity
Strany:
160–165
Jazyk:
angličtina
Anotácia:
The paper describes a two-stage procedure for obtaining piecewise affine approximations of static nonlinearities obtained from measured data. In the first step we search for a suitable function which fits the data while minimizing the fitting error. Subsequently we show how to approximate, in an optimal fashion, the nonlinear fitting function by a piecewise affine function of pre-specified complexity. We illustrate that approximation of arbitrary nonlinear functions boils down to a series of one-dimensional approximations, rendering the procedure efficient from a computational point of view.

Kategória publikácie:
AFC – Publikované príspevky na zahraničných vedeckých konferenciách
V2 – Vedecký výstup publikačnej činnosti ako časť editovanej knihy alebo zborníka
Oddelenie:
OIaRP
Vložil/Upravil:
Ing. Alexander Szűcs
Posledná úprava:
12.6.2012 12:04:31

Plný text:
1306.pdf (264.93 kB)

BibTeX:
@inproceedings{uiam1306,
author={A. Sz\~ucs and M. Kvasnica and M. Fikar},
title={Optimal Piecewise Affine Approximations of Nonlinear Functions Obtained from Measurements},
booktitle={4th IFAC Conference on Analysis and Design of Hybrid Systems, Eindhoven, Netherlands},
year={2012},
keyword={hybridn\'e syst\'emy, aproxim\'acia, statick\'e nelinearity},
pages={160-165},
annote={The paper describes a two-stage procedure for obtaining piecewise affine approximations of static nonlinearities obtained from measured data. In the first step we search for a suitable function which fits the data while minimizing the fitting error. Subsequently we show how to approximate, in an optimal fashion, the nonlinear fitting function by a piecewise affine function of pre-specified complexity. We illustrate that approximation of arbitrary nonlinear functions boils down to a series of one-dimensional approximations, rendering the procedure efficient from a computational point of view.},
url={https://www.uiam.sk/assets/publication_info.php?id_pub=1306}
}