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Abstract

This dissertation thesis is devoted to the linear model predictive control (MPC) design
for complex systems. The term “complex system” includes two groups of challenging
systems – large-scale systems and systems with nonlinear and asymmetric dynamics.
The first part of the thesis deals with the partial explicit MPC design for large-scale
systems, as solving large-scale optimization problems is computationally challenging.
One way to deal with computational complexity is to construct offline a partial explicit
MPC solution and use it in the online phase to streamline evaluating the optimal control
action. The thesis proposes to replace the polytopic critical regions having variable
number of halfspaces with the maximal volume inner approximations based on the
Chebyshev balls. As such approximation has a fixed and known structure, the memory
footprint of the partial parametric solution is also fixed and known in advance, which
enables scaling the solution a priori to meet the control unit limitations. As the large-
scale polytopes are not stored, the memory footprint of the partial explicit solution
is significantly reduced. The second part of the thesis aims to develop a self-tunable
explicit MPC for nonlinear and asymmetric systems. Including a nonlinear model
in the MPC optimization problem would lead to high computational complexity and
non-convex critical regions in the parametric solution. Therefore, this thesis considers
a linear prediction model, and the plant nonlinearity is compensated by designing an
appropriate online tuning technique. Moreover, the proposed self-tuning technique also
addresses asymmetric plant dynamics (different behavior when the process variable
rises and decreases). The self-tuning method is performed automatically online and
depends on the reference value of the controlled variable, as this approach is focused on
reference-tracking applications. The tuning method was applied to a laboratory heat
exchanger, and the control performance improved compared to a non-tunable controller.
The third part of the thesis focuses on the implicit tube MPC, which is suitable for
large-scale uncertain systems. This thesis’s contribution was the incorporation of
the recent method of implicit tube MPC into a freely available MATLAB toolbox,
MPT+, to spread the possibility of implementing this robust MPC technique. This
thesis presents the design procedure of the implicit tube MPC in MPT+ and validates
the toolbox on a large-scale system where the original tube MPC was impossible to
implement due to computationally demanding geometric operations.
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Abstrakt

Táto dizertačná práca je venovaná návrhu lineárneho modelu prediktívneho riadenia
(MPC) pre zložité systémy. Pojem “zložitý systém” zahŕňa dve skupiny komplikovaných
systémov – veľkorozmerné systémy a systémy s nelineárnou a asymetrickou dynamikou.
Prvá časť práce sa zaoberá návrhom parciálneho explicitného MPC pre veľkorozmerné
systémy, pretože riešenie veľkorozmerných optimalizačných problémov je výpočtovo
náročné. Jedným zo spôsobov, ako sa vysporiadať s výpočtovou náročnosťou, je
zostrojiť parciálne explicitné riešenie MPC a použiť ho v online fáze na zefektívnenie
vyhodnocovania optimálneho akčného zásahu. Práca navrhuje nahradiť polytopické
kritické regióny s premenlivým počtom polpriestorov ich vnútornou aproximáciou
založenou na kruhoch s maximálnym objemom. Keďže aproximácia má fixovanú a
známu štruktúru, veľkosť pamäte parametrického riešenia je tiež fixovaná a známa
vopred, čo umožňuje naškálovať vopred veľkosť riešenia tak, aby vyhovovala limitá-
ciám riadiacej jednotky. Keďže veľkorozmerné polytopy nie sú ukladané, veľkosť
pamäte parciálneho explicitného riešenia je významne znížená. Druhá časť práce sa
zameriava na vývoj samoladiteľného explicitného MPC pre nelineárne a asymetrické
systémy. Zahrnutie nelineárneho modelu do optimalizačného problému MPC by viedlo
k vysokej výpočtovej zložitosti a nekonvexným kritickým regiónom parametrického
riešenia. Preto táto práca uvažuje lineárny predikčný model a nelinearita systému je
kompenzovaná návrhom vhodnej techniky online ladenia. Okrem toho, navrhovaná
technika samoladenia adresuje aj asymetrickú dynamiku systému (rôzne správanie,
keď procesná veličina stúpa a klesá). Metóda samoladenia sa vykonáva automaticky
online a je závislá od referenčnej hodnoty riadenej veličiny, keďže tento prístup je
zameraný na aplikácie úlohy sledovania referencie. Metóda ladenia bola aplikovaná
na laboratórny výmenník tepla a kvalita riadenia sa zlepšila v porovnaní s neladeným
regulátorom. Posledná časť práce je zameraná na MPC založené na implicitných
tubách, ktoré je vhodné pre veľkorozmerné neurčité systémy. Prínosom tejto práce
bolo začlenenie implicitného tube MPC do voľne dostupného MATLAB toolboxu,
MPT+, na rozšírenie možnosti implementácie tejto robustnej techniky MPC. Táto
práca prezentuje postup návrhu implicitného tube MPC v MPT+ toolboxe a validuje
toolbox na veľkorozmernom systéme, kde pôvodný prístup tube MPC nebolo možné
implementovať kvôli výpočtovo náročným geometrickým operáciám.
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Chapter 1

Introduction

Nowadays, the application of optimal control techniques is widely expanding [59]. The
implementation of the optimal control methods, e.g., model predictive control (MPC),
has many significant benefits. It allows us to predict future system behavior and obtain
optimal control actions based on the requirements on control, e.g., minimizing the
control costs, maximizing the profits, reducing the impact on the environment, or
improving the control performance. Moreover, the possibility to include constraints on
the input, output, and state variable is nonnegligible. As MPC is a receding horizon
control strategy, the optimization of control actions is performed in each control step
in order to reduce the effect of external and internal disturbances [59]. Due to its many
practical benefits, model predictive control became a widely used control strategy in
the past three decades, see, e.g. [59], [14], [60], and references therein. Some form of
MPC-based control is present in approximately 90 % of industrial implementation of
multivariable control, see [48], [65].

However, the necessity to solve an optimization problem in each control step is a very
challenging task due to the computational complexity. The challenges of the real-time
MPC applications include complex systems with many constraints, e.g., robust and
stochastic MPC design [53], distributed control [44], problems with a long prediction
horizon, and a high number of states and control actions [15].

One of the ways to implement MPC despite its demands on real-time computational
complexity is an explicit solution using multiparametric programming, see, e.g., [5], [10].
The essence of the explicit model predictive control lies in the division of implementation
into two separate phases. First, in the offline phase, the controller is constructed.
Particularly, the optimization problem is computed for a predefined set of parameter
values, and the corresponding control law is determined. For a multiparametric
quadratic problem (mpQP), the control law has the form of a piecewise affine (PWA)
function over a polytopic partition composed of a set of convex critical regions. Next,
in the online phase, i.e., the optimal control action is evaluated from control law
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corresponding to one of the critical regions. The critical region associated with the
current measurement is identified by solving the point location problem in some form
of a lookup table [24].

Although the application range of explicit MPC is wide, two interconnected issues
arise from its implementation: memory consumption and runtime effort. One of the
possibilities of memory burden reduction is a regionless explicit model predictive control
presented in [42]. The authors showed that the geometric construction and storage
of the critical regions are not required. Instead, the active sets are considered, which
provides significant savings in memory preserving the optimal solution. Other efficient
constructions of the explicit partition using the dynamic programming were introduced
in [61], [58]. The memory savings were achieved in [40], using the clipping function
eliminating the number of regions of the PWA function over which the control law
attains a saturated value. The utilization of the large set of critical regions evaluating
the saturated control law is removed using the polynomial separator function in [41].
The polynomial separator was replaced by various convex sets in [62].

The complexity reduction techniques do not target only memory footprint but also
accelerating the evaluation of the optimal control action in the online phase. One of
the methods speeding up the online phase was suggested in [27], where the critical
regions are sorted based on the minimal or maximal value of the corresponding value
function. Using the proposed smart order, real-time control is significantly accelerated
on average. Another technique leading to the decreased computational effort was an
online removal of inactive constraints introduced in [30]. In [39], [79], [24] the online
runtime is reduced by simplifying the point location problem without sacrificing closed-
loop performance. The irrelevant critical regions are removed using the reachability
analysis.

Several works bridge the gap between optimization-less real-time implementation of
explicit MPC and implicit (non-explicit) MPC suitable for large-scale systems. Many
later works were inspired by [17], where the online solution of the MPC problem was
accelerated using the warm-start strategy based on the knowledge of the optimal active
set from the previous control step. An efficient approach of semi-explicit MPC was
presented in [20]. This method is based on the offline state-dependent parametrization
of the optimization variables using the tailored subspace clustering algorithm and the
training data consisting of the MPC optimization problem solutions. A semi-explicit
approach was introduced into the move-blocking-based MPC design in [77], where the
time-varying blocking structure also guarantees the recursive feasibility and closed-loop
system stability. Learning approximate semi-explicit MPC for a hybrid system was
designed in [51]. In [83], the real-time suboptimal MPC was designed combining the
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approximated explicit solution of the MPC problem used for warm-start of the active
set method.

The trade-off between the benefits and limitations of the explicit MPC implementation
for the large-scale MPC problems is well-balanced in [32]. This work presents a novel
perspective concept of a partial multiparametric solution which places it on the road
between explicit MPC and implicit MPC. Without loss of optimality, closed-loop
system stability, and recursive feasibility of the large-scale MPC problem, the partial
multiparametric solution utilized in the framework of the explicit MPC improves
initialization of the hot-start strategy for the real-time implementation. First, in the
offline phase, a partial solution of an explicit MPC optimization problem is evaluated.
The positions of the critical regions are represented by the centers of the Chebyshev
balls. In the online phase, when the measurement is obtained, the critical region with
the nearest center of the Chebyshev ball is identified. This critical region is used in the
hot-start strategy to initialize searching for the corresponding optimal control action.

One of the contributions of this thesis is to push the idea towards the fixed-memory
parametric solution of the partial explicit MPC. The term “fixed-memory” denotes
that the size of the memory footprint necessary to store the parametric solution is
determined in advance, i.e., before solving the multiparametric optimization problem.
Inspired by the method presented in [32], the crucial idea of this contribution is not to
store the polytopic critical region, but only its maximal volume inner approximation
using the Chebyshev ball, i.e., data defining its center and radius. Just these data
will be used in the online phase for the hot-start strategy. As the critical polytopic
regions do not have the same number of halfspaces, the data size needed to be stored is
not known in advance. On the other hand, storing the Chebyshev ball approximation
provides us with fixing the memory of each considered critical region. As a consequence,
the partial solution of explicit MPC is fixed in advance. It enables scaling the size of
the solution a priori without the necessity to solve an optimization problem. Moreover,
compared to [32], the proposed method significantly reduces the memory consumption
of the partial solution, as the storage of the Chebyshev balls, i.e., centers and radii,
requires much lower memory compared to the storage of the polytopes. Finally, the
proposed method also improves the initialization of the hot-start procedure for solving
the large-scale optimization problem. In contrast to [32], not only the centers of
Chebyshev balls are considered, but also their radii, which provide more accurate
information to identify the nearest criticalregion for the hot-start strategy.

Another challenge associated with the explicit MPC is the ability to adjust the controller
setup online. The explicit MPC is not tunable in default as the conventional approach
introduced in [5] considers the penalty matrices with fixed structure and values. The
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inability to tune the explicit controller online can be a disadvantage due to varying
operating conditions when the different setups of the controllers are beneficial.

The possibility to tune the explicit MPC online came with the publishing of [4]. The
tuning parameter penalizing the control inputs became a parameter, for which the
optimal controller was precomputed. Nevertheless, the application was limited only to
linear cost functions of the optimization problem. To satisfy the demands for often-used
quadratic cost functions, the approximated tunable explicit MPC was presented in [36].
The technique is based on two explicit model predictive controllers which differ in
the setup of one penalty matrix. The two explicit MPCs provide upper and lower
boundary optimal controllers. Based on the evaluation of the two boundary control
inputs, the tuned control input is calculated by linear interpolation. The follow-up
work [63] provided stability and recursive feasibility guarantees by proper choice of
the terminal penalty matrix and terminal set constraint [55]. Moreover, the strategy
in [63] extends the tuning ability based on any penalty matrix and not just the input
penalty.

The idea of approximated tunable MPC with neural networks is presented in [34].
To ensure the tuning property, the penalty matrices were included in the training
process. As a result, it was possible to tune the neural network-based controller online,
while mimicking the nearly optimal MPC. In [33], the neural network-based tunable
controller MPC was extended with a corrector which steered the controller such that
the constraints on the manipulated and process variables were satisfied.

Our paper [19] pushes the idea of tunable explicit MPC further and deals with the issues
of practical industrial-oriented implementation. In numerous practical applications,
the reference value of the controlled variable is changed and acquires values from a
wide range of operating conditions. The use of different controller setups can help
handle the plant’s nonlinear behavior, without the necessity to explicitly consider a
nonlinear prediction model. Considering more accurate, but nonlinear prediction model
would lead to higher computational complexity resulting from nonlinear parametric
programming [64]. The paper [19] presents a procedure of the self-tunable controller
technique. The controller’s aggressivity is tuned based on the difference between
the reference value and the steady state corresponding to the model linearization
point. In the context of MPC, the aggressiveness is associated with the setup of the
penalty matrices, as it determines the aggressiveness of the final control input. In
general, higher penalization of the controlled states or control error in the cost function
leads to more aggressive control actions. This process is analogous to increasing the
proportional gain in the PID (proportional–integral–derivative) controller. On the
contrary, higher penalization of the input variable leads to more sluggish control, e.g.,
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see [50]. In [19], the MPC tuning based on the distance from the steady-state operating
point represented a way how to compensate for the system’s nonlinear behavior.

This thesis directly extends our early results presented in [19], where the basic principles
of the self-tunable approximated explicit MPC were introduced. In this thesis, a novel
method of self-tuning parameter setup is introduced. Compared to [19], the self-tuning
method is based on the size of the reference step change. Moreover, the idea of further
scaling of the tuning parameter is elaborated. The interval of the values of the self-
tuning parameter is split at some certain value and each part of the interval corresponds
to the specific operating conditions defined by the control engineer. In such a way, the
complex system dynamics are addressed, e.g., the system’s asymmetric behavior is
compensated (different behavior when the process variable is rising and decreasing).
Finally, to investigate the benefits of the proposed approach, the proposed self-tuning
control policy was implemented to control a laboratory-scaled counter-current plate
heat exchanger. This thesis provides the control performance evaluation and analysis
using the self-tunable controller compared to the conventional boundary explicit MPCs.

Although both implicit and explicit MPC have been intensively studied in the past
decades, there are still challenges worth addressing to spread its implementation. Such
a development is highly dependent on tailored validation tools. The MPC design
problem is addressed in plenty of well-developed software tools. This thesis focuses
specifically on the MATLAB programming environment, but in [37, 49, 29], and the
references therein, one can find the review on the solvers and tools supporting MPC
design and its evaluation also using other programming environments, e.g., Python
and Julia.

The MATLAB commercial MPC Toolbox [52] addresses various classes of the MPC
design problems, including the construction of the adaptive, explicit, gain-scheduled,
and nonlinear MPC controllers. This toolbox provides several built-in solvers and also
a dedicated user interface MPC Designer App for the controller tuning. The nonlinear
MPC design problems are efficiently solved using the ACADO Toolkit [28]. The non-
convex optimization problem is solved by the sequential quadratic programming (SQP)
approach. ACADO Toolkit evaluates the library-dependent C/C++ code and provides
an interface for MATLAB. CasADi [3] represents another toolbox suitable for the
nonlinear MPC design. This open-source package also provides interfaces for MATLAB
and Python. The nonlinear MPC can be designed also using the open-source toolbox
MATMPC [11]. The YALMIP [47] toolbox is a widely-used modeling parser focused
on the various classes of optimization problems, including non-convex optimization.
YALMIP provides also support for the MPC design problems. The Multi-Parametric
Toolbox (MPT) [22] for MATLAB represents a widely-used software package for the
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implicit (non-explicit) and explicit MPC design, multi-parametric optimization, and
operations over convex sets. MPT integrates many tools enabling efficient construction,
tuning, and validation of the advanced MPC controllers.

Besides the above mentioned topics of memory size reduction techniques (i.e., the
partial explicit MPC), and strategies improving the control performance, (i.e., the self-
tunable explicit MPC), there is another relevant topic worth interest – the uncertainties
affecting the controlled system. Including the disturbance in the control design leads to
robust control strategies. In terms of robust MPC methods, one of the most essential
works is the min-max approach [75, 66]. This robust control technique includes the
bounded disturbance in the prediction model, which leads to improved performance
with stabilizing properties. On the other hand, the min-max MPC may lead to
significant computational demands due to exponential growth of the possible predicted
future scenarios.

A very widely used and accepted robust MPC approach is the tube MPC [56, 72].
Instead of considering all the future combinations of possible disturbances, this approach
introduces the optimization of the initial nominal state, and robustifies the MPC
optimization problem via introducing the robust positively invariant set, i.e., the
tube. Many works follow up on this topic and develop improvements, e.g., in the
context of homothetic tubes [69] and elastic tubes [70]. Another extensions focus on
state estimation with output feedback tube MPC [54], reference tracking problem [45],
parallel explicit tube MPC [82], etc.

Despite its benefits, the tube MPC comes with a challenge of applicability in higher
dimensions of control probems due to non-trivial set operations. A relatively novel
contribution focuses on an implicit tube MPC [67], suitable for large-scale optimization
problems. This approach avoids the geometric set-based operations which extends the
applicability range of the tube MPC method.

The interest in tube MPC applications and research supports the idea of providing a
user-friendly tube MPC design tool. Such a tool should streamline the procedure of
tube MPC design and implementation. Moreover, from the research point of view, being
able to easily construct the tube MPC allows one to focus on further extensions of the
original control method. In [26] and [25], the authors follow up on the functionalities of
the original MATLAB MPT toolbox and, among other extensions, bring the possibility
to design and implement the tube MPC in a user-friendly way, using a novel MPT+
toolbox [2]. This thesis steps further towards the implicit tube MPC design. The aim
is to include the possibility to construct the tube MPC also in an implicit manner to
enable a wide and user-friendly application of this control technique.
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To conlude, this dissertation thesis deals with three techniques of linear MPC for
complex systems. Throughout this thesis, the term “complex system” denotes the
systems that bring two groups of challenges in MPC design: large-scale systems and
systems with nonlinear and asymmetric dynamics. The considered control techniques
are (i) partial explicit MPC, (ii) tunable approximated explicit MPC, and (iii) implicit
tube MPC.
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General Objectives
This dissertation thesis focuses on the linear MPC design for complex systems. The aims
of this thesis are summarized in three main areas: (i) theoretical contributions in linear
MPC design methods, (ii) practical validation of the proposed theoretical contributions,
and (iii) freely available software development for the control of large-scale systems.
More specifically, the objectives of the dissertation thesis are:

• Theoretical contributions:

– Memory footprint reduction associated with large-scale MPC. The
method of the partial explicit MPC is revisited, and the size of the memory
footprint to store the partial explicit MPC is reduced without inducing
suboptimality.

– Fixed size of memory footprint associated with large-scale MPC.
The memory footprint necessary to store the partial explicit MPC data
is unpredictable. In large-scale systems control applications, it becomes a
crucial question. In this thesis, fixing the memory footprint size is addressed.

– Elaboration of the self-tuning technique for tunable explicit MPC
to improve control performance. This thesis also focuses on the topic
of control performance improvement and targets the tunable approximated
explicit MPC. The techniques to tune the explicit model predictive controller
automatically during the real-time control are elaborated. The proposed
self-tuning strategies deal with nonlinear and asymmetric plant behavior.

• Practical validation:

– Numerical case studies on large-scale systems. The proposed partial
explicit MPC improvement is analyzed on the set of large-scale systems.

– Laboratory validation on a heat exchanger plant. The proposed
self-tuning strategy is implemented on a laboratory heat exchanger. The
control performance is analyzed and compared to non-tuned controllers.

• Freely available software:

– Software development for control of large-scale systems. The recent
perspective approach of implicit tube MPC, suitable for controlling large-
scale systems, is incorporated into the MATLAB MPT+ toolbox to spread
the wide usage of this robust control technique.
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– Case study validating the developed software. The developed MPT+
extension enabling the implicit tube MPC application is validated on a
large-scale reactor-separator system.
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Chapter 2

Fixed-memory partial explicit MPC

This chapter is devoted to the topic of fixed-memory partial explicit MPC. This control
approach addresses the first group of complex systems considered in this thesis – the
large-scale systems. First, this chapter provides an overview of the topics of model
predictive control as well as its explicit solution. The theoretical overview also introduces
the partial solution of explicit model predictive control, which is useful for handling
large-scale optimization problems. Next, the memory footprint of the data that needs
to be stored for the online phase is analyzed. Furthermore, a novel concept leading to
memory footprint reduction is proposed. The polytopic critical regions are no longer
stored. Instead, their maximal volume inner approximations are considered. As the
inner approximation has a fixed structure, the total memory footprint of the solution
is also fixed. Finally, the memory footprint of the partial solution based on the novel
ideas is analyzed.

2.1 Model predictive control
Model predictive control (MPC) is a control method utilizing optimization in order to
deliver the best decision, i.e., optimal control action, at the current time. The main
concept is to utilize a dynamic model of the controlled system to predict its future
behavior [73]. This control approach allows us to achieve significant safety improvement
of production operation, control performance, minimize costs, and negative impact on
the environment. These are some of the main reasons why MPC gained its popularity
in the past 3 decades [57].

The solution of an optimization problem is periodically re-solved in every time sample
Ts. In every control step, the whole trajectory of optimal control actions is calculated
for N steps forward, but only the first value of the input variable is implemented. In
the next control step, the optimization problem is solved again, see Figure 2.1. As a
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consequence of this so-called receding horizon nature, the effect of external disturbances
and plant-model mismatch is reduced [57].

Figure 2.1: Principle of MPC. The dashed lines represent the prediction and the
solid lines represent the past control steps. The red color corresponds to
the trajectory of control inputs u. The controlled variable y is depicted
in blue. The green line represents the reference value yref .

Another important characteristic of MPC is the ability to handle multiple-inputs and
multiple-outputs (MIMO) systems, compared to well-known proportional-integral-
derivative (PID) controllers. As MPC is model-based control strategy, the dynamic
model is therefore essential. State-space as well as input-output prediction models are
nowadays included in the control design. However, the state-space model is nowadays
the most utilized choice in model predictive control technique [35].

Moreover, there is a possibility to include constraints on the input, output, and
state variables to ensure safety or meet requirements on control performance. This
is a significant benefit compared to linear-quadratic (LQ) optimal controllers. As a
consequence, some form of MPC-based control is present in approximately 90 % of
industrial implementation of multivariable control, see e.g. [48], [65].

2.1.1 Regulatory problem
Model predictive controller solves an optimization problem in every control step. In
order to satisfy specific requirements on control performance and to achieve the set
goals, various forms of the optimization problem can be utilized. When the aim is to
push the system states to the origin from a nonzero initial condition, the regulatory
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problem is solved.

In this thesis, the model predictive control is based on the following formulation of the
quadratic programming (QP) optimization problem [59]:

min
u0,...,uN−1

N−1∑
k=0

(x⊤
k Qxk + u⊤

k Ruk), (2.1a)

s.t. xk+1 = Adxk + Bduk, (2.1b)
uk ∈ U, (2.1c)
xk ∈ X, (2.1d)
x0 = x(t), (2.1e)

where N is the length of prediction horizon, t is time, k indicates the step of prediction
horizon and acquires the values k = 0, . . . N −1, x ∈ Rnx is the system state vector, and
u ∈ Rnu is the vector of the input variable. Ad ∈ Rnx×nx represents the discrete-time
system state matrix, and Bd ∈ Rnx×nu is the discrete-time input matrix. The sets
U ⊆ Rnu , X ⊆ Rnx are convex polytopic sets of physical constraints on inputs and
states, respectively. These sets include the origin in their strict interiors. The positive
semi-definite matrix Q ∈ Rnx×nx , Qy ⪰ 0 penalizes the system states, and the positive
definite matrix R ∈ Rnu×nu , R ≻ 0 penalizes the control actions [59].

By minimizing the squared value of the system states in (2.1a), the system states are
pushed to the origin. Also, the squared value of control inputs makes the controller
decrease the control costs. By increasing the weight on system states, the controller
becomes more aggressive as the objective is to minimize the cost function where the
terms consisting of weighted system states play the significant role. On the contrary,
if the weight on control inputs is higher compared to the weight on system states,
the control trajectory is generally sluggish. In this case, the terms consisting of the
squared control inputs represent the more significant contribution to the value of the
cost function. Therefore, the matrices Q and R represent tuning parameters to affect
control performance [59].

From the control point of view, it is important not only to tune the weight matrices, but
also to have available an accurate model in (2.1b). As a consequence, the prediction of
the future states is more accurate and the effect of plant-model mismatch is reduced.
Note, also output variable y ∈ Rny can be predicted for the whole prediction horizon
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from well-known relation

yk = Cdxk + Dduk, (2.2)

where Cd ∈ Rny×nx and Dd ∈ Rny×nu are the discrete-time state-space matrices. The
state-space model is the most commonly used, as it handles relations between all the
state variables [35]. Nevertheless, also input-output model representations are used for
the prediction of the future system outputs.

Constraints on system states and control actions stated in (2.1c) and (2.1d) are
determined by technical parameters of controlled plant or by requirements on safety
or control performance. In some applications, it is sufficient to include the constraints
only on the output variable instead of the system states, e.g., when the input-output
model is utilized. Then, the corresponding constraint is formulated analogously to
(2.1c) and (2.1d):

yk ∈ Y, (2.3)

where the set Y ⊆ Rny is also a convex polytope and contains the origin in its strict
interior.

The last constraint (2.1e) of the optimization problem assigns the value of the current
measurement or estimation to a system state initial condition. This value is substituted
into (2.1e) in every control step, what makes MPC the receding control strategy.

In some practical applications, a stability guarantee is required. One of the ways how
to achieve stability is penalization and constraining the system states in the N -th step
of the prediction horizon. Including the last step of the prediction horizon into the
cost function is denoted as terminal cost or terminal penalty. When the system states
at the end of the prediction horizon are forced to lie in some desired region, we denote
it as a terminal set.
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The optimization problem with stability guarantee acquires the following form [55]:

min
u0,...,uN−1

N−1∑
k=0

(x⊤
k Qxk + u⊤

k Ruk) + x⊤
N PxN , (2.4a)

s.t. xk+1 = Adxk + Bduk, (2.4b)
uk ∈ U, (2.4c)
xk ∈ X, (2.4d)
x0 = x(t), (2.4e)
xN ∈ XN, (2.4f)

where the matrix P ∈ Rnx×nx , P ≻ 0 penalizes the squared value of system states at
the end of the prediction horizon. The matrix P is chosen such that the terminal
penalty term has a form of a Lyapunov function, and is given by the solution of the
discrete-time algebraic Riccati equation [43]:

A⊤
d PAd − P − A⊤

d PBd(B⊤
d PBd + R)−1B⊤

d PAd + Q = 0. (2.5)

The set XN ⊆ Rnx denotes the terminal set in which the system states are desired
to belong in the last step of the prediction horizon. When the regulatory problem
is solved, the terminal set must contain the origin. When the stability guarantee
is required, the terminal set XN needs to be constructed as the maximal positively
invariant set [6], which is obtained from the system xk+1 = (Ad + Bd)xk, under the
terminal feedback control law uk = Kxk. The gain K is the stabilizing controller gain
such that (Ad − BdK) is stable, e.g., LQR controller gain, which is given as follows:

K = −(B⊤
d PBd + R)−1B⊤

d PAd. (2.6)

Note, the prediction horizon should be sufficiently large to result in a feasible sequence
of control inputs leading the states to the terminal set XN in N steps. If the terminal
penalty has a form of Lyapunov function and the terminal set is chosen as a maximal
positively invariant set, e.g., LQR-based set, the closed-loop stability is guaranteed [55].

2.1.2 Tracking problem
Besides the regulatory problem described in the Section 2.1.1, it is also possible to
formulate the MPC optimization problem as a tracking problem. The objective is to
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achieve a nonzero reference value of the system states or outputs. One of the tracking
problem forms is the incremental formulation, exploiting the relation between the
current and the previous control action:

∆uk = uk − uk−1. (2.7)

The increment of the control input is penalized and represents the optimized variable.
The optimization problem acquires the following form

min
∆u0,...,∆uN−1

N−1∑
k=0

((xref − xk)⊤Q(xref − xk) + ∆u⊤
k R∆uk), (2.8a)

s.t. x̃k+1 = Ãdx̃k + B̃d∆uk, (2.8b)
xk ∈ X, (2.8c)
uk ∈ U, (2.8d)
∆uk ∈ U∆, (2.8e)
x̃0 = x̃(t). (2.8f)

In the optimization problem (2.8), the state vector x̃⊤
k =

[
x⊤

k u⊤
k−1

]
is augmented

because of the combination of the original model constraint (2.1b) and the equation
for computing the new control action based on the previous input variable and its
change in (2.7). Then the augmented model in (2.8b) has the following form [57]:

x̃k+1 =
[
xk+1
uk

]
=

[
Ad Bd
0 I

] [
xk

uk−1

]
+

[
Bd
I

]
∆uk. (2.9)

The augmented state vector changed in the first constraint (2.8b) which defines the
system model, and the last one (2.8f), which defines the initial condition. The model
constraint (2.8b) is just abbreviated notation of (2.9). The constraint on the change
of the input variable is included in (2.8e), where the set U∆ ⊆ Rnu is a convex set
containing the origin in its strict interior. The remaining two constraints in (2.8d) and
(2.8c) are the same as in the original formulation of regulation problem in (2.1), thus
the values of the state and the input variables can be limited [57].
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2.2 Explicit model predictive control
Model predictive control is often applied in practice thanks to its many benefits. As it
solves a complex optimization problem in each control step, this type of control is time
and memory demanding. Therefore, it involves sufficient sampling time and devices
with control units that dispose of sufficient computational performance. The need
for wide optimal control implementation for the systems with fast dynamics or less
performing control units lead to the formation of explicit model predictive control [5].

In the fundamental work by Bemporad et al. [5], the authors show how to move all the
computations necessary for the implementation of MPC offline, while preserving all its
other characteristics. The entity of explicit model predictive control lies in the division
of the computation and implementation of control into two phases: offline phase
and online phase, see Figure 2.2. In the offline phase, the explicit model predictive
controller is constructed. Particularly, the set of optimal control actions is calculated
for the whole feasible set of values – polytopic partition, i.e., for all the states for which
the optimization problem has a solution. Such control law, i.e., the relation between
the optimal control action and the current system state, is stored in the form of some
lookup table. In the online phase, the real time control is provided. By searching in
the lookup table, the corresponding control law is assigned to the current system state
and evaluated in every control step [73].

Figure 2.2: Scheme of explicit MPC.

Construction of the explicit model predictive controller exploits the multiparametric
quadratic programming (mpQP) [18]. Therefore, any of the QP optimization problems
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described in the Section 2.1 can be reformulated into their mpQP counterpart [16]:

minU
1
2 U⊤HU + θ⊤FU (2.10a)

s.t. GU ⪯ Eθ + w, (2.10b)

where θ ∈ Rn is the vector of parameters. The vector of the optimization variable
U ∈ Rm is the vector of the manipulated variable optimized for the whole prediction
horizon N , i.e., U⋆ = [u⋆⊤

0 , . . . , u⋆⊤
N−1]⊤. Matrices H ∈ Rm×m ≻ 0, F ∈ Rn×m,

G ∈ Rc×m, E ∈ Rc×n, and vector w ∈ Rc define the problem data describing the
system model and its limitations, and c represents the number of optimization problem
constraints. Typically, the parameter θ defines the set of initial conditions of system
states, for which the problem is solved in the offline phase [8].

The optimization problem (2.10) can be rewritten for

z = U + H−1F ⊤θ, (2.11a)
S = E + GH−1F ⊤, (2.11b)

into the equivalent following form [7]

minz 1/2 z⊤Hz (2.12a)
s.t. Gz ⪯ Sθ + w. (2.12b)

Finally, the constraints of the optimization problem (2.12) can be divided as follows:

minz 1/2 z⊤Hz (2.13a)
s.t. GAz = SAθ + wA, (2.13b)

GN z ≺ SN θ + wN , (2.13c)

where A denotes the rows of matrices G, S, and vector w where the equality holds,
i.e., the constraints are active. On the contrary, N denotes the inactive constraints.
The index sets A and N are disjoint, i.e., A ∩ N = ∅ and A ∪ N = {1, . . . , c}.

Let us consider a particular combination of A and N . The corresponding Lagrange
multipliers for the active constraints are denoted as λA and the Lagrange multipliers
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of the inactive constraints are denoted as λN . For (2.13), the Karush-Kuhn-Tucker
(KKT) optimality conditions are [38]:

Hz⋆ + G⊤
Aλ⋆

A + G⊤
N λ⋆

N = 0, (2.14a)
λ⋆⊤

A (GAz⋆ − WA − SAθ) = 0, (2.14b)
λ⋆⊤

N (GN z⋆ − WN − SN θ) = 0, (2.14c)
GAz⋆ = WA + SAθ, (2.14d)

GN z⋆ ≺ WN + SN θ, (2.14e)
λ⋆

A ⪰ 0, (2.14f)
λ⋆

N = 0. (2.14g)

As for all inactive constraints GN z⋆ − WN − SN θ ≺ 0, from complementary slackness
condition (2.14c) it follows that the corresponding Lagrange multipliers λ⋆

N = 0.
Then, from the stationarity condition (2.14a) we obtain affine relation between the
optimization variable z and Lagrange multiplier λA

z⋆ = −H−1G⊤
Aλ⋆

A. (2.15)

By substituting (2.15) into (2.14d) we get the following relation

λ⋆
A = −(GAH−1G⊤

A)−1(wA + SAθ). (2.16)

Finally, we substitute (2.16) into (2.15) and obtain

z⋆ = H−1G⊤
A(GAH−1G⊤

A)−1(wA + SAθ). (2.17)

To conclude, the result of the optimization problem in (2.13) is an affine relation
between the optimization variable z and parameter θ:

z⋆ = F (A)θ + f(A), (2.18)

where the slope F (A) and the section f(A) depend on the specific combinations of the
active and inactive constraints

F (A) = H−1G⊤
A(GAH−1G⊤

A)−1SA, (2.19a)
f(A) = H−1G⊤

A(GAH−1G⊤
A)−1wA. (2.19b)
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The subset of the parametric space, where the affine control law in (2.18) is optimal, is
defined as a critical region R. The elements of the critical region R satisfy the primal
feasibility (2.14e) and dual feasibility conditions (2.14f) [5] and result in a closed and
bounded polytope

R =
{

θ ∈ Rn | Aθ ⪯ b
}

, (2.20)

where

A =
[

GN F (A) − SN
(GAH−1G⊤

A)−1SA

]
, (2.21a)

b =
[

wN − GN f(A)
−(GAH−1G⊤

A)−1wA

]
. (2.21b)

Note, the closure of the critical region is obtained by replacing the strict inequalities
with the non-strict ones.

We can see in (2.19) and (2.21), that every feasible combination of the active and
inactive constraints defines a specific critical region R with its corresponding affine
control law in (2.18). Therefore, when the multiparametric QP in (2.13) is solved for
the whole parametric space, one can obtain the complete piecewise affine control law
defined over all regions, i.e., over the polytopic partition given by ∪Rtotal

i Ri, where
Rtotal denotes the total number of the generated critical regions, see Figure 2.4.

Figure 2.3: Example of polytopic partition.
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Figure 2.4: Example of piecewise affine control law.

Figure 2.5: Optimal active sets of adjacent regions [32].

Definition 2.2.1. (Adjacent critical regions) [78] Given a full-dimensional critical
region Ri. A critical region Rj is adjacent to Ri if int(Ri) ∩ int(Rj) = ∅ and
Ri ∩ Rj ̸= ∅.
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Definition 2.2.2. (Optimal active sets of adjacent critical regions) [81] For
any two adjacent critical regions Ri and Rj the corresponding optimal active sets are
Ai ⊂ Aj and |Ai| = |Aj | − 1 or Aj ⊂ Ai and |Ai| = |Aj | + 1, see Figure 2.5.

Definition 2.2.3. (Linear independence constraint qualification (LICQ)) [8]
Linear independence constraint qualification is said to hold at z⋆ if the matrix GA has
full row rank.

Once the explicit model predictive controller is constructed, it can be utilized for control.
In the online phase of standard explicit MPC implementation, the point location
problem is solved. According to system state measurement θ, the corresponding critical
region is located such that θ ∈ Ri holds. When the corresponding critical region is
detected, the associated affine control law is utilized to implement the optimal control
action u⋆

0 into the system. In every control step, the whole procedure is repeated.

2.2.1 Construction of explicit MPC
In order to obtain the explicit PWA solution for (2.12), the critical regions Ri need to
be identified along with the corresponding optimizer z⋆

i for each region. There are two
types of methods that can be used to obtain the list of optimal active sets: geometric
approaches and enumeration procedures.

• Geometric approaches
One common approach to solving the mpQP problem is the geometric method,
which involves constructing an initial critical region by selecting a feasible
parameter value θ. This critical region provides information about the optimal
active set A by solving the mpQP in (2.12). Different geometric methods vary in
how they explore the rest of the parameter space. For instance, some methods,
such as those presented in [5] and [16], employ set difference operations to explore
the parameter space based on the known critical regions. Other methods, like
the one proposed in [81], select a new point by traversing the facets of the known
critical region. Obviously, all methods are employed until the entire parameter
space is covered.

• Enumeration procedures
In contrast to the geometric methods, the extensive enumeration approach
generates optimal active sets without the necessity to construct the critical
regions [21]. First, all possible combinations of active sets are enumerated and
organized by the increasing cardinality. To determine whether a particular
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candidate is optimal, the following KKT-system-based linear program is solved:

maxg,z,θ,λ g (2.22a)
s.t. Hz + G⊤

Aλ = 0, (2.22b)
GAz = SAθ + wA, (2.22c)
g ⪯ SN θ + wN − GN z, (2.22d)
λ ⪰ 0, (2.22e)
g ⪰ 0. (2.22f)

If the problem (2.22) is feasible with g⋆ ⪰ 0, the active set candidate is optimal
and yields a full-dimensional critical region. On the contrary, if the linear
program is infeasible, the candidate together with all the candidates in the
corresponding branch are not considered, i.e., pruned. This pruning leads to
significant complexity reduction of the offline phase. This idea is extended in
[42] where the authors suggest not storing the polytopic representation of the
critical regions. Instead, only analytical expressions of primal and dual variables
are stored, which leads to significant memory footprint reduction.

With increasing problem size, i.e., length of prediction horizon N , parameter size n or
size of the optimization variable m, the overall complexity of the solution is also rising.
Therefore, the number of critical regions is large. Then, the memory burden and point
location problem become more complex, and the usage of the explicit solution is hardly
tractable.

2.2.2 Degeneracies in mpQP
In practical applications, degeneracies in mpQP problem solutions may occur. The
primal degeneracy occurs if linear independence constraint qualification (LICQ) does
not hold, i.e., the rows of matrix GA are not linearly independent, see e.g. [81]. In
this case, the vector of Lagrange multipliers λ⋆ may not be uniquely defined. As
a consequence, it leads to the presence of the lower-dimensional critical regions in
the explicit solution. These lower-dimensional critical regions can be excluded from
the solution, as they form the facets between neighboring full-dimensional critical
regions [5].

The dual degeneracy [5] occurs when the objective function is linearly dependent on
some active constraint and leads to nonunique z⋆. In the problem formulation in this
thesis, the dual degeneracy cannot occur, as the objective function is strictly quadratic,
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i.e., H ≻ 0, see problem formulation in (2.10) and the corresponding assumptions
below.

2.3 Partial explicit MPC
One of the perspective techniques on how to handle large-scale optimization problems
with numerous active sets is a partial solution of the explicit MPC, see [32]. The main
idea is to solve the problem of explicit MPC only for particular initial points from the
feasible domain, i.e., feasible seeding points. Therefore, only a subset of all critical
regions is determined and stored, i.e., Ri, i = 1, . . . , R, where R denotes the number
of the evaluated and stored critical regions. The partial solution of explicit MPC can
be seen in Figure 2.6.

Since not all critical regions are constructed, it can often occur in the online phase
that the current state measurement θ does not lay inside any of them, i.e., θ /∈ Ri,
∀i = 1, . . . , R. In such cases, the optimal solution of the optimization problem in (2.12)
needs to be solved to find the optimal control action.

Figure 2.6: Example of partial solution of explicit MPC. The blue critical regions
are constructed and stored for the online phase.
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To initialize evaluation of the optimal control action, a near critical region is utilized.
This is a useful tool to streamline searching for the critical region where the measurement
belongs. This procedure is called hot start strategy [17]. Once the critical region or
associated active set is identified, then the corresponding control law is determined to
find the optimal control action.

2.3.1 Initial seeding points
There are various ways of determining the set of initial seeding points, for which the
QP in (2.12) is solved in the offline phase. One of the ways is to generate a grid
of points uniformly distributed in the feasible parameter space. Another way is to
distribute the seeding points randomly, utilizing so-called random walks. The random
walks represent an efficient strategy to obtain a random distribution of points inside a
large-scale polytope (parameter space), as the aim is to develop mainly those critical
regions that are volumetrically significant and not to explore the feasible parameter
space entirely. Various random walk techniques exist in the literature, e.g. [12] and
[76].

Figure 2.7: Hit and run sampling principle [32].
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In [32], the authors follow up on work [76] denoted as hit and run sampling. The main
steps are as follows. The starting point θ0 to initialize the algorithm is selected, and a
random direction d⃗ is determined. Then, the maximum distance, denoted as s, the
parameter θ0 can move along the direction d⃗ staying feasible is identified from:

maxs s (2.23a)
s.t. GU ⪯ E(θ + d⃗s) + w, (2.23b)

s > 0. (2.23c)

After that, a random value between (0, s⟩ is determined, and a new point θ1 is identified
by moving along the direction vector d⃗ by this amount. The procedure is then repeated
until enough seeding points are collected. The principle of the hit and run sampling
procedure can be seen in Figure 2.7.

By increasing the number of sample points, it is possible to identify more critical
regions defining the partial explicit solution. On the other hand, more critical regions
have to be stored, which leads to an increased memory burden. Therefore a balance in
determining a sufficient number of sample points is needed.

2.3.2 Hot start strategy
In the online phase of the partial explicit MPC, the hot start strategy is utilized
to streamline the identification of the critical region where the current value of the
parameter lies. The hot start strategy utilizes a near parameter realization θi, its
corresponding region Ri, and the current parameter θj , to find the critical region Rj

such that θj ∈ Rj [17]. The benefit of the hot start technique lies in exploiting the
property of two adjacent critical regions, see Definition 2.2.2. As the optimal active
sets of the neighboring critical regions differ in only one constraint, this constraint is
identified, and the neighboring critical region is determined.

The procedure is summarized as follows. Given a measurement θj and a near value
of parameter θi along with its corresponding critical region Ri. First, it is checked
whether the measurement θj ∈ Ri. If it lies in the critical region Ri, the corresponding
control law can be directly utilized to determine the optimal control action. If not, a
direction vector d⃗ from θi to θj is identified. The next step is to find the intersection
of the vector d⃗ and the facet of Ri. In other words, a constraint defining the critical
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region that will be violated first is identified:

l = arg min
l

γl ≥ 0, l = 1, . . . , |b|, (2.24)

where

γ = (b − Aθi) ⊘ Ad⃗, (2.25)

with the symbol ⊘ representing the Hadamard division [80]. The intersected facet
corresponds to the index l associated with minimal non-negative γ⋆. This constraint
is either added or removed from the active set combination defining Ri.

The determination of the optimal active set of the adjacent critical region is based
on Definition 2.2.2. Given the optimal active set combination {i1, . . . , ik} and its
corresponding critical region R0. Let R1 be a neighboring critical region, and H
denotes the separating hyperplane. The vector λ represents the Lagrange multipliers
associated with the active set combination of R0.

• If H is defined by Gi,k+1U = Ei,k+1θ + wi,k+1, then R1 is defined by the active
set combination {i1, . . . , ik, ik+1}.

• If H is defined by λi,k = 0, then R1 is defined by the active set combination
{i1, . . . , ik−1}.

Given the new active set, the adjacent critical region is found. After that, the parameter
value θj is checked to exist in this new critical region, and the procedure is repeated
until the associated critical region Rj is found. The principle of the hot start strategy
is depicted in Figure 2.8.
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Figure 2.8: Principle of hot start strategy utilized for identifying the critical region
associated with parameter θj . The blue critical region is known along
with its internal point θi. The grey points are the intersections of the
facets of critical regions and the direction vector d⃗ between the two
parameter values.

Implementation of the hot start strategy requires storing one point, which lies inside
every stored critical region, a so-called feasible point. In [32], it is suggested to construct
the Chebyshev ball inside each considered critical region and store its center.

2.3.3 Chebyshev ball
In this section, the problem of finding the Chebyshev ball is described. The Chebyshev
ball represents the maximal volume inner approximation of a polytope R described by
h linear inequalities [9]

R = {x ∈ Rn|α⊤
i x ⪯ βi, i = 1, . . . , h}, (2.26)

where α and β describe the halfspaces of the polytope.

The Chebyshev ball is identified from the linear program [9]

maxr,C r (2.27a)
s.t. α⊤

i C + r∥αi∥2 ⪯ βi, i = 1, . . . , h, (2.27b)

where the optimization variables are the radius r and the center C of the Chebyshev
ball.
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Figure 2.9: Example of non-unique Chebyshev balls.

The Chebyshev balls’ centers Ci are then stored along with the associated critical
regions Ri , ∀i = 1, . . . , R. It should be noted that problem 2.27 may have multiple
optimal solutions, i.e., the Chebyshev ball inscribed in the given polytopic region Ri is
not unique in general, see Figure 2.9. Multiple maximal volume balls can be inscribed
in the polytope, e.g., when the critical region has a shape of hyperbox, trapezoid,
parallelotope, etc. Nevertheless, any Chebyshev ball can be considered, as the aim is
to find a feasible point laying inside the specific critical region.

2.3.4 Procedure
The procedure of the partial explicit MPC based on [32] is described in the two
following algorithms, where Algorithm 1 summarizes the steps of the offline phase, and
Algorithm 2 summarizes the steps of the online phase.

Algorithm 1: Offline phase of partial explicit MPC [32].

Inputs: Set of R random feasible seeding points {p1, p2, . . . pR}
Outputs: Matrices Ai and bi of critical regions Ri in (2.20), centers of Chebyshev balls Ci, binary
vectors Ii, i = 1, . . . , R

1: for each pi do:

2: solve the QP in (2.12) for θ ← pi

2: find and store optimal active set Ii

3: construct the critical region Ri in (2.21)

4: store the polytope matrices Ai, bi

5: for each Ri do:

6: construct Chebyshev ball R̃i

7: store Chebyshev ball center Ci of R̃i
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Algorithm 2: Online phase of partial explicit MPC [32].

Inputs: Parameter value θ, matrices Ai and bi of critical regions Ri, centers of Chebyshev balls Ci,
binary vectors Ii, i = 1, . . . , R, optimization problem matrices H, G, w, S in (2.12)
Output: Optimal control action u⋆

0

1: for each Ri do:

2: vi = ∥θ − Ci∥

3: solve v⋆ = min vi, ∀vi.

4: find the region Ri and associated active set Ii corresponding to the minimal v⋆

5: if θ ∈ Ri:

6: apply the optimal control action u⋆
0 using Ii and (2.18)

7: else:

8: find optimal active set I⋆ from hot start procedure using Ii

9: apply the optimal control action u⋆
0 using I⋆ and (2.18)

In the offline phase, the QP in (2.12) is solved for every feasible seeding point pi. The
solution in the form of optimal active sets is then stored for online phase as a binary
vector Ii. This vector has a cardinality given by the number of constraints, i.e., |G|
in (2.12). The elements of the binary vector represent the fixed-ordered indices of
constraints, and their binary values indicate if the particular constraint is active or
inactive, e.g., see [61]. When the optimal active set is available, the corresponding
critical region is constructed and the matrices A and b defining the polytope are stored.
The last steps of the offline phase are dedicated to finding and storing the Chebyshev
ball center and radius for every critical region.

Remark 2.3.1. (Storing the control law) As binary vectors Ii, i = 1, . . . , R, defining
the active sets are stored, the matrices F (A) and f(A) are recovered from the problem
matrices H, G, w, and S to apply the optimal control action u⋆

0. It is also possible to
store the matrices F (A) and f(A), along with the polytopic regions Ri, but it leads to
an unnecessary increased memory burden.

Remark 2.3.2. (Number of critical regions) The random distribution of the feasible
seeding points pi, i = 1, . . . , R, that serve to initialize the partial parametric solution of
the optimization problem in the offline phase could lead to multiple evaluations of the
same critical region, i.e., pi 7→ Ri, pj 7→ Ri, for pi ≠ pj. In such case, it is sufficient
to store such a critical region just once. Then two options are: (i) accept the number
of the unique critical regions lower than the number of the feasible seeding points, or
(ii) insert a new random feasible seeding point until the required number of the unique
critical regions is evaluated.



2.3 Partial explicit MPC 31

Figure 2.10: Example of partial explicit MPC: determination of the critical region
utilized in the hot start strategy. The critical region associated with
the minimal distance v⋆ (red line) between its Chebyshev center and
the parameter value θ is exploited to find the optimal control action.

In the online phase, the partial explicit solution is exploited. First, a distance between
the current parameter and every Chebyshev center is evaluated. The optimal active
set of the critical region associated with the nearest Chebyshev center is identified, see
Figure 2.10. Afterward, it is checked whether the parameter lies in the critical region.
If the parameter lies in the polytope, the corresponding optimal active set is utilized
to apply the optimal control action. Otherwise, the hot start procedure is performed
to find the optimal active set corresponding to the current parameter value. In the
next control step, the whole procedure of Algorithm 2.3.4 is performed again.

2.3.5 Memory footprint
For large-scale optimization problems, it is essential to investigate the memory burden.
In the online phase, the controller utilizes the data H, G, w, and S of the optimiza-
tion problem in (2.12), as well as the partial solution represented by matrices Ai, bi
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defining the critical regions Ri in (2.20), see inputs of Algorithm 2. Moreover, the
feasible points of all stored regions, i.e., the Chebyshev centers Ci, i = 1, . . . , R, are
saved. The problem size is given by the parameter dimension n, dimension of the
optimization variable m, and the length of the prediction horizon N . Obviously, if
the problem size is large, then the demands on memory storage become hardly tractable.

Lemma 2.3.3 (Memory footprint of polytopic region). Given mpQP in (2.12). The
memory footprint of the i-th critical region Ri ⊂ Rn having a form of a polytope given
by hi halfspaces defined in (2.20) requires following number of floating-point numbers
necessary to store this polytope

n(Ri) = hi × n + hi. (2.28)

Proof: Proof of Lemma 2.3.3 directly follows from the structure of the polytopic
i-th critical region Ri, i.e., the data necessary to store hi halfspaces determined by a
matrix Ai ∈ Rhi×n and vector bi ∈ Rhi in (2.20). □

The memory footprint necessary to store the data of partial solution is not only large
but it is also unpredictable. Although the number of the critical regions is determined
by the number of random points R, and the upper bound on the data size defining the
critical region is known, it is not possible to predict the exact size of the data that we
need to store in advance before solving the optimization problem. It is obvious from
Lemma 2.3.3, that the number of floating-point numbers n(Ri) in (2.28) necessary
to store the critical region Ri is not fixed and varies from one region to another.
Particularly, the value of n(Ri) depends on the number of halfspaces hi that define
the i-th specific critical region.

Theorem 2.3.4 (Memory footprint of polytopic partial solution). Given mpQP in
(2.12). The total memory footprint of partial solution consisting of R critical regions
including the optimization problem matrices H, G, S, w, and R binary vectors of
active constraints I, requires following number of floating point numbers

n(∀R) =
R∑

i=1
(n(Ri)) + R n + R

c

64 + (m × m + c × m + c × n + c), (2.29)

where n is the parameter dimension, m is number of the optimization variables, c

represents the number of constraints, and n(Ri) denotes the memory footprint of the
i-th specific critical region in (2.28).
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Proof: Proof of Theorem 2.3.4 directly follows from the structure of the polytope
in (2.28), dimensions of the optimization problem matrices in (2.12), and the number of
the critical regions R. According to Lemma 2.3.3, the memory consumption of the i-th
polytopic critical regions n(R) is defined by finite number of halfspaces hi determined
by a matrix Ai ∈ Rhi×n and vector bi ∈ Rhi in (2.20). The remaining data contains:
memory footprint of corresponding binary vectors Ii, i = 1, . . . , R and matrices of the
optimization problem H, G, S, w in (2.12). Note, the memory footprint necessary to
store the binary vector I defining the active sets is divided by 64 to transform the
binary format to the double floating point numbers. □

According to Theorem 2.3.4, it is necessary to solve the large-scale optimization problem
to determine the total memory footprint.

2.4 Fixed-memory partial explicit MPC design
This section is devoted to one of the main contributions of this thesis, i.e., designing the
fixed-memory parametric solution of partial explicit MPC. The term “fixed-memory”
denotes that the size of the memory footprint necessary to store the parametric solu-
tion is determined in advance, i.e., before solving the multiparametric optimization
problem in (2.12). This is a groundbreaking benefit enabling us to scale the solution
of the partial explicit MPC to respect the limited memory of the hardware, where the
controller will be installed.

We recall that in the MPC framework introduced in [32], the partial solution of explicit
MPC is evaluated. The critical regions are stored in the form of polytopes Ri in (2.20),
and also the Chebyshev balls’ centers Ci are stored, see Algorithm 1. The centers
of Chebyshev balls Ci are then used in the online phase to evaluate the distance
to the measurement θ. The Chebyshev ball center nearest to the measurement θ is
determined and the corresponding critical region Ri is used for initialization of the
hot start procedure to solve the large-scale optimization problem in (2.12) for a given
state measurement θ, see Algorithm 2.

The main idea of a fixed memory footprint is to replace the polytopic region Ri with
its maximal volume inner approximation R̃i using the Chebyshev ball. In other words,
it is not necessary to store the large data Ai, bi defining the polytopes Ri in (2.20),
but only the light-weight data defining the Chebyshev balls R̃i are stored. As a
consequence, the memory footprint of each critical region is fixed.
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Figure 2.11: Example of fixed-memory partial solution of explicit MPC. The poly-
topic regions Ri (black dashed) are not stored. Instead, the Chebyshev
ball approximations R̃i are stored (blue). In the online phase, the
minimum distance v⋆ from the set of Chebyshev balls (red line) to the
current measurement θ is found.

Except for fixing the memory footprint, this approach leads to significant memory
savings. Compared to storing the polytopic representation of the critical region Ri,
the memory savings are ensured, as just a single point (center of Chebyshev ball
Ci) and a scalar (radius of Chebyshev ball ri) are stored for each critical region, R̃i,
∀i = 1, . . . , R. The principle of fixed-memory partial solution of explicit MPC can be
seen in Figure 2.11.

Moreover, another benefit of this approach is that the evaluation of the nearest critical
region to the current state measurement θ is more accurate compared to the one
introduced in [32].

In [32], the distance vi between the current system measurement θ and the critical
region Ri is evaluated by the center of the Chebyshev ball Ci, i.e., vi = ∥θ − Ci∥. In
contrast, the novel approach evaluates the distance vi using the boundary of Chebyshev
ball given by its radii ri, i.e., vi = ∥θ − Ci∥ − ri. Therefore, the distance vi between
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the current system measurement θ and the original polytopic set Ri approximated by
the Chebyshev ball R̃i is more accurate in comparison to the original approach based
just on a center of inscribed Chebyshev ball Ci, see Figure 2.12.

Figure 2.12: Comparison of determination of the nearest critical region. In a), the
idea is adapted from [32], where the critical region with the nearest
Chebyshev ball’s center was utilized for the hot start strategy. In b),
the novel approach is employed, i.e., the critical region with the nearest
Chebyshev ball is determined and utilized, which leads to more accurate
initialization of the hot start strategy.

2.4.1 Procedure
The Algorithm 1 and Algorithm 2 were revisited to demonstrate the online phase and
offline phase of the fixed-memory partial explicit MPC procedure.

The offline phase procedure of fixed-memory partial explicit MPC is evaluated by
Algorithm 3. Compared to the original procedure in Algorithm 1, the novel approach
is extended by storing the Chebyshev ball radii ri. On the other hand, the polytopic
representations of the critical regions Ai, bi in (2.20) are not stored. If necessary,
Ai, bi can be recovered in the online phase from the binary vector Ii defining the
corresponding active set A and the matrices H, G, S, w of the optimization problem
in (2.12).

The online phase of the fixed-memory partial explicit MPC is described in Algorithm
4, where the distances from the boundaries of the Chebyshev balls are identified
(Algorithm 4, Step 2), in contrast to the original approach in [32], cf. Algorithm 2,
Step 2.

In Algorithm 2, if current system measurement θ lies inside some of the approximated
critical regions R̃i, then the optimal control action is evaluated using the corresponding
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control law in (2.18). Otherwise, if θ does not lie inside any of the Chebyshev balls,
i.e., θ /∈ R̃i, ∀i = 1, . . . , R, then the nearest Chebyshev ball is used for hot started
solution of the large-scale optimization problem in (2.12). The rest of the procedure
remains the same as proposed in [32].

Algorithm 3: Offline phase of fixed-memory partial explicit MPC.

Input: Set of R random feasible points {p1, p2, . . . pR}
Outputs: Centers of Chebyshev balls Ci, radii of Chebyshev balls ri, binary vectors Ii, i = 1, . . . , R

1: for each pi do:

2: solve the QP in (2.12) for θ ← pi

3: find and store optimal active set binary vector Ii

4: construct the critical region Ri in (2.21)

5: for each Ri do:

6: construct Chebyshev ball R̃i

7: store center Ci and radius ri of R̃i

Algorithm 4: Online phase of fixed-memory partial explicit MPC.

Inputs: Parameter value θ, centers of Chebyshev balls Ci, radii of Chebyshev balls ri, binary vectors
Ii, i = 1, . . . , R, optimization problem matrices H, G, S, w

Output: Optimal control action u⋆
0

1: for each Ci do:

2: vi = ∥θ − Ci∥ − ri

3: if (vi < ri) :

4: apply the optimal control action u⋆
0 using Ii

5: break

6: solve v⋆ = min vi, ∀vi

7: identify active set Ii of the nearest region for v⋆

8: construct the polytopic critical region Ri using Ii and optimization problem matrices H, G, S,
w

9: if θ ∈ Ri :

10: apply the optimal control action u⋆
0 using Ii

11: else:

12: find optimal active set I⋆ from hot start procedure using Ii

13: apply the optimal control action u⋆
0 using I⋆ and (2.18)

Note, the proposed approach interferes with the online phase of the original approach
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adapted from [32] in one major step – construction of the nearest polytope, see
Algorithm 4, Step 8. After the nearest critical region is estimated, the rest of the
online procedure remains the same. The remainder of the modifications represents a
negligible computational intervention compared to the construction of the polytope,
i.e., checking whether the parameter lies in the Chebyshev ball in Algorithm 4, Step 3,
and subtracting the radius in Algorithm 4, Step 2.

Remark 2.4.1 (Degeneracies in mpQP). In practical applications, primal degeneracy
in mpQP problem solutions may occur, see Section 2.2.2. It leads to the presence of the
lower-dimensional critical regions in the (partial) explicit solution. In the offline phase,
these lower-dimensional critical regions can be excluded from the solution, as they form
the facets between neighboring full-dimensional critical regions. Then, during the hot
start strategy in the online phase, it is checked whether LICQ holds on the facet of a
polytope intersecting the direction vector. If LICQ does not hold, a QP is solved with
improved initialization based on the known critical region.

2.4.2 Memory footprint
To support the benefits of the proposed ideas, the memory footprint associated with
the fixed-memory approach was investigated as well as the original approach in [32].

Lemma 2.4.2 (Memory footprint of approximated region). Given mpQP in (2.12).
The memory footprint of the approximation of the i-th critical region R̃i ⊂ Rn using
the Chebyshev ball is fixed and requires following number of floating-point numbers

n(R̃) = 1 + n. (2.30)

Proof: Proof of Lemma 2.4.2 directly follows from the fixed structure of the Chebyshev
ball, i.e., the data necessary to store the Chebyshev balls’ radius r ∈ R and coordinates
of its center C ∈ Rn. □

Remark 2.4.3. The fixed memory footprint of R̃i could be ensured also by other
well-known maximal volume inner approximations of the polytopic critical region Ri

in (2.20), e.g., by hyperboxes or ellipsoids. In this thesis, the Chebyshev balls are
considered as they lead to a reasonable trade-off between the numerical complexity and
the volume of the approximation R̃i. Obviously, introducing inner approximation may
lead to a situation when the critical region is not detected in the online phase, although
the critical region is known, i.e., θ ∈ R̃i ⇒ θ ∈ Ri, but θ ∈ Ri ̸⇒ θ ∈ R̃i.

As the inner approximation R̃i using the Chebyshev ball of each critical region Ri has
the same fixed structure ∀i = 1, . . . , R, the fixed memory footprint of each region is
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enforced, see Lemma 2.4.2. Next, the fixed-size memory footprint necessary to store
all data utilized in the online phase is determined.

Theorem 2.4.4 (Memory footprint of approximated solution). Given mpQP in (2.12).
The total memory footprint of partial solution consisting of R approximated critical
regions, including the optimization problem matrices H, G, S, w, and R binary vectors
indicating the set of active constraints Ii requires following number of floating point
numbers

n(∀R̃) = R n(R̃) + R
c

64 + (m × m + c × m + c × n + c). (2.31)

where n(R̃) denotes the memory footprint of one critical region approximated using
the Chebyshev ball in (2.30).

Proof: Proof of Theorem 2.4.4 directly follows from the fixed structure of the Cheby-
shev ball, dimensions of the optimization problem matrices, and the number of the
critical regions R. According to Lemma 2.4.2, the memory consumption of the ap-
proximated critical regions n(R̃) is defined by Chebyshev balls’ radii ri and centers Ci.
The remaining data contains: memory footprint of corresponding binary vectors Ii,
i = 1, . . . , R and matrices of the optimization problem H, G, S, w in (2.12). We recall,
the memory footprint necessary to store the binary vector I defining the active sets is
divided by 64 to transform the binary format to the double floating point numbers. □

Corollary 2.4.4.1. The total memory footprint of a partial solution n(∀R̃) in Theo-
rem (2.4.4) is an affine function of the number of the considered approximated critical
regions R, and is independent on the solution of the optimization problem in (2.12).

Proof: First, let us prove that (2.31) is an affine function of R. According to
Theorem 2.4.4, the total memory footprint of partial solution is given by (2.31), that
can be rewritten into an equivalent form of a affine function of R given by:

n(∀R̃) = p R + q, (2.32)

where the slope is p = (n(R̃) + c
64 ) and the section is q = (m × m + c × m + c × n + c).

Next, it is shown that (2.32) is independent on the solution of the optimization
problem in (2.12). Function (2.32) is defined by p, q, and depends on variable R. The
parameters p, q are determined only by the size of the optimization problem in (2.12),
and the number of feasible points R is given in advance. Therefore, p, q are evaluated
without the necessity to solve the optimization problem in (2.12). □
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2.5 Numerical results
This section is devoted to the demonstration of the benefits of fixed-memory partial
explicit MPC. We recall that the proposed approach interferes with the online phase
of the original approach adapted from [32] in one major step – construction of the
nearest polytope, see Algorithm 4, Step 8. The remaining modifications were minor,
i.e., checking whether the parameter lies in the Chebyshev ball in Algorithm 4, Step 3,
and subtracting the radius in Algorithm 4, Step 2. Therefore, the proposed operations
still represent a negligible part compared to the operations in the rest of the control
action evaluation procedure, e.g., the hot start strategy where multiple critical regions
are constructed. Because of this and the fact that the optimality of control input is
not affected by the proposed improvements, only the offline phase is analyzed. The
aim of this section is to analyze the memory footprint of the original approach based
on the polytopic representation of critical regions presented in [32] and the proposed
fixed-memory approach based on the maximal volume inner approximation using the
Chebyshev ball.

First, 5 differently large sets of 5 random large-scale systems were generated. For every
system model, the mpQP problem was formulated and partial solution was constructed
based on both approaches. For both approaches, the average memory footprint of the
solution was evaluated and compared. Finally, the memory savings associated with
the proposed approach were evaluated.

The advantages and properties of the proposed fixed-memory approach were demon-
strated and analyzed on the memory footprint comparison. First, the memory footprint
of the partial explicit solution was evaluated based on the original approach exploiting
the polytopic critical regions. Second, the memory footprint associated with the
Chebyshev ball-based solution was evaluated for the same generated problems. In this
thesis, the optimization problem formulation stated in (2.1) was considered.

First, 5 sets of large-scale systems were generated. Analogous to the case study
presented in [32], each set represented a specific problem size and contained 5 different
random systems. The differences in the sizes of the system sets were based on different
numbers of the optimization variables, i.e., sizes of the control input vectors u. Every
set had the same prediction horizon length N = 45 and dimension of the parameter
n = 50. The summary of the problem sizes for every set of mpQP problems is
summarized in Table 2.1.

Particularly, the memory footprint was determined for each of the 25 large-scale
problems using both methods. For each of the investigated problems, the sets of
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Table 2.1: Problem sizes of the generated sets of large-scale systems.

Set of systems Dimension of u Optimization variables Constraints
1 17 765 6 030
2 20 900 6 300
3 22 990 6 480
4 25 1 125 6 750
5 30 1 350 7 200

random feasible seeding points were generated to obtain 300 unique critical regions,
i.e., Ri, i = 1, . . . , 300. Note, to obtain 300 unique critical regions it is necessary to
generate more than 300 initial seeding points as multiple initial conditions may lead
to the same critical region, see Remark 2.3.2. Then, the average values of the memory
footprints were analyzed for each set of 5 large-scale systems using (2.29) and (2.31).

We recall that in both cases, it is necessary to store the matrices of the optimization
problem H, G, S, w, the binary vectors defining the active constraints I and the
centers C of Chebyshev balls inscribed in every critical region of the partial solution.
The difference lies in storing the Chebyshev balls’ radii r when considering the second
approach. The second difference in memory footprint is storing the critical regions in
the form of polytopes in the original approach, see Theorem 2.3.4 and Theorem 2.4.4.

The generated results for the considered set of 5 types of large-scale systems are
summarized in Table 2.2. The results presented in Table 1 were generated using
MATLAB R2020b, YALMIP R20200930 [47] and solver GUROBI 9.1. The results
were performed on a computer running 8 cores and AMD Ryzen 7 PRO 4750U at
4.1 GHz, and 16 GB RAM.

The first two columns of Table 2.2 provide the information about the given problem size
in (2.12). The second column contains the information about the memory footprint of
the optimization problem matrices H, G, S, w, which is the same for both approaches.
The next two columns compare the memory footprint necessary to store the solution
considering the polytopic approach (using Lemma 2.3.3) and the novel fixed-memory
approach (using Lemma 2.4.2). Finally, the last two columns focus on memory savings
which arise from the fixed-memory approach, while the first column contains the
memory savings of the solution (using Lemma 2.4.2), and the second one contains the
total memory savings considering also the problem matrices (using Theorem 2.4.4).

The generated results collected in Table 2.2 confirmed that considering the proposed
fixed memory approach significantly outperformed the original method presented in [32].
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Table 2.2: Results generated for the partial solution of 300 critical regions: memory
footprint comparison using the polytopic regions and Chebyshev balls for
different problem sizes.

Set of Problem Solution memory footprint [kB] Memory savings [%]
systems matrices [kB] Polytopes Chebyshev balls Solution Total

1 44 578 31 813 349 98.9 41.2
2 55 007 33 056 359 98.9 37.3
3 62 445 32 781 365 98.9 34.2
4 74 332 39 472 376 99.0 34.6
5 96 088 35 312 392 98.9 26.7

When considering just the solution of the partial explicit MPC, the memory footprint
necessary to store the fixed memory solution composed of the Chebyshev balls centers
Ci and radii ri, and corresponding binary vectors indicating active constraints Ii is
dramatically reduced compared to the memory footprint needed to store the polytopic
solution composed of the polytopes Ri, binary vectors Ii, and centers of the Chebyshev
balls Ci, ∀i = 1, . . . , 300.

The memory footprint necessary to store the solution considering the fixed memory
approach requires only around 1 % of the memory footprint corresponding to the
original method, i.e., the memory savings of fixed memory partial solution reach up to
99 %, see Table 2.2.

Note that also the matrices H, G, S, w of large-scale optimization problem in (2.12)
have to be stored to evaluate the online phase, see inputs of Algorithms 2, 4. The
contribution of the large-scale optimization problem matrices H, G, S, w to the total
memory consumption is significant and given, see Theorems 2.3.4, 2.4.4. Therefore, it is
necessary to evaluate the memory savings also considering the large-scale optimization
problem matrices H, G, S, w.

With increasing problem size, the contribution of the large-scale optimization problem
matrices to the total memory footprint significantly increases, see Table 2.2, column
“Problem matrices”. Therefore, the gap between the total memory footprints of
the considered two methods is lower, see Table 2.2, column “Total memory savings”.
Nevertheless, considering the smallest problem size (765 optimization variables and 6 030
constraints), when the problem data requires the lowest memory, the memory savings
are the highest and reach up to 41.2 %, see Table 2.2, column “Total memory savings”.

To conclude, the generated results in Table 2.2 demonstrate that the proposed fixed-
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memory partial explicit MPC is not only an effective approach to determine the size of
the partial solution in advance, but this method also provides a significant improvement
in the memory savings compared to the original method in [32].



Chapter 3

Self-tunable model predictive control

The third chapter of this thesis is dedicated to the topic of self-tunable approximated
explicit MPC. This control strategy addresses the second group of complex systems
considered in this thesis – the nonlinear and asymmetric systems. In the first part, the
concept of the tunable approximated explicit MPC is summarized. In order to be able
to practically implement a tunable MPC, the self-tuning technique itself is elaborated.
Two strategies of the tuning parameter setup are introduced. The first idea is based
on the current reference value, and the second approach exploits the current reference
change. Moreover, further scaling of the tuning parameter is proposed. Finally, the
next part is dedicated to the experimental case study on a laboratory heat exchanger.

3.1 Tunable explicit model predictive control
Explicit model predictive control [5] utilizes a parametric solution of the model predic-
tive control introducing its application range towards the systems with fast dynamics.
Moreover, the explicit solution enables providing rigorous analysis and certification of
the closed-loop system stability, constraints satisfaction, etc. As the explicit solution is
available, real-time solving of the optimization problem in every control step is omitted,
see Section 2.2. As this thesis chapter deals with industrial-oriented implementation of



44 Self-tunable model predictive control

the linear MPC, let us consider the MPC optimization problem in the following form:

min
u0,u1,...,uN−1

N−1∑
k=0

(
(yk − yref)⊺Qy(yk − yref) + u⊺

kRuk + x⊺
I,kQIxI,k

)
(3.1a)

s.t. : x̃k+1 = Ãd x̃k + B̃d uk, (3.1b)
yk = C̃d x̃k, (3.1c)
uk ∈ U, (3.1d)
yk ∈ Y, (3.1e)
x̃0 = θ, (3.1f)
k = 0, 1, . . . , N − 1, (3.1g)

where k denotes the step of the prediction horizon N . To obtain the offset-free control
results, the built-in integrator was included in the state-space model, e.g., see [74].
The prediction model in (3.1b)–(3.1c) has the form of augmented linear time-invariant
(LTI) system for a given augmented state matrix Ãd ∈ Rnx̃×nx̃ , augmented input
matrix B̃d ∈ Rnx̃×nu and augmented output matrix C̃d ∈ Rny×nx̃ . Variables x̃ ∈ Rnx̃ ,
u ∈ Rnu , y ∈ Rny are vectors of corresponding augmented system states, control inputs,
and system outputs, respectively. The sets U ⊆ Rnu , Y ⊆ Rny are convex polytopic
sets of physical constraints on inputs and outputs, respectively. These sets include the
origin in their strict interiors. The penalty matrix Qy ∈ Rny×ny , Qy ⪰ 0 penalizes the
squared control error, i.e., the deviation between the controlled output and output
reference value yref . The matrix R ∈ Rnu×nu , R ≻ 0 penalizes the squared value of
control inputs. The value of integrator is also penalized in the cost function with
the penalty matrix QI ∈ Rny×ny , QI ⪰ 0. All the penalty matrices are considered to
be diagonal due to the applicability of the self-tunable explicit MPC approach. The
parameter θ ∈ Θ in (3.1f) represents the initial condition of the optimization problem
for which it is parametrically pre-computed.

The augmented model of the controlled system with the built-in integrator in (3.1b)–
(3.1c) is rewritten as follows:

x̃k+1 =
[

xk+1
xI,k+1

]
=

[
Ad 0

−TsCd I

] [
xk

xI,k

]
+

[
Bd
I

]
uk, (3.2a)

yk =
[
Cd 0

] [
xk

xI,k

]
, (3.2b)

where xI ∈ Rny is the integral of the control error, Ts denotes the sampling time, and
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matrices Ad, Bd, Cd are the well-known state-space matrices that form the augmented
LTI model. As a consequence of this extension and penalization in the cost function
in (3.1a), not only the control error is penalized, but also the integrated value, which
leads to analogous offset-free reference tracking results as incorporating an integral
part in the PID controller.

The parametric solution of the optimization problem of the quadratic programming
(QP) in (3.1) leads to the explicit solution in the form of piecewise affine PWA control
law defined above the domain consisting of r critical regions:

u(θ) =


F1 θ + g1 if θ ∈ R1,

F2 θ + g2 else if θ ∈ R2,
...

Fr θ + gr else if θ ∈ Rr,

(3.3)

where Fi ∈ Rnu×nx and gi ∈ Rnu respectively are the slope and affine section of
the corresponding control law. The PWA function defined in (3.3) is stored and
recalled in the online phase, i.e., during the real-time control. Based on the identified
polytopic critical region Ri, where the parameter θ belongs, the optimal control input
is calculated according to the associated control law in (3.3).

Many other formulations of the optimization problems for the explicit MPC design
were formulated mainly in terms of the definition of the cost functions in (3.1a). Also,
the incremental (velocity) formulation of the state-space model is common, but leads
to further extension of the vector of parameters θ, and therefore also the complexity
of the explicit MPC controller increases. Another option for offset-free tracking is
introducing disturbance modeling and estimation. For such an overview see, e.g., [35].

The aggressivity of the controller and the whole nature of the control is influenced by
appropriate fine-tuning of the penalty matrices in the optimization problem in (3.1).
When the multi-parametric QP (mpQP) problem is precomputed offline to obtain the
corresponding parametric solution, it is not possible to tune the controller afterward
without trading off a significant increase in the controller complexity or the performance
loss. As the operating conditions and requirements on controller setup may differ
throughout the control, the ability to adjust the controller’s aggressivity can be very
beneficial.

The idea of approximated tunable explicit MPC comes from the work [36], where
the control action is calculated based on linear interpolation between two boundary
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control actions. These control actions result from evaluating two boundary explicit
MPCs. The boundary explicit controllers are constructed by solving the optimization
problem having the same structure and setup, except for one of the penalty matrices –
the tuned one. Based on the specific control application, any penalty matrix can be
chosen as the tuned parameter, i.e., this approach is applicable for any penalty matrix.
The boundary penalty matrices follow the assumptions on the penalty matrices from
Section 2.1 and are diagonal matrices such that λi,L ≤ λi,U, ∀i = 1, . . . , s, where λ

denotes the vector of eigenvalues of the penalty matrix, s is the rank of the tuned
penalty matrix, and the subscripts L, U denote the lower and upper boundary setup,
respectively.

Let us consider the penalty matrices in the cost function in (3.1a). Then, the penalty
matrices are scaled in the following way:

R(k) = (1 − ρ(k)) RL + ρ(k) RU, (3.4a)
QI(k) = (1 − ρ(k)) QI,L + ρ(k) QI,U, (3.4b)
Qy(k) = (1 − ρ(k)) Qy,L + ρ(k) Qy,U, (3.4c)

where ρ represents the tuning parameter such that 0 ≤ ρ ≤ 1 holds. Based on the
tuning rules in (3.4), it is possible to choose online any controller setup from the
lower to the upper boundary of the tuned matrix. From the implementation point
of view, it is preferred to tune just a single penalty matrix, i.e., to store only two
controllers corresponding to the boundary values of the selected penalty matrix. To
determine which penalty matrix in (3.4) should be tuned, it is suggested to judge
the control performance by systematic tuning of all the penalty matrices. Systematic
tuning involves selecting a specific penalty matrix and observing the control results by
gradually increasing or decreasing the diagonal elements of the matrix. This procedure
is then repeated for the remaining penalty matrices in a similar manner.

When the tuning parameter ρ is determined based on the current control conditions,
the approximated optimal control action is evaluated using the two optimal controllers.
Based on the boundary control actions, the interpolated, i.e., tuned control action is
calculated using the convex combination:

u(k) = (1 − ρ(k)) uL(k) + ρ(k) uU(k), (3.5)

where uL and uU denote the optimal control actions from the lower and upper boundary
explicit MPC, respectively. The online tuning comes with the cost of storing and
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Figure 3.1: Principle of tunable explicit MPC. The final control input value is
interpolated based on the upper (blue) and lower (green) boundary
controller.

evaluating two explicit controllers. Nevertheless, the ability to tune the controller may
be more important in many practical applications. The principle of tunable explicit
MPC is depicted in Figure 3.1.

The concept of explicit MPC tuning is applicable to a wide class of MPC design
formulations, based on the current specific control requirements. Without loss of
generality, hereafter, let us consider the penalty matrices of the cost function in (3.1a),
as it is necessary to satisfy offset-free reference tracking.

Remark 3.1.1. If the asymptotic stability and recursive feasibility guarantees are
required, the reader is referred to follow the instructions from [63]. In order to satisfy
these requirements, the study introduces a procedure for computing the standard terminal
penalty and terminal set for the two boundary controllers.

Remark 3.1.2. Not only (3.5) must be chosen for the interpolation of the final control
input. Another way to tune the control input is by using some nonlinear relation for
the interpolation.

3.2 Self-tunable explicit model predictive control
The advantage of a tunable controller brings a question of how to design the logic of
setting the tuning parameter ρ. This section provides an overview of the techniques
and ideas related to setting of the tuning parameter.
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3.2.1 Tuning parameter based on the reference value
In this section, the idea of online self-tuning is summarized [19]. The concept of self-
tuning provides the possibility to adjust the aggressiveness of the controller without
the necessity to intervene and tune the penalty matrices during control.

The need for real-time controller tuning often arises from tracking a time-varying
piece-wise constant (PWC) reference. Our work [19] focuses on adjusting the penalty
matrix when the reference value is changed. The further the reference value is from
the steady state, the more aggressively the controller is tuned. The idea behind the
suggested scaling lies in compensation for the nonlinear behavior of the system.

Consider a single-input and single-output (SISO) system or a multiple-inputs and
multiple-outputs (MIMO) system with completely decoupled pairs of the control inputs
and the system outputs. Then, the procedure of controller tuning is based on evaluating
the different operating points between the current value of the reference and the system
steady-state value. This deviation is considered to scale the value of control action.
First, the maximal admissible absolute value of the reference is defined. Analogous to
the reference trajectory preview concept of MPC design, this value can be determined
based on the general knowledge of the expected future reference values. Another
suggestion is to set the maximal deviation dmax based on the constraints on system
outputs:

dmax = max(|ymin|, ymax), (3.6)

where the symbol |.|, hereafter, denotes the element-wise absolute value, ymin and ymax
are respectively lower and upper bound on the output variable in the deviation form,
i.e., zero (origin) corresponds to the system steady-state value. Using the information
about the maximal possible deviation dmax, the tuning parameter ρ can be calculated
as the ratio between the current reference value and the maximal deviation:

ρ(k) = |yref(k)|
dmax

. (3.7)

Based on (3.7), the property 0 ≤ ρ ≤ 1 holds, as |yref | ≤ dmax. As a consequence,
the parameter ρ represents a way how to normalize the deviation from the steady-
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state value and is exploited to scale the control action or, implicitly, to tune the
aggressiveness of the controller.

Note that the reference value must be reachable from the operating range to ensure
that 0 ≤ ρ ≤ 1 holds. Otherwise, the interpolated control action would be the
“extrapolation” leading to the loss of guarantees on the input or state constraints
satisfaction, etc.

When considering tuning the control action based on (3.5), a higher value of tuning
parameter ρ leads to approaching the upper boundary controller and vice versa. When
tuning, e.g., the matrix Qy penalizing the control error, a higher ratio ρ would lead to
more aggressive control actions. When operating with the reference value close to the
system steady-state value, the parameter ρ decreases and the control profiles become
sluggish.

Remark 3.2.1. In general, the parameter dmax is a vector, as it depends on the size
of the system outputs. If dmax is scalar, the parameter ρ is scalar as well and can
be directly utilized to scale the control action. If multiple outputs are controlled, it is
suggested to calculate the tuning parameter based on the maximal ratio as follows:

ρ(k) = max
(

|yref(k)|
dmax

)
. (3.8)

Note that the relations in (3.7) and (3.8) operate with the absolute value of the
reference. It is not taken into account whether the reference value changed upwards
or downwards with respect to the system steady-state value placed in the origin, i.e.,
whether ∆ref(k) = yref(k) − yref(k − 1) > 0 or ∆ref(k) < 0. As many plants have
nonlinear behavior with an asymmetric nature (different behavior when the process
variable is rising or decreasing), the positivity or negativity of the reference change
could be considered in the controller self-tuning procedure to improve the control
performance.

3.2.2 Tuning parameter based on the size of reference change
This section extends the ideas of self-tunable explicit MPC in order to improve control
performance. First, a different way of tuning parameter calculation is introduced.
Furthermore, an extended self-tunable technique is presented to scale the tuning
parameter for industrial-oriented applications, when it is beneficial to exploit a specific
range of the tuning parameter in different operating conditions.
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Our approach of self-tunable explicit MPC introduced in [19] suggested tuning based
on the current reference value distance from the steady state. The aim is to compensate
for the nonlinear behavior of a system when using a simple linear prediction model.
This thesis provides also another useful way of the real-time evaluation of the tuning
parameter ρ based on the size of reference change. When different sizes of reference
step changes are made and the behavior of the closed-loop system is varying, it can be
beneficial to include the size of the reference step change in the tuning procedure.

In this approach, the aggressivity is adjusted based on the ratio between the reference
step change and the maximal reference step change that can be realized during the
control operation:

ρ(k) = |∆ref(k)|
∆max

, (3.9)

where ∆ref(k) = yref(k) − yref(k − 1) is the size of the reference step change. The
denominator of (3.9) is changed as well. In contrast to the maximal deviation from
the steady state in Section 3.2, this approach introduces ∆max as the maximal possible
reference step change. Analogously to the original approach, the maximal reference
step can be set based on the general knowledge of the expected future reference values,
i.e., ∆max = ∥∆ref(k)∥∞, ∀k ≥ 0. Another option is to exploit the information about
the system constraints and set the parameter ∆max according to (3.6).

Note, only the absolute value of ∆ref and ∆max are considered in this procedure to
ensure ρ ≥ 0.

In (3.9), it is suggested to increase the value of tuning parameter ρ with increasing
value of reference step change. Note, in this thesis, the larger value of the tuning
parameter leads to adding more weight on the penalty matrices associated with the
upper boundary controller, see (3.4). If the opposite logic of real-time controller tuning
is requested, it is possible to adapt the tuning such that

R(k) = ρ(k) RL + (1 − ρ(k)) RU, (3.10)
QI(k) = ρ(k) QI,L + (1 − ρ(k)) QI,U, (3.11)
Qy(k) = ρ(k) Qy,L + (1 − ρ(k)) Qy,U, (3.12)

hold. This change leads to adding more weight to the lower boundary controller with
the increasing value of the tuning parameter ρ.
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Remark 3.2.2. The tuning parameter ρ should be updated only when the reference
changes. Updating the tuning parameter in the control steps when ∆ref = 0 would lead
to using tuning parameter ρ with zero value, i.e., the control input would correspond to
one boundary controller and would not be scaled.

3.2.3 Self-tunable technique for systems with asymmetric be-
havior

This thesis provides a further extension of our self-tuning method proposed in [19]. The
suggested technique of tuning is suitable, e.g., for systems with asymmetric behavior,
but can be used in any application, where “simple” tuning in the whole range of tuning
parameter ρ is not sufficient.

The proposed self-tuning method is based on splitting the interval of the tuning
parameter ρ in order to utilize different parts of the interval in different operating
conditions. Instead of the original value of tuning parameter ρ, the adjusted tuning
parameter ρ̃ is then utilized to scale the control input according to. (3.5).

Definition 3.2.1 (Decision function). For a given interval of tuning parameter ρ,
0 ≤ ρ ≤ 1, let ρs, 0 < ρs < 1 be a boundary value splitting the interval into two parts.
Let γ : R → R be an arbitrary function such that 0 ≤ γ ≤ 1 holds. Then the decision
function γ is constructed to assign its value either γ ≤ ρs or γ ≥ ρs.

Various decision functions γ can be considered. In this thesis, the decision functions
according to (3.8) and (3.9) are suggested, while (3.9) was implemented and analyzed
in the experimental case study in Section 3.3.

Definition 3.2.2 (Scaling of the tuning parameter). Given the value of tuning param-
eter ρ, 0 ≤ ρ ≤ 1, the splitting value of the tuning parameter interval ρs, 0 < ρs < 1,
and the value of the decision function γ, 0 ≤ γ ≤ 1. Then the scaling of the tuning
parameter ρ̃ is given by:

ρ̃ =
{

ρ ρs if γ ∈ ⟨0, ρs⟩,
ρ (1 − ρs) + ρs, else if γ ∈ ⟨ρs, 1⟩. (3.13)

Remark 3.2.3. The introduction of splitting the tuning parameter ρ̃ into the tuning
intervals in (3.13) is not limited only to two intervals. If the nature of the controlled
plant would benefit from splitting the operating range into more intervals, e.g., when
the plant operates in the multiple steady-states values, then these intervals are simply
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determined by the corresponding values of ρs,i for each part of the interval. Next, the
tuning rules in (3.13) are adopted in an analogous way.

The following outcomes result from (3.13).

Lemma 3.2.4. Given control law in (3.3), its approximation given by the convex
combination in (3.5), and given scaled tuning parameter ρ̃ according to Definition 3.2.2.
Then the control action approximated into the form:

u(k) = (1 − ρ̃(k)) uL(k) + ρ̃(k) uU(k), (3.14)

preserves the closed-loop system stability and recursive feasibility of the original control
law in (3.3).

Proof. It has been proven in [63] that for the asymptotic stable and recursive feasible
pair of control inputs (uL, uU), the approximated control law in (3.3) preserves these
properties for any ρ satisfying 0 ≤ ρ ≤ 1, see Theorem 3.6 in [63]. It remains to prove
that for any value of the scaled tuning parameter ρ̃ according to the Definition 3.2.2
the same results hold. The rest of the proof of Lemma 3.2.4 consists of two parts
corresponding to each particular rule in (3.13).
First, it is proved that the Lemma 3.2.4 holds for any γ ≤ ρs. Substituting a lower
bound ρ = 0 into (3.13) leads to ρ̃ = 0. For the upper bound value of ρ = 1, from (3.13)
holds ρ̃ = ρs < 1. Next, for any value 0 < ρ < 1 evaluation of the linear rule in (3.13)
leads to the convex combination, i.e., 0 < ρ̃ < ρs holds. Therefore, any value of ρ̃

satisfies 0 ≤ ρ̃ ≤ ρs < 1. As a consequence, according to the Theorem 3.6 in [63], the
asymptotic stability and recursive feasibility of the control law in (3.14) are preserved.
Secondly, it is proved that the Lemma 3.2.4 holds also for any γ ≥ ρs. Substituting a
lower bound ρ = 0 into (3.13) leads to ρ̃ = ρs. For the upper bound value of ρ = 1,
from (3.13) holds ρ̃ = 1. Next, for any value 0 < ρ < 1 evaluation of the linear rule
in (3.13) leads to the convex combination, i.e., ρs < ρ̃ < 1 holds. Therefore, any
value of ρ̃ satisfies ρs ≤ ρ̃ ≤ 1. As a consequence, according to the Theorem 3.6
in [63], the asymptotic stability and recursive feasibility of the control law in (3.14)
are preserved.

Remark 3.2.5. The Lemma 3.2.4 can be extended subject to the multiple intervals in
an analogous way following the Remark 3.2.3.

The advantage of the proposed method remains in the self-tuning of the controller as in
the approach from Section 3.2. Nevertheless, it is required to appropriately determine
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Figure 3.2: Scheme of the self-tuning control evaluation.

the splitting value of the tuning parameter ρs and assign the parts of the interval to
the associated operating conditions. For a graphical overview of the proposed control
technique, see the procedure of self-tuning evaluation depicted in Figure 3.2.

Remark 3.2.6. Note, the suggested scaling method is suitable also for online MPC,
as the optimization problem is solved in every control step. Therefore, it is possible to
include the controller tuning in the procedure of computing the optimal control input.

From the point of computational complexity, the proposed tuning procedure does
not lead to any significantly demanding mathematical operations. Simple algebraic
operations in (3.9) and (3.13) are evaluated online. Note, the overall control strategy
still comes with the cost of storing and evaluating two explicit controllers.
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3.3 Experimental results
In this section, the results of the proposed self-tuning method are analyzed by an
laboratory implementation. The self-tuning strategy utilizes tuning parameter calcu-
lation based on the size of reference change (Section 3.2.2) and the scaling of tuning
parameter based on splitting the interval of the parameter and assigning the interval
parts to specific operating conditions (Section 3.2.3).

3.3.1 Heat exchanger plant
The plant on which the control was implemented and analyzed is a laboratory-scaled
counter-current liquid-to-liquid plate heat exchanger Armfield Process Plant Trainer
PCT23 [1], see Figure 3.3. The schematic of the plant is depicted in Figure 3.4. The
heat exchanger is 90 mm wide, 103 mm long, and 160 mm high. The heat exchange is
performed between the cold medium (water) and the hot medium (water). The cold
medium as well as the heating medium are transported to the heat exchanger by two
peristaltic pumps with flexible tubing from silicon rubber. The flow rate of the cold
medium is constant, while the aim of control is to track the reference value of the
outlet cold medium temperature. Therefore, the controlled variable is the cold medium
temperature T at the outlet of the heat exchanger. The inlet cold medium temperature
was constant during the whole control, i.e., TC = 19◦ C. The temperature of the heated
cold medium in the outlet stream was measured by the type K thermocouple. The
associated manipulated variable is the voltage U corresponding to the power of the
pump feeding the heat exchanger by the hot medium. The voltage is within the range
of [0 − 5] V normalized into the relative values in percentage. The maximal voltage
5 V or 100 % corresponds to volumetric flow rate 11.5 ml s−1. For further technical
specifications of the laboratory heat exchanger, the reader is referred to [1]. As heat
exchange is a nonlinear and asymmetric process [46], this heat exchanger represents
a suitable candidate for the presented controller tuning strategy. The corresponding
illustrative scheme of the implemented closed-loop control setup is in Figure 3.7, where
the “Self-tuning” block substitutes the more detailed scheme of the tuning procedure
in Figure 3.2.

The system model was identified by experimental identification. The aim was to work
with linear nominal model in MPC optimization problem to decrease the numerical
complexity. To avoid plant-model mismatch in order to ensure offset-free tracking,
either disturbance observer or built-in integrator in (3.1) can be employed. Due to
the ease of implementation, in this work, the built-in integrator was considered. The
system was identified based on several measured step responses. The step changes
were performed in the whole range of admissible values of manipulated variable and
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Figure 3.3: Laboratory heat exchanger Armfield Process Plant Trainer PCT23: cold
medium pump (1), heating medium pump (2), cold medium tanks (3),
heater for heating medium (4), heat exchanger (5).

Figure 3.4: Scheme of Armfield PCT23. Heat exchanger (I), peristaltic pump for
cold medium (II), peristaltic pump for heating medium (III), tank for
cold medium (IV), heater for heating medium (V), temperature sensors
(T – controlled temperature, TC – cold outlet cold medium temperature,
TH – heating medium temperature), and electric power for maintaining
the temperature of the heating medium (W).
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every step response was identified by transfer function. It was possible to identify
every step response as a first-order system, while the nominal gain and time constant
are respectively K = 0.24 ◦C and τ = 5.7 s. Finally, the nominal transfer function
was converted to the state-space model. The matrices of the discrete-time state-space
model of the plant are

Ad =
[
0.839

]
, Bd =

[
0.039

]
, Cd =

[
1
]

, (3.15a)

considering the sampling time Ts = 1 s.

3.3.2 Control design
This section delves into the control design. Besides the control design of two boundary
explicit MPCs, it was necessary to keep the temperature of the heating medium
constant. The heating medium was transported back to the heater after leaving the
heat exchanger, i.e., the volume of the heating medium was recycled during the whole
operation. The temperature of the heating medium was maintained on the value 70 ◦C
with a simple proportional controller with proportional gain P = 20. The control input
from the proportional controller was the electric power which could acquire the values
in the range [0 − 2] kW and was also normalized to percentage.

Next, the design of the boundary explicit model predictive controllers is elaborated. To
respect the physical limitations of the operating conditions, the following constraints
are considered in the terms of control inputs

−15 % ≤ u ≤ 65 %, (3.16)

where the variable u represents the control inputs in the deviation form. The values
of the heated cold medium temperature and voltage of the heating medium pump
corresponding to zero steady states are respectively T s = 35 ◦C and U s = 35 %.
Therefore, the physical constraints on the manipulated variable are actually

20 % ≤ U ≤ 100 %. (3.17)

As the controlled system is naturally stable even if the maximal or minimal value
of the manipulated variable is constantly applied, the constraints on the controlled
variable in (3.1e) could be omitted. On the other hand, unbounded states/outputs
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lead to higher memory consumption, because covering the whole possible range of
parameters requires more critical regions. Therefore, the “redundant” constraints on
the system outputs were included in order to reduce the number of critical regions and
the overall memory footprint of the explicit controllers. The output constraints were
set as:

−15 ◦C ≤ y ≤ 20 ◦C. (3.18)

The constraints in (3.18) are equal to physical temperature as follows:

20 ◦C ≤ y ≤ 55 ◦C, (3.19)

which corresponds to the range of temperature values which are achievable in the
considered laboratory conditions and setup.

The penalty matrices of the problem in (3.1) were systematically tuned, and the
corresponding control setup was implemented on the laboratory heat exchanger for
each setup of the considered explicit MPC controllers. First, the tuning procedure
aimed to determine which penalty matrix is the most suitable for real-time tuning.
The most relevant was the penalty matrix Qy as the tuning is directly associated
with a reference value, which takes place in the calculation of the tuning factor ρ.
Moreover, the tuning of Qy preserved a satisfactory control performance. Next, the
boundary values of the tunable matrix Qy were tuned until the following limit values
were determined based on the measured closed-loop control data: Qy,L = 100 and
Qy,U = 1 000. The built-in integrator was penalized with the fixed penalty matrix
QI = 1 and the control input with the fixed penalty matrix R = 10. The prediction
horizon N was set to 20 control steps. The explicit model predictive controllers were
constructed in MATLAB R2020b using the Multi-Parametric Toolbox 3 [23].

The explicit MPC corresponding to the penalty matrix Qy,U contains 1 680 critical
regions, and the explicit MPC with the penalty matrix Qy,L contains 409 critical
regions. The corresponding polytopic partitions can be seen in Figure 3.5 for the upper
boundary controller and Figure 3.6 for the lower boundary controller.
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Figure 3.5: Polytopic partition of the upper boundary explicit MPC.

Figure 3.6: Polytopic partition of the lower boundary explicit MPC.
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3.3.3 Control results
The designed explicit model predictive controllers were implemented to track a time-
varying PWC reference. For the initial 200 seconds of control, the reference temperature
was the steady-state value. After that, the reference changed its value twice upwards
and twice downwards. The reference changes also acquired different sizes in order to
examine the proposed tuning method as it is dependent on the size of the reference
step change. Specifically, the reference temperature values were Tref = {35 ◦C, 45 ◦C,
50 ◦C, 45 ◦C, 35 ◦C}.

The control profiles generated for both considered boundary control setups are compared
in Figure 3.10 for the controlled variable, and in Figure 3.11 for the control inputs.
Note, the constructed explicit MPC controller computed control inputs to respect the
constraints on the control inputs and they need not be truncated afterward.

An interesting phenomenon can be observed while tracking the third reference value,
i.e., Tref = 50 ◦C. Although the steady-state values of temperature have the same value,
the values of the manipulated variable are different. To confirm the correctness of the
results, the measurements were performed multiple times and led to the same behavior.
Also, the inlet temperatures of the cold and heating medium were checked to exclude
the effect of a disturbance. Regarding the temperature of the cold medium, due to the
limited hardware interface, it was not possible to measure the data continuously, store
them, and plot the trajectory. Nevertheless, the temperature of the cold medium was
manually measured multiple times during the experiment and was constant.

Regarding the temperature of the heating medium, the corresponding trajectories of the
temperature can be seen in Figure 3.12, and the electric power, i.e., the corresponding
manipulated variable, can be seen in Figure 3.13. Note that the legends correspond to
the specific setup of MPC, but the temperature of the heating medium was controlled
with a simple P controller with the same proportional gain in every control scenario.
It can be seen in Figure 3.12 that the temperature of the heating medium remains
relatively constant during the whole control, except for the undershoots in the scenario
with upper boundary MPC, i.e., blue trajectory. The undershoots can be easily
associated with the trajectory of the voltage on the pump dosing the heating medium
(and ultimately the heating medium flow rate). As the upper boundary MPC calculated
“aggressive” control inputs, the increased flow rate of the heating medium led to a slight
decline in the heating medium temperature. After approximately 100 seconds, the
heating medium warmed up to the reference value, i.e., TH,ref = 70 ◦ C and remained
constant within the accuracy of the temperature sensor. It can be seen that although
the value of the voltage on the pump dosing the heating medium is different when
tracking the temperature Tref = 50◦ C, the temperature of the heating medium is
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Figure 3.7: Scheme of the implemented closed-loop control setup, where “eMPC”
denotes explicit MPC.

constant and identical for all control scenarios (MPC setups). Therefore, the same
control conditions were fulfilled for all control scenarios.

The reason for this behavior could be explained by the peak of the manipulated
variable associated with the upper boundary controller at time 800 s, see Figure 3.11,
blue trajectory. After approximately 100 s, the value of the manipulated variable
dropped and settled at a value lower than the value associated with the lower boundary
controller, see Figure 3.11, red trajectory. This is a consequence of the heat accumulated
inside the heat exchanger plates, and therefore, less heating medium was necessary
to heat the cold medium. This phenomenon does not happen when tracking the
reference value Tref = 45 ◦C, which originates in the nonlinear nature of the heat
transfer process. When working in a higher temperature range, the gain of the heat
transfer process decreases, and the sensitivity to changes in the heating medium flow
is lower. Therefore, even different flow rates of the heating medium lead to the same
temperature at the outlet.

The trajectories in Figure 3.10 show the asymmetric nature of controlling the plant of
plate heat exchanger mainly when observing the overshoots and undershoots. When
applying the control inputs associated with the lower boundary penalty matrix Qy,L
in (3.1a), significant undershoots are present when tracking the reference downwards,
i.e., when the reference change is negative. On the contrary, when implementing the
controller associated with Qy,U in (3.1a), the undershoots are negligible, but significant
overshoots can be seen when tracking the reference upwards, see Figure 3.10, blue
trajectory.
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These main experimental observations established the base for the strategy of controller
self-tuning. The self-tuning strategy follows the ideas summarized in Section 3.2.2.
Utilizing the nature of the boundary controller with the penalty matrix Qy,L is preferred
when the reference changes upwards. Therefore, in these operating conditions, the
tuning factor is scaled in the first part of the whole interval, i.e., closer to the lower
bound. On the contrary, tuning the controller closer to the upper boundary controller
associated with Qy,U is preferred for negative reference step changes. Therefore, in
these operating conditions, the tuning factor is scaled above the splitting value ρs, i.e.,
closer to the upper bound. The splitting value of the tuning parameter was chosen
simply in the middle of the interval, i.e., ρs = 0.5. The remaining parameter that
needed to be set was the maximal admissible size of the reference step change ∆max,
which was determined to 15 ◦C as the investigated range of controlled temperature
was [35 − 50] ◦C. Based on the aforementioned parameters and real-time information
about the current reference change, the tuning factor was updated during control. The
evolution of the scaled tuning factor ρ̃ can be seen in Figure 3.8. When the positive
reference changes are tracked, the tuning factor is scaled below the splitting value ρs.
On the contrary, when the reference changes are negative, the tuning factor is scaled
above the splitting value ρs.

The setup of the tuning factor can be associated with tuning of the penalty matrix Qy
according to (3.4c). The evolution of the penalty matrix Qy during control is depicted
in Figure 3.9. Note, the penalty matrix evolution in Figure 3.9 does not correspond to
tuning of the optimal MPC, but serves for a deeper insight into the association of the
interpolated control inputs with the optimal explicit MPC setup.

The control input is applied to the system each second, so there is a possible concern
regarding the speed at which two explicit MPCs are evaluated. By analyzing the
computational speed, it was concluded that the approximate control input can be
generated in an average time of 0.01 seconds, which is 100-times faster than the
sampling time.

The control results of the self-tunable technique compared with the boundary controllers
can be seen in Figure 3.10 for the controlled variable, and in Figure 3.11 for the
manipulated variable. It can be seen that the tuned controller combined the benefits
of the two boundary controllers. The overshoots and undershoots were reduced, as
in the first half of control the penalty matrix Qy acquired value from the first half
of the penalty interval. When tracking the reference with negative step change, the
penalty matrix acquired the values from the second half of the interval, i.e., closer
to the upper bound Qy,U. The similarity with the boundary controllers can be seen
also on the manipulated variable profiles. Note, the constraints on the input variable
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Figure 3.8: Evolution of the scaled tuning factor ρ̃ during real-time control. When
tracking positive reference changes, the tuning factor is scaled below the
splitting value ρs (200 – 1 400 s). On the contrary, when the reference
changes are negative, the tuning factor is scaled above the splitting value
ρs (1 400 – 2 600 s).

Figure 3.9: Evolution of the penalty matrix Qy during real-time control. When
tracking positive reference changes, the controller is tuned to operate
closer to the lower boundary matrix Qy,L (200 – 1 400 s). On the contrary,
when the reference changes are negative, the controller is tuned to operate
closer to the lower boundary matrix Qy,U (1 400 – 2 600 s).
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Figure 3.10: Explicit MPC: controlled variable trajectory for two boundary con-
trollers and the tuned one. The solid lines represent the controlled
temperature T and the dashed line represents the reference value.

were satisfied as they were scaled using linear interpolation based on the boundary
controllers which are constructed considering the input constraints.

3.3.4 Control performance analysis
The control performance was also investigated quantitatively. Table 3.1 summarizes
the evaluated control performance criteria computed for the two boundary controllers
and the self-tuned controller. The control performance is evaluated for each reference
step change separately. The considered quality criteria are: sum-of-squared control
error SSE, maximal overshoot/undershoot σmax and the settling time tϵ for 5%-
neighbourhood of the reference temperature Tref . To provide better readability of
the computed results in Table 3.1, the best values, i.e., the minimum values, are
emphasized using a bold font style.

As can be seen in Table 3.1, the real-time self-tuning of the explicit MPC controller
helped to improve two to three criteria when tracking each reference value. The relative
improvement in the percentage, denoted by δ, of using the self-tunable controller is
summarized in Table 3.2 for each reference step change separately. The values were
computed as the difference between two criteria values corresponding to the optimal and
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Figure 3.11: Explicit MPC: manipulated variable trajectory for two boundary con-
trollers and the tuned one. The solid lines represent the voltage U and
the dashed lines represent the constraints.

Figure 3.12: Auxiliary P controller: the trajectory of heating medium temperature
control.
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Figure 3.13: Auxiliary P controller: the trajectory of electric power controlling the
heating medium temperature.

Table 3.1: Control performance criteria.

Reference step change Qy SSE [◦C2 s] σmax [%] tϵ [s]

35 ◦C → 45 ◦C
1 000 714 33.5 16.5
100 867 16.7 12.5

self-tuned 678 15.2 9.5

45 ◦C → 50 ◦C
1 000 365 47.2 5
100 606 23.3 26.5

self-tuned 248 19.1 9.5

50 ◦C → 45 ◦C
1 000 245 18.9 6.5
100 398 79.6 31

self-tuned 186 24.6 6.5

45 ◦C → 35 ◦C
1 000 1 024 18.4 22.5
100 1 402 41.9 90

self-tuned 967 16.5 18.5

self-tunable MPC, referred to the self-tunable MPC. The negative numbers represent
deterioration of the specific performance criterion in the corresponding reference
tracking.
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Table 3.2: Relative improvement of the control performance using the self-tunable
explicit MPC controller.

Comparison with Qy setup δ SSE [%] δσmax [%] δtϵ [%]

35 ◦C → 45 ◦C 1000 5 121 74
100 28 10 32

45 ◦C → 50 ◦C 1000 47 147 −47
100 144 22 179

50 ◦C → 45 ◦C 1000 32 −23 0
100 114 224 377

45 ◦C → 35 ◦C 1000 6 12 22
100 45 154 386

Average 1000 23 64 12
100 83 102 244

Compared to the considered non-self-tunable controllers, the control trajectories and
the evaluated quality criteria confirmed the improved control performance for the
reference tracking control problem of the heat exchanger with the non-linear and
asymmetric behavior. Implementing a self-tunable explicit MPC controller leads to
improved control performance in the most analyzed quality criteria, see Table 3.2.
In average, the control performance criteria improved compared to the upper and
lower boundary MPC respectively as follows: the squared-error-based criterion (SSE)
reduced by 23 % and 83 %, the maximal overshoot/undershoot σmax reduced by 64 %
and 102 %, and the settling time tϵ reduced by 12 % and 244 %.

In general, utilizing the proposed controller with a scalable aggressiveness according
to the operating conditions leads to higher accuracy (lower SSE), lower value of the
overshoots (reduced σmax), and faster achieving the reference value (decreased tϵ).

Obviously, if there exists a well-tuned “universal” controller that satisfies the require-
ments on the control performance in the whole range of the considered operating
conditions, then the implementation of the self-tuning procedure is out of scope for
such control application. Nevertheless, in numerous practical situations, using only
one controller with a constant setup leads to poor or just “satisfactory” control results,
i.e., the reference value is achieved, but with worse control performance, e.g., leading
to high overshoots or settling times. When working on our laboratory case study, a set
of different setups of penalty matrices was investigated. In every control scenario, the
setup was beneficial only in some working conditions (tracking the reference upwards or
downwards). Therefore, the closed-loop control performance is improved by introducing
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the benefits of the self-tuning method based on the two boundary MPC controllers.

Note that this strategy relies on a proper design of the two boundary controllers. In
case a non-negligible disturbance occurs, both boundary controllers should be able to
solve a disturbance rejection problem as the final value of the manipulated variables
is interpolated between them. To address the impact of the disturbances directly in
constructing the MPC controller design, a robust MPC strategy should be considered.
Any robust MPC design method leads to conservative control actions as some portion
of the performance is sacrificed to compensate for the impact of the disturbances.
Nevertheless, if it is possible to obtain the explicit (multi-parametric) solution of
the robust explicit MPC offline, then the same self-tuning procedure is applicable to
interpolate between the control actions from the robust controllers.
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Chapter 4

MPT+ extension: implicit tube MPC

This chapter is devoted to the topic of implicit tube MPC, that is suitable for uncertain
large-scale systems. When a large-scale system is considered, the tube MPC is not a
suitable control technique, as it requires non-trivial set operations, challenging in higher
state-space dimensions. A novel approach – implicit tube MPC – handles the MPC
optimization problem differently, avoiding construction of sets, but still maintaining
the optimal solution. The contribution of this thesis lies in incorporating of the implicit
tube MPC into the MATLAB Multi-Parametric Toolbox extension, MPT+, to enable a
wide usage, and user-friendly design and implementation of this control technique.
This chapter consists of the following parts: first, the theoretical background of tube
MPC is recalled, and the concept of implicit tube MPC approach is explained. In the
following part, the design procedure in MPT+ is introduced. Finally, the case studies
validating the toolbox are presented.

4.1 Tube MPC
The tube MPC represents a robust control strategy which considers a bounded distur-
bance affecting the controlled system [56]. Given an uncertain, discrete-time, linear
time-invariant (LTI) system defined as follows:

x(t + Ts) = Adx(t) + Bdu(t) + Ed(t), (4.1)

t is the time sample of the discrete-time domain defined using a sampling time Ts.
Ad ∈ Rnx×nx is system matrix, Bd ∈ Rnx×nu is input matrix, such that the matrix pair
(Ad, Bd) is stabilizable. E ∈ Rnx×nx is a disturbance matrix, x ∈ Rnx is the vector of
the system states, u ∈ Rnu is the vector of the control inputs, d ∈ Rnx is a bounded
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additive disturbance, for which the following holds:

w(t) = E d(t), w(t) ∈ W, (4.2a)
W =

{
w(t) ∈ Rnx : e⊤

i w(t) ≤ 1, i = 1, . . . , Nw
}

, (4.2b)

where Nw corresponds to the number of halfspaces representing the disturbance set.

Let us consider that the uncertain LTI system in (4.1) is constrained by

(x(t) × u(t)) ∈ (X × U), (4.3)

where X ∈ Rnx and U ∈ Rnu are polytopes containing origin in their strict interiors.

Analogously to the disturbance set, the input and state constraints are reformulated
to the normalized form:

S = X × U =
{

(x(t), u(t)) ∈ Rnx×nu : c⊤
l x(t) + d⊤

l u(t) ≤ 1, l = 1, . . . , Nc
}

, (4.4)

where Nc represents the number of polyhedral stage constraints on the inputs and
states.

The conventional tube MPC optimization problem has the form [56]:

min
û0,...,ûN−1,x̂0,...,x̂N

∥x̂N ∥2
P +

N−1∑
k=0

(
∥x̂k∥2

Q + ∥ûk∥2
R

)
(4.5a)

s.t. : x(t) − x̂0 ∈ T, (4.5b)
x̂k+1 = Adx̂k + Bdûk, (4.5c)
(x̂k × ûk) ∈ ((X ⊖ T) × (U ⊖ K · T)) , (4.5d)
x̂N ∈ XN, (4.5e)

for k = 0, . . . , N − 1, and for prediction horizon N . Vectors ûk and x̂k are decision
variables optimized w.r.t. the nominal LTI system in (4.5c), without any perturbations
of the disturbance w. The squared 2−norm objective function in (4.5a) is minimized for
the symmetric positive definite penalty factors Q ∈ Rnx×nx , R ∈ Rnu×nu , P ∈ Rnx×nx .
K represents the gain of a stabilizing controller, such that Ad + BdK is stable, e.g.,
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LQR controller. The terminal set XN and the terminal penalty P are subject to the
same assumptions as the terminal set XN and the terminal penalty P in optimization
problem (2.4). The stability and recursive feasibility of the tube MPC optimization
problem in (4.5) were proven in [56].

The convex set T ⊂ Rnx , denoted as a “tube”, represents a way how to “robustify” the
MPC, as only a disturbance-free prediction model is considered. It is constructed as a
robust positively invariant approximation of the minimal robust positively invariant
set following [68]:

T = (1 − α)−1 ⊕NS−1
j=0 (Ad + BdK)j W, (4.6)

where symbol ⊕ denotes a Minkowski sum. The tube-scaling parameter α serves as a
safety margin of the tube T, what can be better seen in the following reformulation:

T ⊖ αT = ⊕NS−1
j=0 (Ad + BdK)j W, (4.7a)

T = ⊕NS−1
j=0 (Ad + BdK)j W ⊕ αT. (4.7b)

The tube T is iteratively constructed in NS steps, such that the scalar α and finite
integer NS satisfy the following condition:

(Ad + BdK)NS W ⊆ αW. (4.8)

The parameter α is evaluated subject to a given tolerance αtol ∈ [0, 1), αtol ≪ 1:

α = maxi αi ≤ αtol, (4.9)

where

αi = h
(
W,

(
(Ad + BdK)NS

)⊤
ei

)
, i = 1, . . . , Nw. (4.10)

In (4.10), the support function h : Rn × RNc → RNc of a polyhedral set W for a
general vector v is given by linear programming (LP):

h (W, v) = max
w

v⊤w, (4.11a)

s.t. : e⊤
i w ≤ 1, i = 1, . . . , Nw. (4.11b)
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(a) j = 1. (b) j = 2. (c) j = 3.

(d) j = 4. (e) j = 8.

Figure 4.1: Example of construction procedure of the tube T.

The tube construction procedure is demonstrated in Figure 4.1. The blue sets in
Figures 4.1(a)–4.1(d) represent the starting sets in every iteration. The complements
to the newly created sets are depicted in green. These complements are created by
Minkowski addition of the term (Ad + BdK)jW, see (4.6). The added set can be seen
in every vertex of the starting blue sets. Although the set looks like a line segment, it
is a full-dimensional set with a nonzero volume. Finally, Figure 4.1(e) represents the
final tube after 8 steps, i.e., Ns = 8.

The final control action u(t) implemented to the uncertain LTI system in (4.1) is given
by the control law κ : XF → U

κ(x(t)) = û⋆
0 + K (x(t) − x̂⋆

0) , (4.12)

where symbol ⋆ denotes the optimal solution of the MPC optimization problem in (4.5)
and the feasibility set XF ⊆ Rnx of the optimized initial condition x̂0 of (4.5) represents
its domain. Further technical details can be found in [68, 67].

The actuators of the physical systems are often under limited rates on the control
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actions formulated by:

∆u(t) = u(t) − u(t−) ∈ U∆, (4.13)

where ∆u(t) = u(t) − u(t−) is the rate of control action and U∆ ∈ Rnu is the
corresponding convex set bounding the rates. Then, the tube MPC optimization
problem in (4.5) is extended by the linear constraint having the form [25]:

ûk + K(x(t) − x̂0) − u(t−) ∈ U∆, (4.14)

leading to the augmented vector of parameters [x(t)⊤, u(t−)⊤]⊤ ∈ Rnx+nu , in case of
the multi-parametric solution of (4.5).

4.2 Implicit tube MPC
The challenge of the tube MPC implementation lies in the repetitive set-based oper-
ations when constructing the tube (4.6), and in the constraints of the optimization
problem handling this set, i.e., (4.5b) and (4.5d). The work [67] addresses this challenge
to make the well-known tube MPC technique tractable for large-scale systems. The
original set-based tube T is transformed into a corresponding implicit form T to avoid
the set operations.

Analogous to the set-based tube T in (4.6), the implicit tube is given by

T = (1 − α)−1
NS−1∑
j=0

(Ad + BdK)j
ωj , (4.15)

where

e⊤
i ωj ≤ 1, i = 1, 2, . . . , Nw, j = 1, 2, . . . , NS. (4.16)

Note, the uncertain parameters w in (4.2) are translated to the decision variables ω

of the implicit tube MPC optimization problem to cover the iterative procedure of
tube construction having NS steps, i.e., ωj ∈ Rnx for j = 1, 2, . . . , NS. We recall, the
implicit tube T is constructed without any set-based operations and has the form of
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vector T ∈ Rnx determined by the time-invariant matrix pair Ad, Bd, controller gain
K, and the sequence of uncertainties ω. This sequence corresponds to the iterative
procedure of the tube construction, but in the implicit approach, the geometric tube is
not constructed. Instead, the points ω of the original set W are considered, affected by
Ns steps of the dynamics (Ad + BdK), which leads to the specific vertex of the original
tube T. Therefore, the initial condition changes from (4.5b) to the equality constraint:

x(t) − x̂0 = T . (4.17)

The difference between the original set-based tube T and the implicit tube vector T is
depicted in Figure 4.2.

Figure 4.2: Comparison of the set-based tube T (left) and the implicit vector-based
tube T (right).

Moreover, the implicit tube T is projected into the constraints in (4.5d) using a vector
f ∈ RNc , such that the following two statements are equivalent:

(x̂k × ûk) ∈ ((X ⊖ T) × (U ⊖ K · T)) , (4.18a)
c⊤

l x̂k + d⊤
l ûk ≤ 1 − fl, l = 1, 2, . . . , Nc. (4.18b)

The vector f ∈ RNc represents the implicit tube projection into the state and input
constraints shrinking the volume of the original sets X and U. The vector f is
constructed offline and given by:

fl = (1 − α)−1
NS−1∑
j=0

h
(
W,

(
(Ad + BdK)j

)⊤
ηl

)
, (4.19a)

ηl = cl + K⊤dl, l = 1, 2, . . . , Nc. (4.19b)
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Analogously, the terminal constraint in (4.5e) is reformulated using the vector f :

(c⊤
l + d⊤

l K)x̂N ≤ 1 − fl, l = 1, 2, . . . , Nc. (4.20)

Note, the evaluation of the implicit tube T in (4.15) and of the vector f in (4.19) does
not include the Minkowski sum operation, leading to high computational complexity or
even impossibility to construct the sets in large-scale control applications. Therefore,
by avoiding this operation, the implicit tube MPC form of (4.5) transformed according
to [67] is given by a convex quadratic programming problem

min
x̂0, û0, ω0, . . .

ûN−1, x̂N , ωNS

x̂⊤
N Px̂N +

N−1∑
k=0

(
x̂⊤

k Qx̂k + û⊤
k Rûk

)
(4.21a)

s.t. : x̂k+1 = Ad x̂k + Bd ûk, (4.21b)
c⊤

l x̂k + d⊤
l ûk ≤ 1 − fl, (4.21c)(

c⊤
l + d⊤

l K
)

x̂N ≤ 1 − fl, (4.21d)
x(t) − x̂0 = T , (4.21e)
e⊤

i ωj ≤ 1, (4.21f)
i = 1, 2, . . . , Nw, (4.21g)
j = 1, 2, . . . , NS, (4.21h)
k = 0, 1, . . . , N − 1, (4.21i)
l = 1, 2, . . . , Nc. (4.21j)

Finally, the control law remains the same as in the implicit tube MPC approach
in (4.12).

Compared to the original tube MPC approach, the implicit tube MPC handles NS
more optimization variables caused by the additional sequence ω. Despite this fact,
the implicit formulation does not limit the tube MPC only to geometrically simple
problems.
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4.3 Design procedure in MPT+
In this section, the procedure of tube MPC design in the MATLAB MPT+ toolbox [26]
is described. The MPT+ toolbox is freely available on GitHub1. The package can be
installed by setting the corresponding path in MATLAB or simply via tbxManager2

by typing:

tbxmanager install mptplus

4.3.1 Tube MPC design
In this section, the well-known double integrator system is used to demonstrate the tube
MPC design, as the two-dimensional state-space is suitable for graphical demonstration
of the results. The discrete-time state-space respresenation of the double integrator
system is defined as follows:

x(t + Ts) =
[
1 1
0 1

]
x(t) +

[
0.5
0

]
u(t) +

[
1 0
0 1

]
d(t). (4.22)

The constraints on the state and input variable, respectively, are defined as:

[−200, −2]⊤ ⪯ x(t) ⪯ [200, 2]⊤, (4.23a)
−1 ≤ u(t) ≤ 1, (4.23b)

and the disturbance is constrained in a following way:

[−0.1, −0.1]⊤ ⪯ d(t) ⪯ [0.1, 0.1]⊤. (4.24)

The system in (4.22) together with the constraints in (4.23) and (4.24) is easily
constructed as an object model as follows:

model = ULTISystem(’A’, [1, 1; 0, 1], ’B’, [0.5; 1], ’E’, [1, 0; 0, 1])
model.d.min = [-0.1; -0.1]
model.d.max = [ 0.1; 0.1]

1MPTplus: https://github.com/holaza/mptplus
2tbxManager: https://www.tbxmanager.com

https://github.com/holaza/mptplus
https://www.tbxmanager.com
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model.x.min = [-200; -2]
model.x.max = [ 200; 2]
model.u.min = [-1]
model.u.max = [ 1]

Note, it is sufficient to set the constraint on every variable in a form of minimal and
maximal admissible value, and it is not necessary to normalize the constraint set
according to (4.4) and (4.2). Nevertheless, the possibility to set the normalized form
of constraints is supported. The setup of the normalized constraint set is shown on
the example of state constraints:

PX = Polyhedron(’A’,[1/200 0;0 1/2; -1/200 0; 0 -1/2],’b’, ones(4,1))
model.x.with(’setConstraint’)
model.x.setConstraint = PX

If the constraints on the rate of change of the input variable are required, one can set
them as follows:

model.u.with(’deltaMin’)
model.u.with(’deltaMax’)
model.u.deltaMin = -0.5
model.u.deltaMax = 0.5

Let us consider the prediction horizon N = 9 steps, and the following penalty matrices
in (4.5):

Q =
[
1 0
0 1

]
, R =

[
0.1

]
. (4.25)

The penalty matrices Q and R and the prediction horizon N are created in MPT+ in
a following way:

model.x.penalty = QuadFunction([1,0;0,1])
model.u.penalty = QuadFunction(0.01)
N = 9
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Finally, the tube MPC controller is constructed:

option = {’solType’,1,’LQRstability’,1}
TMPC = TMPCController(model,N,option)

The first option parameter solType = 1 specifies the type of the returned optimized
variables as the final control inputs u(t) in (4.12), i.e., those which are sent directly
to the controlled system in (4.1). Alternatively, if solType = 0, the output from the
controller comes in a nominal form as a pair of û⋆

0 and x̂⋆
0. If the solType option is

not specified, the default value is 1.

Secondly, the terminal set and terminal penalty are enforced through the options
parameter LQRstability = 1. By setting the value to 1, the LQR-based terminal set
and the Lyapunov penalty matrix are calculated and considered in the tube MPC.
If the value of the parameter LQRstability is set to 0, then no terminal penalty
and terminal set are automatically computed. The user is expected to set their own
terminal penalty and terminal set. If the LQRstability option is not specified, the
default value is 0.

The optimal control input for a given initial condition x0 is evaluated as follows:

x0 = [ -5; -2 ];
u = TMPC.evaluate(x0)

In MPT+, similarly to the original MPT toolbox, it is possible to obtain data from
the closed-loop simulation consisting of Nsim control steps.

Nsim = 12;
ClosedLoopData = TMPC.simulate(x0, Nsim)

It is also possible to specify the disturbance affecting the controlled system during
the closed-loop simulation. If the disturbance sequence is not specified by user, it is
randomly generated from the disturbance set.

ClosedLoopData = TMPC.simulate(x0, Nsim, w)
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The ClosedLoopData contains useful data corresponding to the trajectories of control
inputs, controlled states and the overall cost. If the soltype option is set to 0, then
also trajectory of nominal states is available. The data can be accessed by typing:

ClosedLoopData.X
ClosedLoopData.U
ClosedLoopData.cost
ClosedLoopData.Xnominal % only for soltype=0
ClosedLoopData.Unominal % only for soltype=0

The trajectory of the controlled states of the double integrator system in state space is
depicted in Figure 4.3. The time profiles of the controlled states and control inputs
can be seen in Figure 4.4.

Figure 4.3: Closed-loop simulation of double itegrator control in the state space.



80 MPT+ extension: implicit tube MPC

Figure 4.4: Closed-loop simulation of double itegrator control. The solid lines repre-
sent the corresponding variable x1, x2, u, and the dashed lines represent
the constraints.

4.3.2 Handling the parameters and geometric sets
All the relevant parameters and sets related to the tube MPC can be easily handled.
For example, the tube T is accessed and plotted via:

Tube = TMPC.TMPCparams.Tube
figure, Tube.plot()

Similarly, the sets corresponding to the state constraints, input constraints and distur-
bance set can be accessed. When handling the state and input constraints, one can
choose between the original sets X and U or the conservative sets – the original sets
after the subtraction of the tube, i.e., X ⊖ T, U ⊖ K · T.

% State constraints
X = TMPC.TMPCparams.Px
Xconservative = TMPC.TMPCparams.Px_robust
% Input constraints
U = TMPC.TMPCparams.Pu
Uconservative = TMPC.TMPCparams.Pu_robust
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(a) Constraint set X (green)
and X⊖ T (blue)

(b) Constraint set U (green)
and U⊖K · T (blue)

(c) Disturbance set W

(d) Tube T (e) Terminal set XN

Figure 4.5: The tube MPC design sets.

% Disturbances
Wset = TMPC.TMPCparams.Pw

It is possible to extract the stabilizing controller gain K and terminal penalty matrix
P , which is useful mainly in the case when the parameters are not set manually, but
the LQRstability option is set to 1. Moreover, the computed terminal set can be
accessed as well:

% Controller gain
K = TMPC.TMPCparams.K
% Terminal penalty matrix
P = model.x.terminalPenalty.weight
% Terminal set
X_N = TMPC.model.x.terminalSet

The sets coresponding to the tube MPC design are depicted in Figure 4.5.
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4.3.3 Implicit tube MPC design
In default, the tube MPC is constructed in the original – geometric manner, based on
the Section 4.1. Otherwise, if the implicit tube MPC is required, it is necessary to set
the TubeType option to implicit as follows:

option = {’TubeType’,’implicit’,’soltype’,1,’LQRstability’,1}
implicit_MPC = TMPCController(model,N,option)

The TubeType option supports also explicit property, which corresponds to the
default setup, i.e., geometric sets construction and operations. Note, the explicit tube
type does not correspond to explicit, i.e., multiparametric solution of the MPC. If the
parametric solution of the tube MPC optimization problem is required, it is necessary
to call the function toExplicit as in the original MPT toolbox:

eTMPC = TMPC.toExplicit

Although MPT+ supports the construction of the multiparametric controller from the
implicit tube MPC using a function toExplicit, it does not make much sense to do
so. The implicit tube MPC is beneficial in larger problem scales, when the geometric
operations are not possible or impractical, which is a consequence of challenging size of
the optimization problem. Therefore, it is also impractical to construct, if even possible,
the multiparametric solution of the tube MPC. If the multiparametric solution of tube
MPC is required, it is recommended to design the geometric-set-based tube MPC and
transform it into the multiparametric form, when applicable.

Almost all of the above mentioned functionalities are possible also when considering
the implicit tube MPC. Obviously, it is not possible to handle the tube and terminal
set, which are not constructed. Instead, one can access the parameters α, αtol, Ns and
constraint vector f which are associated with the tube MPC design procedure. These
commands are supported also for the original, set-based tube MPC.

% number of iterations in construction of the implicit tube: Ns
Ns = implicit_MPC.TMPCparams.Ns
% shrinking factor of the implicit tube: alpha
alpha = implicit_MPC.TMPCparams.alpha
% tolerance for evaluation of alpha: alpha_tol
alpha_tol = implicit_MPC.TMPCparams.alpha_tol
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% vector robustifying the constraints: f
f = implicit_MPC.TMPCparams.f

4.4 Control implementation
Two case studies with different benchmark systems are presented in this section. The
first case study contains experimental implementation of tube MPC on a simple SISO
system Flexy2 [31]. The aim of the first control implementation is to demonstrate
the functionality of the toolbox in real-time control. The next case study involves
a numerical simulation of implicit tube MPC implemented on a large-scale reactor-
separator system adapted from [13]. The aim of the second case study is to demonstrate
the validation of the implicit tube MPC implementation via MPT+ in a scenario when
the original set-based tube MPC is not possible to construct.

4.4.1 Tube MPC implementation
To validate the set-based tube MPC incorporation to the MPT+ toolbox, an experi-
mental case study was performed and published in [25]. The considered system was
a SISO system with fast dynamics Flexy2 [31], see Figure 4.6. The actuator is a fan
that propels an air column in an upward vertical direction. The power of the airflow
is measured by a flexible sensor placed in the air column. The sensor changes its
electrical resistance according to the bend caused by the push of the air. Therefore,
the flex sensor bend b(t) in percentage is assumed as the controlled variable, and the
fan speed v(t) in percentage is a manipulated variable.

Flexy2 is a system with non-linear dynamics, as the sensitivity of the flex bend decreases
when increasing fan speed. Moreover, the measurement noise is also present. These
challenges make this device a suitable candidate for the implementation of tube MPC.
As the system dynamics is naturally very fast and requires low sampling time with a
fast evaluation of the control inputs, the explicit solution of tube MPC is considered.
The goal is to control the flex sensor bend b to a steady-state value bs and reject the
effect of a disturbance.

The model of the system was obtained through experimental identification based on
several step responses. The matrices of the nominal state-space system, transformed
into the discrete-time domain using sampling time Ts = 0.01 s are:

Ad =
[
0.966

]
, Bd =

[
0.101

]
. (4.26)

As the controlled as well as the manipulated variable were set in percentage, their
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Figure 4.6: Flexy2 device [31].

values were constrained from the minimal value bmin = vmin = 0 % up to the maximal
value bmax = vmax = 100 %. Considering the steady-state values where the model was
linearized, i.e., vs = 40 % and bs = 68 %, the constraints were set in both presented
control methods as follows:

−40 % ≤ u(t) ≤ 60 %, −68 % ≤ x(t) ≤ 32 %. (4.27)

Moreover, the change of the input variable was set to validate the control method
implemented in the toolbox:

−55 % ≤ ∆u ≤ 55 %. (4.28)

As the uncertainties in the model were considered, the additive disturbance was defined
as:

−1 % ≤ d(t) ≤ 1 %, (4.29)

and the associated matrix E multiplying the vector of disturbances d in (4.1) was set
as identity matrix.

By systematic tuning, the penalty matrices Q, R of the optimization problem in (4.5)
were respectively assigned as:

Q = 10, R = 1. (4.30)
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The prediction horizon N was set to 30 steps. Furthermore, the terminal set XN and
the terminal penalty P were calculated by setting the option LQRstability = 1, and
the evaluated values were:

[
−1

1

]
x ≤

[
31.8694
21.2463

]
, P = 95.3852 . (4.31)

The explicit tube MPC was constructed in MATLAB 2020b programming environment,
using toolboxes MPT 3.2.1, MPT+, YALMIP R20210331, and solver Gurobi 9.1.1.
The tube explicit MPC was executed on CPU AMD Ryzen 7 PRO 4750U, 1.7 GHz
with 16 GB RAM. From the viewpoint of computational complexity, the average time
to evaluate the control input was 1 milisecond, which is suitable for the considered
sampling time Ts = 0.01 s.

After the construction of the tube explicit model predictive controller, the disturbance
rejection control problem was investigated. The aim was to drive the flex sensor
bend to the steady state bs = 68 %, while rejecting the effect of the two disturbances
occurring at times 5 s and 10 s. The control results can be seen in Figure 4.7 for the
controlled variable, i.e., the flex sensor bend b(t). In Figure 4.8, the corresponding
trajectory of manipulated variable is depicted, i.e., the trajectory of fan speed v(t).

Figure 4.7: Tube model predictive control of Flexy2 – controlled variable.
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Figure 4.8: Tube model predictive control of Flexy2 – manipulated variable.

When observing Figure 4.7 and Figure 4.8, it can be seen that the effects of the
disturbances were rejected, with respect to the constraints on the manipulated and
controlled variables. Moreover, the constraints on the change of the manipulated
variable were active in the first control step and were satisfied as well. To conclude,
the goal of the control was achieved, using the developed toolbox in real-time control.

4.4.2 Implicit tube MPC implementation
The suitablity of the implicit tube MPC is demonstrated on the large-scale reactor-
separator system with 12 states and 3 inputs, adapted from [13]. The system consists
of three vessels, two continuously stirred tank reactors, and one tank separator.
Both reactors are engaged in two reactions. The primary reaction involves converting
reactant A into the main product B, while the secondary reaction leads to the undesired
conversion of product A into the side-product C.

The considered state variables are temperatures Ti and concentrations of the reactant
A, and products B and C, i.e., cA,i, cB,i, cC,i for the respective i-th vessel. The state
variables are defined in the following order: s = [T1, cA,1, cB,1, cC,1, T2, cA,2, cB,2, cC,2,

T3, cA,3, cB,3, cC,3]⊤. The control inputs are the heat flows H1, H2, and H3, representing
the external heat delivered or removed from the tanks. The detailed description of
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the reactor-separator system can be found in [13]. The linearized state-space matrices
along with all the data necessary to design the tube MPC can be found in Appendix A.

It is important to note, that the original (set-based) tube MPC was not possible
to design due to extensive numerical demands related to geometric operations. On
the contrary, it was possible to design and implement the implicit tube MPC. The
closed-loop control simulation results are depicted in Figure 4.9 and Figure 4.10 for the
system states and inputs, respectively. To conclude, all system states were successfully
driven to the desired steady state in the presence of randomly generated disturbance,
respecting the constraints.



88 MPT+ extension: implicit tube MPC

Figure 4.9: Closed-loop simulation of reactor-separator control – state variables. The
solid lines represent the respective states and the dotted lines depict the
target steady state in deviation form.
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Figure 4.10: Closed-loop simulation of reactor-separator control – input variables.
The solid lines represent the respective inputs and the dashed lines
depict the constraints.
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Chapter 5

Conclusions

This dissertation thesis deals with linear MPC design for complex systems. Throughout
the thesis, the term “complex system” includes the systems that bring two groups of
challenges: large-scale systems and systems with nonlinear and asymmetric dynamics.
Three techniques of linear MPC were addressed: (i) partial explicit MPC, (ii) tunable
approximated explicit MPC, and (iii) implicit tube MPC.

The first part of this thesis focuses on the topic of partial explicit model predictive
control, which is suitable for large-scale problems with numerous constraints and
optimization variables [32]. In the offline phase, only a subset of all critical regions is
constructed and stored. In the online phase, the partial solution is utilized in the hot
start strategy to streamline searching for the critical region where the measurement
belongs and subsequent determination of the optimal control action. This strategy
is a valuable tool for finding the solution of the MPC problem in high dimensions
when solving the optimization problem online or developing the full solution offline is
impractical and computationally demanding. Therefore, the partial explicit solution
represents a compromise between the explicit MPC without any real-time optimization
and computationally demanding implicit MPC.

One of the objectives was to propose novel ideas leading to memory footprint reduction.
The main idea is to replace the polytopic critical region with its maximal volume inner
approximation using the Chebyshev ball. As a consequence, the large-scale matrices
defining the critical regions are no longer stored. Only the Chebyshev balls radii and
centers are necessary to identify the nearest critical region. Then, the polytope is
recovered from the optimization problem matrices and optimal active set. The rest of
the online procedure remains the same.

Moreover, owing to the information about the radii of the Chebyshev balls, the
determination of the nearest critical region becomes more accurate compared to the
original approach as the inner approximation size is considered. Last but not least,
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another valuable benefit of the proposed ideas is fixing the size of the partial solution
memory footprint. The fixed structure of the Chebyshev ball data enables us to
determine the partial solution memory footprint in advance, without the necessity to
solve the large-scale optimization problem. As a result, the size of the partial explicit
solution can be scaled to the control hardware memory limitations.

To support the theoretical background of the suggested concepts, 5 sets of large-scale
MPC problems were randomly generated, and the associated memory footprints were
evaluated. For every MPC problem, the partial explicit solution consisting of 300
critical regions was constructed. The average memory footprint of the partial solution
based on the polytopic critical regions was evaluated for every problem size. Afterward,
the memory footprint of the fixed-memory approach was determined based on the
problem size. Analogously, the average memory footprint of the partial solution based
on the Chebyshev balls was evaluated for every problem size. With increasing problem
size, the contribution of the large-scale problem matrices significantly increases, and
the gap between the total memory footprints of the two methods is lower. Therefore,
also the memory savings decrease with the growing problem size. For the largest
problem size consisting of 7 200 constraints, the total memory savings were 26.7 % and
for the smallest problem size consisting of 6 030 constraints, the total memory savings
were 41.2 %.

The second part of this dissertation thesis deals with the self-tunable explicit MPC
design. This technique arises from the concept of tunable explicit MPC [36], which
calculates the control action based on linear interpolation between the control actions
from two boundary controllers. The boundary controllers differ only in the setup of
one penalty matrix, and the rest of the structure and parameter values remain the
same. For the price of suboptimality and storing two explicit controllers, one obtains
the possibility to apply a control action that corresponds to an arbitrary controller
setup chosen from the range between the lower and upper boundary controller setup.

The aim was to remove the necessity of manual interventions in the real-time control
and delegate the real-time decision-making in tuning on well-developed internal rules,
leading to an effective self-tuning technique for practical industry-oriented control
applications. In numerous practical applications, the reference value of the controlled
variable is changed and acquires values from a wide range of operating conditions. The
use of different controller setups can help handle the plant’s nonlinear and asymmetric
behavior. This thesis presents two methods of the self-tunable controller technique. In
the first approach, the controller’s aggressivity is tuned based on the difference between
the reference value and the steady state corresponding to the model linearization
point. The technique represented a way how to compensate for the system’s nonlinear
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behavior. The second tuning technique was similar, taking into account the size of
the reference change. The tuning parameter value is calculated as the ratio between
the size of the reference change and the maximal admissible size of the reference
change, which is specified before operation. Moreover, the tuning factor is scaled by
splitting the interval of the tuning parameter into two ranges, which are assigned
to different operating conditions, e.g., either positivity or negativity of the reference
change. Following these rules, the asymmetry of the process dynamics is considered.

The following aim was to implement and analyze the control performance when using
the self-tunable explicit MPC in a control of a laboratory heat exchanger. The case
study included tracking a reference changing its value upwards and downwards to
examine the proposed tuning method. Therefore, the tuning parameter interval was
split into 2 parts. When the reference changed upwards, the control input was tuned
in the first part of the interval and approached the boundary controller associated with
the lower bound on the selected penalty matrix. On the contrary, when the reference
changed downwards, the control input was tuned to approach the control input from
the boundary controller with the upper bound on the penalty matrix.

To properly investigate the control results, the control performance was judged quanti-
tatively using a set of quality criteria. Based on the evaluated criteria, the self-tunable
control approach outperformed the conventional control strategy, handling just a single
non-tunable controller. In average, the control performance criteria improved compared
to the upper and lower boundary MPC respectively as follows: the squared-error-based
criterion reduced by 23 % and 83 %, the maximal overshoot/undershoot reduced by
64 % and 102 %, and the settling time reduced by 12 % and 244 %.

The third part of the thesis is devoted to the topic of implicit tube MPC, which is
suitable for controlling uncertain large-scale systems. When considering a large-scale
system, the original tube MPC is not a suitable control technique, as it requires
non-trivial geometric set operations, which is challenging in higher state-space dimen-
sions [71]. A novel approach – implicit tube MPC – handles the MPC optimization
problem differently, avoiding the construction of sets but still maintaining the optimal
solution [67]. The aim of this thesis was to incorporate the implicit tube MPC into
the MATLAB Multi-Parametric Toolbox extension, MPT+, to enable a wide usage
and user-friendly design and implementation of this control technique. This thesis
provides an overview of the tube MPC and implicit tube MPC design procedure
in MPT+. The tube MPC was successfully implemented in a real-time control of
Flexy2 device using the MPT+ toolbox. Moreover, the validation of the implicit tube
MPC incorporated in the toolbox is presented in a numerical control simulation. The
implicit tube MPC was implemented on a large-scale reactor-separator system with 12
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states and 3 control inputs. It is important to emphasize that the original (set-based)
tube MPC was impossible to design due to extensive numerical demands related to
geometric operations. On the contrary, it was possible to design and implement the
implicit tube MPC, and all system states were successfully driven to the desired steady
state in the presence of a randomly generated disturbance.
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Main Contributions
The main contributions of this dissertation thesis are summarized in this section
supported by the publications they were published in.

• Theoretical contributions:

– Memory footprint reduction associated with large-scale MPC.
The partial explicit MPC was revisited in order to analyze the memory
footprint of the controller data. The size of the memory footprint to store
the partial explicit MPC was reduced without inducing suboptimality of
the applied control input. The memory reduction approach was published in:

L. Galčíková – J. Oravec: Fixed-Complexity Solution of Partial Explicit
MPC. Computers & Chemical Engineering, vol. 157, pp. 107606, 2022.

– Fixed size of memory footprint associated with large-scale MPC.
Besides the reduction of the memory footprint necessary to store the par-
tial explicit MPC data, fixing the memory footprint size of the controller
is addressed by considering the Chebyshev balls instead of the polytopic
regions. The proposed method is published in:

L. Galčíková – J. Oravec: Fixed-Complexity Solution of Partial Explicit
MPC. Computers & Chemical Engineering, vol. 157, pp. 107606, 2022.

– Elaboration of the self-tuning technique for tunable explicit MPC
to improve control performance.
The tunable approximated explicit MPC was revisited. The techniques
to tune the explicit MPC automatically during the real-time control were
elaborated, considering nonlinear and asymmetric plant behavior. The
tuning technique based on the reference value was proposed in:

L. Galčíková – M. Horváthová – J. Oravec – M. Bakošová: Self-Tunable
Approximated Explicit Model Predictive Control of a Heat Exchanger.
Chemical Engineering Transactions, vol. 94, pp. 1015–1020, 2022.

The tuning technique, addressing also asymmetric plant behavior, was pro-
posed in Chapter 3 of this thesis and is a part of the paper:
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L. Galčíková – J. Oravec: Self-tunable approximated explicit MPC: Heat
exchanger implementation and analysis. Journal of Process Control, 2023
(under review, round 2).

The preprint under review is available online:

https://www.uiam.sk/assets/publication_info.php?id_pub=2621

• Practical validation:

– Numerical case studies on large-scale systems.
The proposed partial explicit MPC memory reduction technique is analyzed
on the set of large-scale systems. The memory footprint analysis was pub-
lished in:

L. Galčíková – J. Oravec: Fixed-Complexity Solution of Partial Explicit
MPC. Computers & Chemical Engineering, vol. 157, pp. 107606, 2022.

– Laboratory validation on a heat exchanger plant.
The proposed self-tuning strategy was implemented on a laboratory heat
exchanger. The control performance is analyzed and compared to non-tuned
controllers. The experimental laboratory validation is a part of Chapter 3
of this thesis and of the paper:

L. Galčíková – J. Oravec: Self-tunable approximated explicit MPC: Heat
exchanger implementation and analysis. Journal of Process Control, 2023
(under review, round 2).

The preprint under review is available online:

https://www.uiam.sk/assets/publication_info.php?id_pub=2621

• Freely available software:

– Software development for control of large-scale systems.
The recent perspective approach of implicit tube MPC, suitable for control-
ling large-scale systems, was incorporated into the MATLAB MPT+ toolbox
to spread the wide usage of this robust control technique. The toolbox was
described in Chapter 4 of this thesis and is freely available online on GitHub:

https://github.com/holaza/mptplus

https://www.uiam.sk/assets/publication_info.php?id_pub=2621
https://www.uiam.sk/assets/publication_info.php?id_pub=2621
https://github.com/holaza/mptplus


97

– Case study validating the developed software.
The ancestor of the implicit tube MPC, i.e., the original set-based tube
MPC, also incorporated to MPT+ toolbox, was validated on a laboratory
device Flexy2 [31] and published in:

J. Holaza – L. Galčíková – J. Oravec – M. Kvasnica: A software package for
MPC design and tuning: MPT+. In 62nd IEEE Conference on Decision
and Control, IEEE, Singapore, pp. 5682–5689, 2023.

The developed MPT+ extension enabling the implicit tube MPC application
is validated on a large-scale reactor-separator system in Chapter 4 of this
thesis.
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Appendix A

Reactor-separator system

This Appendix section is devoted to the description of the reactor-separator system from
Section 4.3 from the viewpoint of tube MPC design. The system is adapted from [13],
where all, more specific parameters can be found, if necessary. The continuous-time
state-space matrices of the reactor-separator system are stated at the end of this
section due to large size. The system was discretized with a sampling time Ts = 0.1 h.
The steady state values ss are defined as follows:

T s
1 = 369.53 K

cs
A,1 = 3.31 kmol m−3

cs
B,1 = 0.17 kmol m−3

cs
C,1 = 0.04 kmol m−3

T s
2 = 435.25 K

cs
A,2 = 2.75 kmol m−3

cs
B,2 = 0.45 kmol m−3

cs
C,2 = 0.11 kmol m−3

T s
3 = 435.25 K

cs
A,3 = 2.88 kmol m−3

cs
B,3 = 0.50 kmol m−3

cs
C,3 = 0.12 kmol m−3
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The constraints on the state, input variables and disturbances are:

−ss ⪯ x ⪯ 100 · ss,

[−30, −35, −14]⊤ · 105 ⪯ u ⪯ [30, 35, 14]⊤ · 105,

−0.001I ⪯ d ⪯ 0.001I,

where I denotes the identity vector of the corresponding dimensions. The matrix E

multiplying the vector of disturbances d in (4.1) was set as identity matrix.

Regarding the MPC parameters, the prediction horizon N was 18 steps long and the
penalty matrices were set as follows:

Q = diag(Q1, Q2, Q3), where Qi = diag(3200, 1, 1, 1) · 103, i = 1, 2, 3,

R = diag(1, 1, 1) · 10−2.

The terminal penalty and terminal set was calculated using the option LQRStability=1.

Finally, the initial state condition for the performed control simulation in Section 4.3
was set as:

x0 = [−8.84, −0.12, −0.02, −0.01, −4.34, 0.01, −0.11, −0.03, −4.83, −0.09, −0.12, −0.04]⊤ .
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Appendix D

Resumé

Táto dizertačná práca sa zaoberá návrhom lineárneho prediktívneho riadenia pre zložité
systémy. Pojem “zložitý systém” v celej práci označuje systémy, ktoré prinášajú dve
skupiny výziev pri návrhu riadenia: veľkorozmerné systémy a systémy s nelineárnou a
asymetrickou dynamikou. Táto práca sa zameriava na tri techniky lineárneho MPC:
(i) parciálne explicitné MPC, (ii) laditeľné aproximované explicitné MPC a (iii) MPC
založené na implicitných tubách.

Prvá časť práce je zameraná na tému parciálneho explicitného MPC, ktoré je vhodné
pre veľkorozmerné problémy s veľkým množstvom ohraničení a optimalizovaných
premenných [32]. Najskôr sa v offline fáze vytvorí a uloží iba podmnožina všetkých
kritických regiónov. Následne sa v online fáze toto parciálne riešenie využíva v
inicializačnej stratégii, tzv. hot-start stratégii, na zefektívnenie hľadania kritického
regiónu, kam patrí meranie a následné určenie optimálneho akčného zásahu. Táto
stratégia je cenným nástrojom pre riešenie MPC optimalizačného problému vo veľkých
rozmeroch, keď je riešenie optimalizačného problému online alebo zostrojenie úplného
explicitného riešenia offline nepraktické a výpočtovo náročné. Čiastočné explicitné
riešenie preto predstavuje kompromis medzi explicitným MPC, ktoré nevyžaduje
optimalizáciu počas riadenia, a výpočtovo náročným implicitným MPC.

Jedným z cieľov práce bolo navrhnúť nové metódy vedúce k zníženiu pamäťovej stopy
MPC regulátora. Hlavnou myšlienkou bolo nahradiť polytopický kritický región jeho
vnútornou aproximáciou založenou na kruhoch s maximálnym objemom. V dôsledku
toho sa už neukladajú veľkorozmerné matice definujúce kritické regióny. Na identifikáciu
najbližšieho kritického regiónu sú potrebné iba polomery a stredy vpísaných kruhov.
Potom sa príslušný kritický región získa z matíc optimalizačného problému MPC a
optimálnej množiny aktívnych ohraničení. Zvyšok online fázy zostáva rovnaký ako v
pôvodnom navrhnutom postupe.

Navyše, vďaka informácii o polomere vpísaných kruhov je určovanie najbližších kri-
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tických regiónov presnejšie, keďže sa berie do úvahy veľkosť vnútornej aproximácie.
V neposlednom rade, ďalšou významnou výhodou navrhnutej metódy je zafixovanie
veľkosti pamäte parciálneho riešenia. Fixná štruktúra vpísaného kruhu nám umožňuje
určiť veľkosť pamäte parciálneho riešenia vopred, bez potreby vyriešiť veľkorozmerný
optimalizačný problém.

Vlastnosti navrhnutej metódy boli analyzované na numerickom príklade. Najskôr
bolo vytvorených 5 sád veľkorozmerných MPC problémov o rôznej veľkosti. Pre
každý MPC problém bolo zostrojené parciálne explicitné riešenie pozostávajúce z 300
kritických regiónov. Pre každú veľkosť problému bola vyhodnotená priemerná veľkosť
pamäte parciálneho riešenia na základe prístupu založenom na polytopických kritických
regiónoch. Následne bola vyhodnotená aj veľkosť pamäťovej stopy založená na prístupe
fixovanej zložitosti. Analogicky sa potom vyhodnotila priemerná veľkosť pamäte pre
každú veľkosť problému. S rastúcou veľkosťou problému sa výrazne zvyšuje príspevok
rozsiahlych veľkorozmerných matíc optimalizačného problému MPC, v dôsledku čoho
je rozdiel medzi celkovými pamäťovými stopami týchto dvoch metód nižší. Preto aj
úspora pamäte klesá s rastúcou veľkosťou problému. Pre najväčšiu veľkosť problému
pozostávajúcu zo 7 200 ohraničení bola celková úspora pamäte 26,7 % a pre najmenšiu
veľkosť problému pozostávajúcu zo 6 030 ohraničení bola celková úspora pamäte 41,2 %.

Ak sa navrhované techniky zapracujú do pôvodného prístupu parciálneho explicitného
prediktíveho riadenia, vedú k významným pamäťovým úsporám, ktoré sú podstatné
pre ukladanie veľkorozmerných dát. Ďalším cenným príspevkom je fixovanie a určenie
veľkosti vopred, bez potreby vyriešenia optimalizačného problému.

Druhá časť tejto dizertačnej práce sa zaoberá návrhom metódy samoladiteľného explic-
itného MPC. Táto technika vychádza z konceptu laditeľného explicitného MPC [36],
ktoré počíta akčný zásah na základe lineárnej interpolácie medzi akčnými zásahmmi z
dvoch hraničných regulátorov. Tieto hraničné regulátory sa líšia iba nastavením jednej
penalizačnej matice a zvyšok štruktúry reulátora a hodnôt parametrov zostáva rovnaký.
Za cenu suboptimálnosti a uloženia dvoch hraničných explicitných regulátorov sa získa
možnosť aplikovať akčný zásah, ktorý zodpovedá aproximácii ľubovoľného nastave-
nia regulátora zvoleného z rozsahu medzi nastavením dolného a horného hraničného
regulátora.

Cieľom práce bolo odstrániť nutnosť manuálnych zásahov do riadenia v reálnom čase
a delegovať rozhodovanie v reálnom čase pri ladení na dobre vypracované interné
pravidlá, vedúce k efektívnej technike samoladenia pre praktické priemyselné aplikácie
riadenia. V mnohých praktických aplikáciách sa referenčná hodnota regulovanej veličiny
mení a nadobúda hodnoty zo širokého spektra možných prevádzkových podmienok.
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Použitie rôznych nastavení regulátora môže pomôcť zvládnuť nelineárne a asymetrické
správanie zariadenia. Táto práca predstavuje dve techniky nastavenia samoladiteľného
regulátora. V prvom prístupe je agresivita regulátora ladená na základe rozdielu medzi
referenčnou hodnotou a ustáleným stavom zodpovedajúcim bodu linearizácie modelu.
Táto technika predstavovuje spôsob, ako kompenzovať nelineárne správanie systému.
Druhá technika ladenia bola podobná, berúc do úvahy veľkosť zmeny referencie.
Hodnota ladiaceho parametra sa vypočíta ako pomer medzi veľkosťou zmeny referencie
a maximálnou prípustnou veľkosťou zmeny referencie, ktorá je špecifikovaná pred
samotnou prevádzkou. Okrem toho je ladiaci faktor následne škálovaný rozdelením
intervalu ladiaceho parametra na dva rozsahy, ktoré sú priradené rôznym prevádzkovým
podmienkam, napr. kladnej alebo zápornej zmene hodnoty referencie. Nastavením
týchto pravidiel je možné zohľadniť asymetriu dynamiky procesu.

Nasledujúcim cieľom bolo implementovať a analyzovať kvalitu riadenia s použitím
samoladiteľného explicitného MPC regulátora pri riadení laboratórneho výmenníka
tepla. Prípadová štúdia zahŕňala úlohu sledovania referencie, ktorá mení svoju hodnotu
smerom nahor a nadol, aby sa preskúmala navrhovaná metóda ladenia. Preto bol
interval parametrov ladenia rozdelený na 2 časti. Keď sa referencia zmenila smerom
nahor, akčný zásah sa naladil v prvej časti intervalu a priblížil sa k akčným zásahom
dolného hraničného regulátora. Naopak, keď sa referencia zmenila smerom nadol, akčný
zásah bol naladený tak, aby dal väčšiu váhu akčného zásahu z horného hraničného
regulátora.

V rámci hlbšieho preskúmania výsledkov riadenia bol kvantitatívne vyhodnotený súbor
kritérií kvality. Na základe vyhodnotených kritérií možno konštatovať, že prístup
samoladiteľného riadenia prekonal konvenčnú stratégiu riadenia založenú na jednom
explicitnom MPC regulátore. V priemere sa výkonnostné kritériá kvality zlepšili v
porovnaní s horným a dolným hraničným MPC, v tomto poradí, nasledovne: kritérium
na základe sumy štvorcov regulačnej odchýlky sa znížilo o 23 % a 83 %, maximálny
prekmit/podkmit sa znížil o 64 ,% a 102 % a čas regulácie sa skrátil o 12 % a 244 %.

Tretia časť práce je venovaná téme MPC založeného na implicitných tubách, ktoré je
vhodné na riadenie neurčitých veľkorozmerných systémov. Pôvodné tube MPC nie je
vhodnou riadiacou technikou pre veľkorozmerné systémy, pretože vyžaduje netriviálne
množinové operácie, čo je náročné vo vyšších rozmeroch stavov [71]. Nový prístup
– MPC založené na implicitných tubách – navrhuje optimalizačný problém MPC
odlišne, vynecháva konštrukciu geometrických množín, ale stále zachováva optimálne
riešenie [67]. Cieľom tejto práce bolo začleniť MPC založené na implicitných tubách
do MPT+ (z angl. Multi-Parammetric Toolbox) toolboxu v prostredí MATLAB,
aby sa umožnilo široké využitie a užívateľsky priateľský návrh a implementácia tejto
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techniky riadenia. Táto práca poskytuje prehľad postupu návrhu MPC založeného
na tubách a implicitných tubách v MPT+. MPC založené na tubách bolo úspešne
implementované pri riadení zariadenia Flexy2 v reálnom čase pomocou toolboxu
MPT+. Navyše, validácia MPC založeného na implicitných tubách začleneného do
toolboxu je prezentovaná v simulácii riadenia. MPC založené na implicitných tubách
bolo implementované na veľkorozmernom systéme dvoch reaktorov a separátora s 12
stavmi a 3 riadiacimi vstupmi. Je dôležité zdôrazniť, že pôvodné MPC založené na
geometrických tubách nebolo možné navrhnúť z numerických dôvodov súvisiacimi s
geometrickými operáciami. Naopak, bolo možné navrhnúť a implementovať MPC
založené na implicitných tubách a všetky stavy systému boli úspešne riadené do
požadovaného ustáleného stavu v prítomnosti náhodne generovanej poruchy.
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