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Abstract

This thesis aims to identify and model the depropanizer column in the Fluid Catalytic
Cracking unit of the Slovnaft refinery. The depropanizer column is a distillation column
used for separating propane and lighter gases from the butane fraction. The historical
data from online sensors is used to validate a first-principles model using gPROMS
ModelBuilder software and a data-based model using the autoregressive model called
ARX. A hybrid model is then created by combining the first-principles and data-based
models. Three approaches of hybrid modeling are introduced - constant, static, and
dynamic correction.

Keywords: first-principles modeling, data-based modeling, hybrid modeling, de-
propanizer column
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Abstrakt

Cieľom tejto práce je identifikovať a modelovať deprozaničnú kolónu (depropanizér) v
jednotke fluidného katalytického krakovania rafinérie Slovnaft. Depropanizačná kolóna
je destilačná kolóna používaná na separáciu propánu a ľahších plynov z butánovej
frakcie. Historické údaje z online senzorov sa používajú na zlepšenie modelu prvého
princípu vytvoreného pomocou softvéru gPROMS ModelBuilder a modelu založeného
na údajoch pomocou autoregresívneho modelu nazývaného ARX. Hybridný model je
potom vytvorený kombináciou mechanistického a dátového modelu. Predstavené sú tri
prístupy hybridného modelovania - konštantná, statická a dynamická korekcia.

Kľúčové slová: mechanistické modelovanie, dátové modelovanie, hybridné modelo-
vanie, depropanizačná kolóna
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Chapter 1

Introduction

A model can be referred to as the imitation of reality, an abstraction of a real process
or system [33]. A mathematical model is a specific form of representation. During
the process of model building, we convert the problem from the real world into an
equivalent mathematical problem. This can help us solve and understand the particular
problem. However, the model must represent certain characteristics of the actual
system, such as the correct response direction of outputs as inputs change, a proper
structure that accurately represents the connection between the inputs, outputs and
internal variables, and the correct short- and/or long-term behavior of the system [15].

Currently, mathematical modeling plays a very important role in almost every field
such as physics, biology, chemistry, engineering [4], economics [13] and many others
[3]. We do not even know that we encounter mathematical modeling on a daily basis
without realizing it. Almost all of us carry a phone in our pocket that can be unlocked
with a fingerprint or facial recognition. These technologies use sophisticated algorithms
and models for identification based on mathematical modeling.

In the process industry, it is possible to use mathematical modeling to model complex
and difficult processes [35]. Despite the fact that the more complex the system is, the
more time and the deeper knowledge of the process it takes, such modeling can have
many benefits. Mathematical modeling can serve as a prerequisite for several purposes
such as the design and scaling up of processes, process control, optimization, developing
mechanistic understanding, planning and evaluating experiments, troubleshooting and
diagnostics, determining unmeasurable quantities, conducting simulations in place
of costly experiments, and feasibility studies to assess the potential before building
prototype equipment or devices [33].

First-principles models, also known as white box or mechanistic models, are developed
based on the fundamental laws of conservation, including mass balance, component
balance, and energy balance. First-principles modeling approach provides a physical
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understanding of the process and describes the process behavior in terms of state and
measured variables. The model state variable is the variable whose rate of change
is described by the conservation balance. First-principles models can be developed
even before the process exists and require dynamic equations supplemented with
algebraic equations for heat and mass transfer or kinetics [35]. Since first-principles
models are based on physical laws, they are often easier to understand and provide
reliable extrapolations. However, developing these models can be a time-consuming
and expensive process due to the requirement for specialized knowledge in the relevant
field to derive equations from physical laws [8].

Since almost every chemical process is monitored, information about it is obtained
in the form of data. Historical data provides process information and can be used to
create a model. In this case, data-based modeling comes into play, which can extract
information about the process using various techniques to create an accurate, precise,
and flexible model. Data-based models, also known as empirical or black-box models,
solely rely on input/output data to capture the relationship between the measured
variables of a process, without describing the underlying physical phenomena [35].
Data-based modeling is particularly useful when time is limited for model development
or when there is insufficient understanding of the process. Therefore, data-based
modeling offers the solution to the challenges and disadvantages of first-principles
modeling. However, these models do not provide insight into the underlying behavior
of the modeled process [8] and have limited extrapolability [37].

Hybrid modeling represents a combination of first-principles and data-based models
while using the advantages of both approaches. Compared to the first-principles
models alone, hybrid models present more accurate prediction properties and, unlike
the data-based models alone, achieve better interpolation and extrapolation properties
[35].

The aim of this thesis is the system identification of a part of the Fluid catalytic
cracking unit in the Slovnaft refinery called the depropanizer column. Depropanizer
is a type of distillation column, that is classified among complex chemical processes.
The depropanizer column serves to separate propane and the lighter gases from the
butane fraction. There are several operational degrees of freedom that can be adjusted,
including feed flow rate F , bottom product flow rate B, distillate flow rate D, reflux flow
rate R, heat duty in the reboiler QB , and heat duty in the condenser QD. Historical
measurements from online sensors are available for several of these variables, as can
be seen in Figure 1.1. Temperature measurements from sensors located at the top Tt
and bottom Tb of the column, as well as distillate temperature TD, bottom product
temperature TB , and pressure measurements from sensors located at the top pD and
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Figure 1.1: Scheme of the depropanizer column.

bottom pB of the column, are also available as plant measurements. Historical data
represents a week of production resulting in 9000 data points.

First-principles model of depropanizer is developed [26] using gPROMS ModelBuilder
[1] software. The historical data contains the data from step tests that were performed
on the feed flow rate. This data is used to improve performance and validate the
gPROMS model against real measurements.

Data-based modeling includes initial data treatment in order to detect the data
points that are statistically deviated and can be referred to as outliers. To study the
relationships between measurements, correlation analysis is provided. An autoregressive
model called ARX is introduced as a data-based model, that is used to predict the
output based on past values of inputs and output.

A hybrid model that combines a first-principles gPROMS model and a data-based
model is developed. The data-based model takes the role of correcting the error
between real measurements and outputs from gPROMS model. Three approaches of
hybrid modeling are introduced - constant, static and dynamic correction.
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Chapter 2

Mathematical model building

2.1 First-principles modeling
A method for building mathematical models known as first-principles modeling (FPM)
gives a quantitative account of the processes of how inputs influence outputs and key
performance indicators that are connected to a process technical, economic, safety,
and environmental performance. First-principles models differ from the empirical
mathematical and statistical correlation that is based on and obtained from plant or
other data. In contrast, first-principles models make use of fundamental engineering,
physics, and chemistry concepts, such as mass and energy balances and they also
involve physics-and/or chemistry-based definitions for the terms that appear in these
balances [30].

First-principles models have a number of benefits, including the capacity to extrapolate
over a broad range of operating circumstances and represent a process with great spatial
and temporal resolution. These models must be created with a thorough understanding
of the processes involved, and the modeling assumptions used can impact how well they
function. Moreover, complicated first-principles models can be expensive to maintain,
as follows it may be required to strike a compromise between sustainability and rigor.
Despite these drawbacks, first-principles models are nevertheless helpful in the design
and optimization of production processes [17].

The first-principles model requires a specialized modeling and simulation language
for efficient continuous and/or discrete uniform simulations. These languages are
often developed independently, such as gPROMS, Modelica, AMESim, or combined
with simulation platforms such as Matlab/Simulink [8]. Simulators for operational
optimization and operator training are just a few possibilities for using simulation
technologies in process operations. These simulations, which are based on complex
first-principles models, have been successfully used in many industrial applications.
They are also often maintained for a long time [30].
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An example of the use of this modeling approach, which can potentially be used in
the industrial section, is the design and optimization of distillation columns. The
purpose of these industrial units is to separate mixtures into individual components.
First-principles modeling can be used to understand in detail how a column works or
to see how column performance changes as process parameters change.

2.1.1 Model development process
Translating system into a precise and well-defined mathematical model is a challenging
task. The mathematical model is created by converting the underlying physical
principles and laws that describe a process into a system of mathematical equations.
These equations may take the form of algebraic, differential, or a combination of both.
The physical principles that underline a process may include mass and energy balances,
thermodynamics, fluid mechanics, and chemical reactions, among others. The process
of developing a first-principles model involves several steps [8], including:

• Phenomenological Description: The modeling object and experimental
conditions are combined to form a verbal, pictorial, or other mental description.

• Identification of Variables and Causality: A system of causal relationships
between specified variables, such as a block diagram, is then created from
the description. This process is used to remove mathematically plausible but
unnecessary relationships between the object’s input and output variables. It
may also introduce unmeasured internal variables or random disturbances.

• Mathematical Modeling: The specification of known relationships between
variables, including parameterization, or the selection of structures for unknow-
able relationships, including disturbances. It is necessary to develop numerous
hypothetical model structures of escalating complexity if it is uncertain how
many or what kinds of relationships are required.

• Calibration: The simplest models that are not falsified by experimental data
are found by fitting to the data and testing significance. The results allow for
the evaluation of uncertainty and credibility and may prompt a return to the
previous step.

• Validation: The model is examined using several sets of data. The calibrated
model must be simplified if it is too complex for the intended use.
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2.2 Data-based modeling
Data-based modeling is a mathematical model-building method based on experimental
data or field operation datasets. Unlike the first-principles models, data-based models
do not rely on any prior knowledge of the underlying physical and chemical processes
[8]. In [22], these types of models are contrasted to what is commonly referred to as
black-box models or statistical models.

Datasets frequently contain a richness of information that cannot always be understood
by looking at data visualizations alone. We can gain new knowledge and insight
from these datasets by building models based on the observed input and output data.
In some circumstances, data-based models can also take the role of more intricate
process-based models, particularly where computing speed is an important factor or
the connections between inputs and outputs are unclear. Data-based models can take
many different shapes, ranging from straightforward regression models to those that
are based on biological or evolutionary processes [22].

Primarily due to its affordability, the data-based process modeling approach has gained
significant use in the process industry and offers a number of benefits mainly because
of its high cost-effectiveness. The majority of chemical processes are currently "data
rich and information poor" according to practical engineers, who have benefited from
studying the process operating data. Many data-based modeling approaches are being
studied, but most of them can be generally grouped into two categories. The first
category includes using artificial neural networks for constructing process models. The
second category involves conducting statistical data analysis and building a model
through regression [32].

In addition to the development of first-principles modeling approaches for distillation
columns, numerous research studies have focused on incorporating data-based modeling
techniques for controlling and optimizing distillation columns. In [7], a method is
proposed that involves using clustering to extract steady-state operational data and
selecting relevant input features to train an LSTM model that predicts steady-state
operation in a distillation column. Given the complex and often unpredictable nature
of distillation column operation, data-based models have emerged as useful tools for
predicting unexpected operational conditions. [24] presents a novel strategy for fault
detection in distillation columns using multiscale partial least squares. A data-based
approach for detecting flooding in distillation columns through the utilization of
dynamic principal component analysis and Bayesian inference is proposed in [21].
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2.2.1 Data treatment
Measurements are often taken in the process industry for various reasons, including
equipment performance monitoring, production process tracking, or process control.
Nevertheless, the collected data may be flawed due to incompleteness, inconsistency, or
broken sensors, which can adversely affect the subsequent analysis. Collected process
data points are often contaminated with abnormal data points that differ from the
other observations. These data points are called outliers. Detecting outliers in the
multivariate dataset is very challenging and many detecting techniques were proposed
[2]. In order to maintain optimal performance, product quality, efficiency, and safety in
industrial production, it is essential to detect outliers. Detecting outliers is challenging
in complex systems such as distillation columns, where variables interact intricately.
Outliers could indicate issues within the system. However, identifying them might be
complicated because an outlier in one variable may not necessarily be an outlier in
another. Outliers can also skew statistical analyses and machine learning outcomes,
potentially leading to biased results. Therefore, accurate outlier detection is important
for reliable results in industrial production.

To ensure that the dataset is in a suitable format for future analysis, data pre-
processing is needed. The multivariate dataset from industrial measurements, such as
temperatures or mass flow rates, contains various data on different scales. The raw
data might include features that are not useful for the intended purpose, such as using
machine-learning algorithms. Appropriate data pre-processing can lead to a better
understanding of correlations in the analyzed dataset.

In the process data, the important step of the pre-processing data is to define the
deviation variable as

xdv,i = xi − xss, (2.1)

where xdv,i is deviation variable, xi is the actual value and xss is steady-state value of
variable. In complex systems, such as distillation columns, the definition of deviation
variables may be difficult due to the presence of numerous steady states.

Minimum covariance determinant method

The Minimum covariance determinant (MCD) method is a commonly used approach
for detecting outliers in multivariate data. The method is based on a distance measure
called the Mahalanobis distance, which is defined as:

di =
√

(xi − x̄)⊺ S−1 (xi − x̄), (2.2)

where xi is the vector of scores on the set of p variables for subject i, x̄ is the vector of
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sample means on the set of p variables, and S is the covariance matrix. Large values
of Mahalanobis distance suggest that observation is far from the center of the data.
The goal of the MCD method is to identify a subset of observations that eliminate the
presence of outliers by minimizing the determinant of the covariance matrix. In other
words, the identified subset of observations creates the smallest volume of data points.
The procedure for searching the subset with the smallest determinant is carried out
using an iterative, multiple-step algorithm. The tuning parameter h represents the
number of samples in the subset and is chosen according to the condition:

n

2 < h < n, (2.3)

where n represents the number of observations.

The algorithm starts by randomly selecting an initial subset of size h from the data,
evaluating the values of the sample mean x̄ and covariance matrix. Mahalanobis
distance is then calculated for each observation by 2.2 and ordered from smallest to
largest. The subset with the smallest values of Mahalanobis distance is retained and
considered as the new subset of data h, and the value of the covariance determinant
is calculated. In the next step, there are two possible options. If the value of the
determinant of the covariance matrix for the new subset is higher than that for the
previous subset of observations, the algorithm stops. Otherwise, the new subset of
observations is considered as the subset for the next iteration of the algorithm [12].
Given the presence of randomness in the proposed method, it is useful to run the
algorithm with various initial subsets of observations.

Smallest half-volume method

In [9], the Smallest half-volume method (SHV) was proposed for detecting outliers in
multivariate analytical chemical data. Firstly, the Euclidean distance between each
pair of observations is determined, creating a distance matrix D of size n by n with
each row sorted in ascending order. Then, it is determined which row has the shortest
sum of the first n/2 smallest distances. This represents the most stable section of the
normal data and consists of the n/2 observations that are closest to one another in the
multivariate space. Subsequently, the distributions of the Mahalanobis distances are
obtained. The outliers are detected by comparing them with the χ2 distribution at
the level of significance α = 0.95 [10]. However, the most consistent n/2 observations
may still contain a significant fraction of the outliers under rare circumstances where
the number of outliers is near 50% and the outliers are close to one another. For
example, the outliers may be constant values in data from a stuck valve in the typical
operational position, resulting in zero distances between the outliers. The SHV method
is comparable to the MCD approach as it also identifies a subset of data points that best
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represent the normal data while being stable. However, the SHV method is regarded
as an improved version of MCD mainly because of its simplicity and computational
efficiency [9].

Gaussian mixture model method

In the field of statistics, a Gaussian mixture model (GMM) [40] is a type of probabilistic
model that assumes a set of data points follows a mixture of multiple Gaussian
distributions with unknown parameters. The Gaussian mixture model is defined as

q(x; θ) =
m∑

ℓ=1
wℓn (x; µℓ, Σℓ) , (2.4)

The model consists of a linear combination of m Gaussian models, each weighted
according to {wℓ}m

ℓ=1. Each Gaussian model is characterized by a mean vector µℓ and
a covariance matrix Σℓ. The weight of each Gaussian model indicates the likelihood
that a particular data point belongs to that specific model. The parameters of a
Gaussian mixture model are estimated using the maximum likelihood estimation
(MLE) algorithm. The likelihood function is maximized with respect to the parameters
{wℓ}m

ℓ=1, µℓ, Sℓ. The optimization problem for MLE involves constraints on the weights
wℓ. To solve this problem, the weights are reparameterized as

wℓ = exp (γℓ)∑m
ℓ′=1 exp (γℓ′) , (2.5)

where γℓ is a free parameter, and then the likelihood function is maximized with
respect to the parameters wℓ, µℓ, Sℓ.

The algorithm aims to fit the data to a combination of Gaussian distributions that have
varying means and variances. The user selects the number of Gaussian distributions,
which also determines the number of clusters. After fitting the GMM to the data, the
algorithm computes the likelihood of each data point. Any data points with a low
likelihood of belonging to any of the Gaussian distributions are considered outliers.
The user can set the threshold for identifying outliers depending on the required level
of sensitivity.

2.2.2 Variable selection
Selecting relevant variables is important in data analysis and modeling, particularly
when we have available many variables but with limited understanding of their rela-
tionships. Choosing the right variables can improve the interpretability of results and
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Figure 2.1: Correlation between two variables.

increase model accuracy. Correlation analysis is a widely used technique for variable
selection. This statistical technique is specifically called the Pearson correlation method
and is used for investigating the statistical relationships between two or more variables
[5]. To interpret the correlation analysis numerically the correlation coefficient is used.
The Pearson correlation coefficient r assigns a value between -1 and 1 and for the two
variables xi,1 and xi,2 can be derived from:

r =
∑n

i=1 xi,1xi,2 − (
∑n

i=1
xi,1)(

∑n

i=1
xi,2)

n[∑n

i=1
x2

i,1−(
∑n

i=1
xi,1)2

n

] [∑n

i=1
x2

i,2−(
∑n

i=1
xi,2)2

n

] . (2.6)

If the value of the coefficient is 0, it means that there is no correlation present [27]. If
the score value is near ± 1, the correlation between the two variables is high. In other
words, this means that as one variable increases, the other variable tends to increase
and vice versa. A strong correlation between two variables occurs when the correlation
score is between ± 0.50 and ± 1. If the score value lies between ± 0.30 and ± 0.49,
then the correlation tends to be medium. While the score value lies bellow ± 0.29,
we consider that the correlation among the variables is weak. Interpretation of the
Pearson correlation method is also considered using the scatter plot seen in Figure 2.1,
where values of one variable appear on the horizontal axis and the values of the other
variable are on the vertical axis. By analyzing the scatter plot, we can often identify
interesting patterns and relationships in the dataset.

2.2.3 Model selection
In the data-based modeling process, choosing the best model structure is crucial
because it permits an accurate representation of the underlying system dynamics. The
analysis of time series data gathered from sensors is crucial for the creation of efficient
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models in the context of process industries, such as distillation columns.

In this thesis, time series data are analyzed using autoregressive models. A useful tool
for understanding complex systems is the regression model known as the autoregressive
model, which provides information on the relationships between recent and historical
observations. The family of autoregressive models is introduced [11].

AR model

In autoregressive (AR) model, the lagged values are used as predictors. This means
that the value at a given point in time is a linear function of its past values. The
mathematical representation of AR model is following

y(t) = −a1y(t − 1) − · · · − anay (t − na) + e(t), (2.7)

where y(t) is the value of the time series at time step t, a1, ..., ana
are the model

parameters, and e(t) is the error term.

ARMA model

Let us consider a process y(t) that can be represented as white noise that passes
through a linear system described as:

y(t) = F (q)e(t), (2.8)

where e(t) is the white noise, q is the shift operator and F (q) is represented as

F (q) = C(q)
A(q) =

1 +
nc∑

i=1
ciq

−i

1 +
na∑
i=1

aiq−i

, (2.9)

where na/nc is the numerator/denominator order. The ARMA (autoregressive moving-
average) model can be expressed as:

y(t) = − a1y(t − 1) − · · · − ana
y(t − na)+

e(t) + c1e(t − 1) + · · · + cnc
e(t − nc),

(2.10)

where y(t) is the value of the time series at time t, a1, ..., ana
and c1, ..., cnc

are the
model parameters and e(t) is the error term. While the first autoregressive (AR) part
describes the dynamics of the output y(t), the MA component models the influence of
the disturbance variable e(t).
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ARX model

ARX model is an extension of AR model that includes previous values of input variable
as additional predictors. The mathematical representation of ARX model is the
following

y(t) = − a1y(t − 1) − . . . − ana
y (t − na) +

+ b1u(t − 1) + · · · + bnb
u (t − nb) + e(t),

(2.11)

where y(t) is the value of the time series at time t, a1, ..., ana and b1, ..., bnb
are the

model parameters and e(t) is the error term.

ARMAX model

ARMAX model is a popular variation of the autoregressive model with exogenous
variables (ARX) that accounts for the influence of past error terms on the output
variable. In other words, ARMAX model extends the ARX model by adding a moving
average (MA) component for the error term. This makes ARMAX model suitable
for modeling dynamic systems that are affected by both internal and external factors.
Like the ARX model, the ARMAX model is a linear model that assumes that the
system can be expressed as a difference equation

y(t) = − a1y(t − 1) − · · · − ana

y(t − na) + b1u(t − 1) + · · · + bnbu(t − nb)
+ e(t) + c1e(t − 1) + · · · + cnce(t − nc).

(2.12)

2.2.4 Order determination
The choice of the structure of a data-based model comes with the challenging task that
involves the determination of the model order. In a family of autoregressive models,
the order of the model corresponds with the number of previous values that are used
to predict the current value. By choosing too low order of the model, we may end
up with a situation where the model does not capture trends in the data and the
prediction of such a model will be very poor. This may lead to underfitting the data,
which means the model is not effectively representing the data. On the other hand,
the choice of a higher order could result in overfitting. Due to overfitting, the model
fits badly on the testing data but works perfectly on the training data. This is because
an over-fitted model does not capture underlying patterns or relationships in the data,
but captures unavoidable noise in the training data [43]. The optimal model order is
then a compromise of the model complexity and its performance.
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Autocorrelation function

Autocorrelation function (ACF) is a statistical tool for measuring the correlation
between a time series and its previous values. The autocovariance at lag h [20] is given
by:

γX(h) = Cov (y(t), y(t − h)) = E [(y(t) − µX) (y(t − h) − µX)] , (2.13)

where y(t) is a stationary time series with length T , y(t−h) is the lagged time series by
h periods and µX is the expected value of y(t). The autocorrelation of y(t) is defined
as following

ρX(h) = Cor (y(t), y(t − h)) = γX(h)
γX(0) = E [(y(t) − µX) (y(t − h) − µX)]

E (y(t) − µX)2 . (2.14)

Partial autocorrelation function

To measure the degree of association between y(t) and y(t − h) while not considering
the effect of the other time lags, the partial autocorrelation function (PACF) is used.
The PACF is defined as function α(·) as:

α(0) = 1,

α(h) = ϕhh, h ≥ 1,
(2.15)

where ϕhh is the last component of

ϕh = Γ−1
h γh,

where Γh = [γ(i − j)]i,j=1,...,h, and γh = [γ(1), . . . , γ(h)]′.

The visualization of ACF and PACF can be helpful to identify patterns in the data that
are repeating over time, for example, seasonal effects such as changing temperature
over day and night. Both functions take place in the determination of the order of
the autoregressive model [41]. The order is determined by the point at which values
drop below a certain significance level [28]. For example, if the ACF or PACF quickly
decays, it could indicate that the lower order model would be able the capture the
characteristics of time series data.

2.2.5 Model evaluation metrics
To evaluate the performance of models, it is important to have objective measures of
their accuracy and fit to the data. To compare the accuracy of models based on their
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predicted responses, it is common to use measures such as mean squared error (MSE)
and root mean squared error (RMSE). On the other hand, criteria such as Akaike and
Bayesian information criteria are used to compare and select model.

Mean squared error

Mean squared error [18] measures the average difference between the predicted values
ŷ and the real values y of the variable given as

MSE = 1
n

n∑
i=1

(yi − ŷi)2
, (2.16)

where n denotes the number of data points.

Root mean squared error

Root mean squared error measures the squared average difference between the predicted
values ŷ and the real values y of the variable given as

RMSE =

√√√√ 1
n

n∑
i=1

(yi − ŷi)2
. (2.17)

Akaike information criterion

A commonly used approach for determining model accuracy is through the use of
Akaike information criterion (AIC). AIC is a statistical measure that evaluates the
suitability of the model by comparing the actual probability distribution of output
real values y to that of predicted values ŷ. Mathematically, AIC is given by:

AIC = n log(σ̂2) + 2|M |, (2.18)

where N represents the number of data points, σ̂2 is the variance of the model prediction
error given by the difference between the real values y and the value predicted by the
model ŷ, and M is the total number of model coefficients.

Bayesian information criterion

Another used approach for selecting a model is through Bayesian information criterion
(BIC) given by the formula

BIC = n log(σ̂2) + M log(N). (2.19)
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BIC is considered to be more reliable than AIC in many model selection scenarios due
to its asymptotic consistency. This is because BIC has a stronger penalty term for the
number of model parameters in 2.19, making it more likely to select a less complex
model. In practical applications, BIC is commonly used to select the optimal model
for subsequent inferences, while AIC is often used to identify the best prediction model
[29]. A model with a lower AIC or BIC value is considered to have a better fit which
indicates it is more likely to predict new observations accurately [25].

2.3 Hybrid modeling
Hybrid modeling can be thought of as a combination of two modeling principles -
first-principles and data-based modeling. The original idea of hybrid modeling was
introduced in 1992 by a paper by Psichogios and Ungar [31], where the goal was to
obtain a more reliable and easier-to-interpret model by combining a first-principles
model with a data-based model. The first-principles model provided prior knowledge
about the modeled process of the fed-batch bioreactor, while the data-based model
in form of the neural network was used for the estimation of unmeasured process
parameters that are challenging to model using first-principles.

Hybrid modeling serves as a modeling enhancement and provides many benefits.
Considering the complexity of process model development, first-principles modeling
requires a very good knowledge and understanding of the physics and mechanisms of
the process, whereas with data-based modeling no prior knowledge of the process is
required. In this case, in hybrid modeling, a combination of both types of knowledge is
required. The complexity of hybrid models varies depending on how much knowledge
and understanding are included in the modeling. Considering the performance of
hybrid models, through the proper combination of the strengths of both modeling
approaches, more accurate results can be obtained. Hybrid models represent a viable
trade-off between model accuracy and computational tractability, albeit with potential
increases in computational and data requirements compared to their single-model
counterparts, namely data-based or first-principles models.

Nowadays, with the advent of Industry 4.0, hybrid modeling has taken on a new dimen-
sion. This combination of primary and data-driven models brings new opportunities
in the fields of engineering, energy, and especially the process industry. The article
[36] presents many applications of hybrid modeling dating back to 1992 and today.
The article mentions areas, where hybrid models are used. One of the mentioned
is process control, where hybrid models have been integrated into model predictive
control [44, 42] to predict future states of variables and adjust control inputs to
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maintain optimal performance. It has been shown to improve prediction accuracy, as
demonstrated by the fusion of physics-based and measurement-based models using
a particle filter for predictive maintenance [14]. Hybrid models have also been used
for process monitoring, fault detection [16], and prediction of flux evolution [19] and
reaction kinetics in batch processes and bioprocesses, utilizing both batch-run specific
and process specific information.

2.3.1 Model development
To construct a hybrid model, one must first evaluate the requirements of the modeled
process. Many variables impact the choice of the modeling approach and the selection
of first-principles and data-based models, including the amount of process data avail-
able, the studied system complexity, or available software. Creating a hybrid model
necessitates a thorough grasp of the process under consideration, the available datasets,
and the restrictions imposed by the modeling methodologies used. The purpose of
hybrid modeling is to build an efficient model that may be used for future research or
practical applications. There are several ways to develop the hybrid model, including
the series model, parallel model, series-parallel/combined approach [6]. Scheme of
each model is seen in Figure 2.2. We will explain the use of these principles using a
practical example. Let us imagine that we have a first-principles model of a distillation
column, but its outputs differ from real measurements. The goal is to improve the
predictions by creating hybrid model. After a deeper analysis, it was found that the
deviations of first-principles model are caused mainly by impurities in the feed, that
cannot be included.

In the case of the series hybrid modeling approach, a combination of first-principles and
data-based model is included to improve the accuracy of predictions. This approach
is used when the physics of the system is sufficiently understood by a first-principles
model, but there are parameters that are uncertain and difficult to measure or model.
In our case, the undetermined parameters would correspond to the composition of
the feed, which is estimated using a data-based model. Subsequently, the estimated
parameters would be included as input to the first-principles model.

In the parallel hybrid approach of first-principles modeling, the model is used to capture
the behavior of the system. A data-based model, on the other hand, serves to predict
and correct residual model errors based on the difference between actual measurements
and the output of the first-principles model. While the first-principles model of the
distillation column serves to predict outputs based on physical and chemical equations,
the data-based model takes into account the first-principles differences caused by
uncertainties in the system. The data-based residual model is also referred to error
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Figure 2.2: Scheme of series (a), parallel (b) and series-parallel (c) model.

correction model [34].

In this combined approach, two data-based models are combined with a first-principles
model in a series-parallel connection. One data-based model is trained for the series
model to estimate the parameters for the first-principles, while the second data-based
model served to correct for the residuals between the plant data and the series model
predictions. This approach takes advantage of both series and parallel models and
can improve accuracy in predicting behavior in complex systems such as a distillation
column.



Chapter 3

Case Study

3.1 Depropanizer column
The focus of the thesis is to model the distillation column in the Slovnaft refinery,
which is an essential part of the Fluid catalytic cracking (FCC) unit. The type of
distillation column studied in this section is called the depropanizer column. To study
detailed column information and comprehensively understand the process, we were
provided with a piping and instrumentation diagram (P&ID) [38] that displays the
engineering details of the process equipment including the shared devices, instruments,
valves, or pumps. However, due to the nondisclosure agreement with Slovnaft, the
description of the depropanizer column and its control configuration cannot be fully
stated.

The distillation column [39] or distillation tower is the most commonly used separation
unit in refineries. The operation of the distillation column is based on a process called
distillation, which separates the components of a mixture based on their different
boiling points. The depropanizer column, in particular, separates propane and lighter
gases from the butane fraction, with the vapor of the propane and lighter gases rising
to the top and hydrocarbons with higher boiling points falling to the bottom of the
column. Several major parts of the distillation column are the reboiler, condenser and
tower called the column.

The measurement of pressure is important for the optimal operation of the distillation
column as it is directly linked to changes in the relative volatilities [23] of the components
in the mixture. The pressure in the column is measured at the head and the bottom
of the column. The differential pressure sensor is used to measure the difference in
pressure between the two points to determine the pressure drop across the column.

The feedstock mixture, which is a distillate product from the previous column in the
FCC unit seen in Figure 3.1, known as the debutanizer column, is introduced to a feed
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Figure 3.1: Scheme of Fluid catalytic cracking unit in Slovnaft refinery.
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tray in the column that divides it into a stripping (bottom) section and an enriching
(top) section. The feedstock mixture is measured by a temperature sensor and consists
of nine components- propane, propylene, isobutane, n-butane, 1-butene, isobutene,
trans-2-buten, cis-2-buten, 1,3-buadiene and isopentane. However, due to the exterior
placement of the column, the temperature varies throughout the day and night. The
temperature profile of the column in the enriching (top) section is monitored by a
temperature sensor located at top of the column. Another temperature sensor located
in the stripping (bottom) section of the column represents the temperature of that
section, which is typically higher than the feed temperature due to the increasing
presence of less volatile components [26].

The vapor leaving the top of the column is condensed and continues to a condenser
where it is cooled. A temperature sensor measures the temperature of the condensate
that is leaving the condenser. The condensate then enters a reflux drum where it is
separated into two streams. One stream is the reflux flow, which is recycled back to
the top of the column. The second stream is the distillate flow, which is removed from
the system. The distillate product consists of propane and propylene. The distillate
product is then used as a feedstock mixture for the third column of the FCC unit
called propylene splitter [26]. The temperature of the distillate product is measured
by a temperature sensor.
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There are two reboilers in the lower part of the column. The naphtha pump around is
used as the heating medium in the first reboiler with temperature sensors placed at
the inlet and outlet. The second reboiler uses light cycle oil as the heating medium.
The heat input into each reboiler is calculated from 3.1

Q = mcp(Tin − Tout), (3.1)

where m is the mass flow rate of heating medium, cp is specific heat capacity of each
heating medium, Tin is the temperature of heating medium at input and Tout at output
[26].

The analyzed dataset consists of 9000 historical measurements from a depropanizer
column. This dataset represents the production of one week in January 2022 with 1
minute time period. The measurements include 12 process variables. The vector m of
these variables is given as:

m = (F, L, D, B, Q, Pb, Pt, TF , TD, TB , Tt, Tb) , (3.2)

where F is the feed flow rate, L is the reflux flow rate, D is the distillate flow rate, B is
the bottom flow rate, Q is the united heat duty of two reboilers, Pb is the pressure at
the bottom, Pt is the pressure at the top, TF is the temperature of the feed, TD is the
temperature of the distillate, TB is the temperature of the bottom, the temperature at
the top of the column Tt and temperature at the bottom of the column Tb.

3.2 First-principles model of depropanizer
The depropanizer column was modeled [26] using the gPROMS modeling software,
which is renowned for its ability to handle complex process modeling and simulation.
This software offers several benefits, including a user-friendly interface, robust modeling
capabilities, the ability to handle process discontinuities, and versatility in solving
a diverse range of mathematical models. gPROMS offers two methods for creating
models: one is by defining mathematical equations using the gPROMS modeling
language, and the other is by using the Process Modeling Library (PML) to create the
models [1]. The depropanizer model was specifically created using PML, a library that
contains pre-defined models for process equipment. By using pre-defined models, users
can save time since these models have already undergone testing and validation.

The model was developed based on the P&ID diagram and technical documentation of
the actual process [26], aiming to achieve the highest possible resemblance to reality.
Nonetheless, constructing a model of a real-world process from a plant is a challenging
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task, so some approximations and differences were necessary. For instance, the real
depropanizer has two reboilers, while the gPROMS model includes only one.

The PML library was used in the model of the depropanizer and included several
important objects such as column section, flash drum, source/sink, valve liquid, and
pump simple are shown in Figure 3.2. This figure shows a distillation column model
without its control configuration due to a non-disclosure agreement. Column section is
a model of a section of a distillation column and can be used to model both tray and
packing sections. Flash drum serves a dual purpose as it can be used as a reboiler to
provide heating to the column, or as a condenser to remove heat from a process and
condense the vapor into liquid. Source/sink is a model of a feed or product stream
that can be used to represent both inputs and outputs of a process. The valve liquid
model is designed to control the flow of liquid in a stream by adjusting a valve. This
valve uses the flow coefficient and the position of the valve stem to regulate the flow
rate of the liquid, based on the pressure difference. Pump simple is a model of a simple
positive displacement pump that can be used to increase the pressure of a liquid stream.
To define the physical properties of the mixture, the Multiflash property package was
used, which provides a database of chemical components [26]. The measurement device
is used to measure the composition of the mixture.

Table 3.1: List of equipment shown in the Figure 3.2.

Equipment Description
1 Column section
2 Flash drum
3 Source
4 Sink
5 Pump Simple
6 Valve liquid
7 Valve non-return
8 Measurement device

3.2.1 Model validation
The process of designing a simulation model is not complete until the model has been
validated against real data from the actual process. For this purpose, we used historical
data from step tests that were performed on feed flow rate F in the depropanizer. This
data allowed us to gain insight into the dynamic behavior of the process and compare
it to the simulation results.
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Figure 3.2: Scheme of gPROMS model of depropanizer.
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To accurately simulate the real process, the initial conditions of the simulation model
were specified to match the real measurements. The initial conditions included the
feed temperature TF , column top Pt and bottom Pb pressure, distillate TD and bottom
product TB temperature, and the composition of the feed, distillate, and bottom.
Although the composition measurements from the lab were not taken directly at the
start of the step tests, they were obtained the day before. It is worth noting that
composition measurements are not easily obtained continuously using online analyzers,
but rather infrequently (once a month or a week).

To ensure consistent input data for the model, specifically the feed flow rate, we used
the goRUN library that is available within the gPROMS Modelbuilder. Although the
documentation mentions a direct link between gPROMS and MATLAB, we discovered,
after consulting with PSE support (the company responsible for gPROMS), that version
7.1.1 of ModelBuilder does not support the goMATLAB feature, which required us
to use the link between gPROMS and Excel, known as goRUN. In Appendix B, it is
outlined a detailed guide on how to load Matlab data into an Excel file, and how to
use the goRUN library to communicate with gPROMS. Additionally, Appendix B also
provides instructions on how to automate the loading and saving of simulation data
via Excel.

The other settings and initial conditions for the individual device models and the
parameters of the PID controllers involved in the control loops were set using a stepwise,
iterative procedure. Our objective was to obtain simulation results that closely match
the real data. This approach helped us enhance the accuracy of the simulation model
and better understand the dynamic behavior of the depropanizer.

Figure 3.3 presents feed flow rate F and a comparison of the temperature at the bottom
of the column obtained from simulation Tb,sim and real process data Tb. It should be
noted that both temperatures are normalized due to the non-disclosure agreement.
However, there is a noticeable difference of 7.8°C between the real temperature
measurements and simulation data. Although we made an effort to minimize this
difference, it was not entirely possible. This discrepancy may be attributed to the
different behavior of the real column or the composition of the mixture. Another
possible factor could be the presence of two reboilers in the real process, while the
gPROMS model only has one. This could be causing the temperature at the bottom
Tb to be lower due to the lesser effect of the reboiler.

Our objective was not to focus on the model error deviation but rather to optimize
the gPROMS model parameters to achieve a similar dynamic response of the output
variable Tb as the real measurements. We observed in 3.3 that an increase in feed



3.2 First-principles model of depropanizer 25

Figure 3.3: Step tests. Feed flow rate F (black), the temperature at the bottom of
the column - real Tb (blue), simulated Tb,sim (red).

flow rate F resulted in a decrease in temperature at the bottom of the column Tb,
and vice versa. A total of five step changes were performed. We observed that the
model sufficiently described the dynamics and behavior of the real variable during the
first four step changes. However, during the final step change, we noticed that the
temperature in the simulation model decreased much faster than in the real case. Due
to the distillation column’s nonlinear and multivariate nature, this deviation could be
caused by the influence of other variables in the column, such as pressure.

3.2.2 Results
Once the model validation was completed, we proceeded to simulate data by initial-
izing the initial conditions with real measurements and feed, distillate, and bottom
compositions with the laboratory analysis conducted 3 days prior. The input data in
the form of feed flow rate was loaded into the simulation using the method described
in the Appendix B. A total of 9000 input data points were loaded, and the simulation
took 93 minutes to complete. After conducting several experiments, we discovered
that the simulation time is primarily influenced by the size of the dataset and the
number of input variables to be configured. Using the go:RUN component to execute
simulation results in the creation of an object when input data is loaded. The larger
this object, the longer the simulation takes to run. This issue could be resolved by
devising a method for streaming data directly into gPROMS ModelBuilder.
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Figure 3.4: Perfomance of gPROMS model. Feed flow rate F (black), the
temperature at the bottom of the column - real Tb (blue), simulated

Tb,sim (red)
.

Figure 3.4 shows the feed flow rate F and a comparison between the simulated Tb,sim
and real temperature Tb at the bottom of the column. Figure 3.4 also demonstrates
how well the gPROMS model performs when using the whole dataset and it was
generated using MATLAB yyaxis function to compare the prediction of the gPROMS
model with real data. The average error is 7.8 °C, but normalized temperature values
are presented due to a non-disclosure agreement. We can also observe that the trend
of an increase in feed flow rate F resulting in a decrease in temperature at the bottom
of the column Tb, and vice versa, was consistent with the observations made during
step tests discussed in Section 3.2.1.

3.3 Data-based modeling
Data-based modeling involves several steps, including cleaning data from outliers,
correlation analysis, and selecting an appropriate model for predicting the output
variable. In this thesis, the output predicted variable is the temperature at the bottom
of the column Tb. We decided to choose an ARX model as our data-based model, which
uses past values of temperature Tb and input variables values for prediction. However,
due to the presence of noise or outliers in the plant data, this can be challenging. We
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Figure 3.5: The visualization of the detected outliers (red points) and the retained
measurements (blue points) in the normalized data points of the

temperatures using MCD method.

outline the possible procedure for data-based modeling, including correlation analysis,
order determination, and selecting the best model.

3.3.1 Data treatment analysis
A situation often occurs in the industry when a sensor malfunctions or there is a
shutdown in plant. We decided to use three methods to detect these values, which
may deviate from the other data points.

The application of the MCD method involves controlling the h parameter. In our case,
we set this parameter so that it preserves 99% of the data points in the case of a dataset
with a normal distribution. However, since we are working with data that comes from
industry, we can assume that the percentage composition of detected outliers will
be larger. Due to the presence of randomness when using the MCD method we ran
the algorithm 30 times and averaged the results from each iteration. The number of
detected outliers is 1245, which represents almost 14% of the original 9000 data points.
Figure 3.5 shows detected outliers highlighted in red. The first interesting area of
detected outliers is located around the time t = 500 min, where the temperature in the
upper part of the column Tt and feed flow rate F do not change their character. On
the other hand, the temperature in the bottom part Tb suddenly decreased and the
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MCD method detected this area where the state of the column changed. An interesting
area is the implementation of step tests around time t = 3300 min, in which the MCD
method also identified outliers because there was a change in the system. On the one
hand, the MCD method is accurate as it detects significant changes in the nature of
the data. On the other hand, it should be noted that data from step tests are desired,
and the researcher should be cautious when excluding them. In the region around
t = 6700 min, we can notice a sudden change in temperature in the upper part of the
column, while in the case of feed flow rate F there is no visible change compared to
the overall dynamics. These observations confirm the good properties of the MCD
method for detecting outliers in a multivariate dataset.

As the second method for detecting outliers, we used the Gaussian mixture model
method with 2 Gaussian components. To determine how well each observation fits
the estimated mixed distribution, we calculated the log-likelihood of each observation
under the identified model. We set a threshold corresponding to the 1st percentile
of log-likelihood values. Outliers were detected as values lower than this threshold.
Using this approach, we detected 450 values. In Figure 3.6, the areas detected by
this method can be observed. Interestingly, this method also detected an area around
time t = 500 min as a potential change in the system. In cases, where we are looking
for areas where the system undergoes rapid changes, it may be problematic that this
method did not detect many outliers in the region around time t = 6500 min, despite
there being noticeable changes in the system. This suggests that the method may not
be as sensitive to certain types of changes as we would desire.

When using the SHV method to detect outliers, we followed the procedure provided in
Section 2.2.1 Using this method, we identified only 389 outliers. In Figure 3.7, we can
notice the detected areas highlighted in red. Using this method, we identified the area
around time t = 500 min, as well as when using the previous two methods. We also
observe detected outliers in the area around time t = 6700 min due to the temperature
change in the temperature at the top of the column Tt.

3.3.2 Correlation analysis
The distillation column, depropanizer, belongs to the group of systems that have strong
interactions between the variables. Therefore, it is important to analyze the correlation
in time-series data to provide better insight into the dataset. In addition, the presence
of control loops in the system can further complicate the analysis of correlations.

Our interest is to study the relationship between the output variable Tb and other
variables. In this part, we used the remaining data points from data treatment using
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Figure 3.6: The visualization of the detected outliers (red points) and the retained
measurements (blue points) in the normalized data points of the

temperatures using GMM method.

Figure 3.7: The visualization of the detected outliers (red points) and the retained
measurements (blue points) in the normalized data points of the

temperatures using SHV method.
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Figure 3.8: Bar graph of correlation coefficients between the variables with output
variable Tb.

the MCD method. We calculated the values of the Pearson coefficient. The calculated
values of the coefficients are summarized in Table 3.2. Figure 3.8 shows a bar graph to
visualize the correlation coefficients, where the numbers on the x-axis correspond to
the numbers in Table 3.2 representing the variables.

From the results, we can observe that the largest correlation based on the correlation
coefficient -0.7863 is with the feed flow rate F . A negative value gives us a negative
correlation, which in practice means that increasing the flow leads to a decrease in the
temperature Tb. Increasing the feed flow rate F may cause the mixture to not be in
the column long enough to absorb the sufficient amount of heat required to bring the
mixture to the desired temperature. This observation can also be seen in Figure 3.3.

We can also see a medium strong correlation with the bottom temperature TB with a
coefficient value of 0.7527. This correlation is understandable mainly because both
temperatures are closely affected by the amount of heat that is supplied or removed
from the column, which in this case is represented by the heat duty in the reboiler Q

with a correlation coefficient of 0.6685. The purpose of the reboiler is to produce and
supply heat to the lower part of the column to provide the energy for the separation
of the mixture. If more heat is supplied by the reboiler, a greater amount of vapor is
produced with higher temperature than the liquid mixture. Vapor emerges from the
reboiler and rises up the column. When it collides with a cooler liquid and vapor in
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Table 3.2: Correlation coefficients between the variables with output variable Tb.

Variable Number Input Variable Correlation Coefficient
1 F −0.7863
2 L 0.6094
3 D 0.2816
4 B −0.0842
5 Q 0.6685
6 Pb 0.0577
7 Pt −0.0265
8 TF 0.0961
9 TD 0.0076
10 TB 0.7527
11 Tt 0.3719

the column, it condenses and transfers heat to the column. This heat transfer causes
an increase in both TB and Tb temperatures.

We also observe the moderately positive correlation with reflux L with a coefficient
equal to 0.6094. This relationship might be causal, as an increase in the temperature
at the bottom Tb could lead to an activation of more reflux to cool down the column,
resulting in an increase in the reflux flow rate. However, this phenomenon may
not be valid for all types of columns and depends on the specific process or control
configuration of the column. For the other variables, we observe a low correlation due
to the values of the correlation coefficient close to zero. The correlations with column
pressures pb and pt are low, probably because they are controlled variables. The low
values of correlation coefficients of distillate flow rate D and TD indicate, that they are
independent of Tb as they are related to the cooling setting in the condenser. What is
interesting, is the low values of correlation with the temperature of feed TF and at the
top of the column Tt. This observation can be caused by the presence of control loops
in the system.

3.3.3 Order determination
Determining the order of an autoregressive model is not straightforward and may
involve using multiple techniques and methods. When using the ARX model, we must
realize that it is not only necessary to determine the order of the output (autoregressive)
part, but also the order of the input (exogenuos) part.
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Figure 3.9: Partial autocorrelation function of Tb.

One of the methods to determine the order of the model is to use the partial autocorre-
lation function. Visualization of this function gives us a closer look at the relationship
between the samples and their past values. In our case, the output variable is the
temperature Tb, for which we calculated the PACF and displayed its dependence in
Figure 3.9. This figure shows PACF values at different PACF values. The PACF value
at lag 0 is equal to 1 because it represents the correlation between the same value.
Horizontal lines show the 99% confidence interval. The highest possible order of the
model is the one that still protrudes from this interval. In our case, this value occurs
at a lag of 11. The order of the exogenous part must be lower than or equal to the
order of the autoregressive component, however, determining this is often the result of
performing several experiments of fitting the ARX model and subsequently selecting
the best order based on the chosen criterion.

3.3.4 Model training and validation
To preprocess data for model training, we first adjust our variables to define the
deviation variables. It means that we subtract the steady state value from the
individual variables. There are many methods for determining the steady state, but
in complex processes such as a distillation column, determining the steady state
can be very difficult and the system may have multiple steady states. In our case,
we determined the steady state in the column corresponding to the value at time
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t = 1000 min seen in Figure 3.5. Subsequently, we divided our dataset into 3 sub-
datasets - training, validation, and testing in a ratio of 50:15:35. In this thesis, we
considered only one steady state, but another possibility of data preprocessing could
be, for example, the definition of a steady state in each sub-dataset.

Choosing the optimal model is an iterative process. In Section 3.3.3 we determined
the maximum order of the output part of ARX model that is 11. We create a loop in
which we go through all combinations of the order of the output and input part of the
model, with the condition that the order of the input part nb is less than or equal to
the order of the output part na is less than or equal to 11. In each iteration of the
cycle, we train ARX model with the given values of the orders of the output and input
parts. We validate the trained models on the validation data and calculate their AIC
values, which represent a measure of how well the model fits the data while taking
into account the complexity of the model. After all the iterations are completed, we
select the ARX model with the lowest AIC value on the validation data as the best
model of the series. This approach allows us to select the model that strikes the best
balance between accuracy and simplicity.

In Section 3.3.1, we cleaned the data from outliers. Now the question arises of how
to deal with the missing data. One solution would be to replace this data with, for
example, interpolation techniques or a median value. In this thesis, we consider two
scenarios. In the first scenario, we use only the data left after cleaning by individual
methods to train the model. The second scenario includes the original data with
outliers.

Scenario 1: Model training without outliers

In this scenario, we assume that we have all three sets - training, validation, and
testing - cleaned of outliers. However, the dataset, in this case, contains missing
data, which the ARX model cannot handle, as it uses the least squares method to
estimate parameters, which requires complete data. We split all sub-datasets into
several experiments. We introduced the condition that the experiment must contain
more than 100 measurements using data treatment analysis, we identified several
outliers that are close to each other and between them, there is not much available
data to estimate the model parameters. We could also apply such a procedure, for
example, if we received information from the operator that there was a sensor failure at
a specific time. In our case, we do not have this information, but the areas of detected
outliers using the three methods used could be a suitable approximation. Tables 3.3,
3.4, and 3.5 summarize the number of individual experiments with the corresponding
number of samples after data treatment using MCD, GMM and SHV methods used for
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training. Overall for model training the number of samples for MCD method is 2453,
for the GMM method is 3392 and for the SHV method is 4151. For model validation,
the number of samples for the MCD is in Table 3.6 and for the GMM and SHV method
in Table 3.7. The overall number used for validation for MCD method is 763 and for
GMM and SHV method 1197. As we can notice, the numbers of samples used for
training and validation are different in each method. It is common to compare the
model performance while using the same number of samples that comes into model
development. In this scenario, we want to compare the three different cases and how
would it affect the model design.

Table 3.3: Number of samples in individual experiments after data treatment using
MCD method used for model training.

Experiment 1 2 3 4 5 6 7 8 9 10 11
Samples 231 408 220 117 122 159 138 136 665 287 370

Table 3.4: Number of samples in individual experiments after data treatment using
GMM method used for model training.

Experiment 1 2 3 4 5 6 7 8 9 10 11
Samples 117 239 419 350 101 130 317 947 286 484 202

Table 3.5: Number of samples in individual experiments after data treatment using
SHV method used for model training.

Experiment 1 2 3 4 5 6 7 8
Samples 432 438 350 155 162 124 1278 1212

Scenario 2: Model training with original data

In the second scenario, we use all historical data to train and validate the model.
The total number of data used for training is 4500 and for validation 1350. The
advantage of the ARX model is that it also allows us to create a MISO model, which
means that multiple inputs can be used to predict the output. Adding more inputs
to the ARX model can lead to several benefits. By adding more relevant inputs that
are correlated with the output, we can gain additional information for modeling the
relationship between inputs and output. In Section 3.3.2 we obtained information
about the correlation of other variables in the dataset with the output variable. We
found that the best correlation was observed in the case of feed flow rate F , which
we used as input in the SISO ARX model. To improve this model, we decided to add
another input - heat duty Q. With this, we created a second model that contains two
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Table 3.6: Number of samples in individual experiments after data treatment using
MCD method used for model validation.

Experiment 1 2 3 4 5
Samples 182 117 131 101 232

Table 3.7: Number of samples in individual experiments after data treatment using
SHV and GMM methods used for model validation.

Experiment 1 2 3
Samples 226 216 755

inputs - feed flow rate F and heat duty Q. In addition, we also identified that reflux
L has a medium correlation with the output variable. Therefore, we decided to create
a third model, which includes three inputs - feed flow rate F , heat duty Q and reflux
L. In this case, we extended the basic ARX model to a MISO model, where we used
multiple inputs to predict a single output.

3.3.5 Results
We trained and validated six different models, which are summarized in Table 3.8.
In each case, the term ARX is followed by a set of numbers enclosed in parentheses.
The first number represents the order of the autoregressive part, that in this case
represents the Tb. The other numbers refer to the orders of the inputs. For instance,
ARX(9,8)MCD indicates that the model has an autoregressive order of 8 and uses the
feed flow rate F as the only input. The other models use different combinations of
input variables, as specified in Table 3.8.

Table 3.8: Summary of ARX models and inputs.

Model Inputs
ARX(9,8)MCD F

ARX(11,7)GMM F

ARX(8,5)SVH F

ARX(11,9) F

ARX(9,7,4) F , Q

ARX(9,3,1,4) F , Q, L

In the first scenario, we obtained three models - ARX(9,8)MCD, ARX(11,7)GMM,
ARX(8,5)SVH with using the retained data from treatment with the corresponding
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Figure 3.10: Model performance on testing data - ARX(9,8)MCD (black),
ARX(11,7)GMM (orange), ARX(8,5)SVH (green) and normalized Tb

(light blue).

method. However, to fairly compare these models with each other, we only use the
data that is the common intersection of the test data that remained after treatment
from all three methods. For the validation dataset, we provide calculated AIC and
BIC values of each model in Table 3.9. Based on these results, we can say the lowest
value of both criteria suggests selecting ARX(8,5)SHV as the optimal model. The
performance of these models on the testing dataset can be seen in Figure 3.10. Grey
dots represent the outliers.

Table 3.9: AIC and BIC values for the validation dataset for the first scenario.

Model AIC BIC
ARX(9,8)MCD 3467.0522 3324.5904

ARX(11,7)GMM 3486.4870 3545.0026
ARX(8,5)SHV 2686.0976 2729.1190

The second scenario included the original data for training and validation. The first
model ARX(11,9) uses the input variable feed flow rate F as autoregressive models in
scenario 1. However, we decided to improve the ARX model by including additional
input. The second model ARX(9,7,4) includes, in addition, to the feed flow rate F ,
the additional input heat duty Q. The last data-based model ARX(9,3,1,4) uses as
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Figure 3.11: Model performance on testing data - ARX(11,9) (orange), ARX(9,7,4)
(red), ARX(9,3,1,4) (black) and normalized Tb (light blue).

inputs three variables - feed flow rate F , heat duty Q and reflux flow rate L. The
comparison of the performance of these models on the testing dataset can be seen in
Figure 3.11. Based on the AIC and BIC values provided for each model in 3.10, we can
conclude that the ARX(9,3,1,4) model with the lowest values for both criteria is the
optimal choice. It is interesting, that values of AIC and BIC for models ARX(9,7,4)
and ARX(9,3,1,4) are significantly lower than for the other trained models. This
observation can suggest, that despite the similar number of parameters in all the
models, the models ARX(9,7,4) and ARX(9,3,1,4) fit the data better.

Table 3.10: AIC and BIC values for the validation dataset for the second scenario.

Model AIC BIC
ARX(11,9) 3499.1347 3556.4349
ARX(9,7,4) 601.5621 647.6975

ARX(9,3,1,4) 403.5048 400.3983

Due to the non-disclosure agreement, we provide the specific parameters of the au-
toregressive models. To study and analyze the models, we provide the step response
of each ARX model seen in Figure 3.12. In other words, Figure 3.12 shows how the
ARX model would react to a unit step input change. In the case of ARX(9,8)MCD,
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Figure 3.12: Step responses of identified ARX models.

ARX(11,7)GMM, ARX(8,5)SHV, and ARX(11,9), the responses show how the step
change of 1 kg/h feed flow rate F affects the temperature at the bottom of the column
Tb in degrees Celsius. We can observe that the temperature decreases in the steady
state in the interval of [−4.7524, −3.5195] × 10−4 ◦C. The response of the ARX(9,7,4)
model shows that the temperature changes when both the feed flow rate F and the
heat duty Q are changed by 1 kg/h and 1 kJ/h, respectively, simultaneously. After
the output response stabilizes, its value will increase by 1 ◦C. The response of the
ARX(9,3,1,4) shows that when the feed flow rate F , heat duty Q, and reflux flow rate
L are changed simultaneously by 1 kg/h, 1 kJ/h, and 1 kg/h, respectively, the output
decreases in −8.6219 × 10−8 ◦C. It is worth noting, that all these unit changes are not
likely to be present in the process industry. However, these analyses provide us with a
better understanding of the dynamics of the system and confirm the stability of the
proposed ARX models.

Table 3.11 summarizes the values of the MSE and RMSE criteria for the first scenario.
By choosing the lowest values of both criteria, we can state that the best model of the
first scenario is ARX(8,5)SVH. To give an overall comparison between models for the
second scenario, the values of calculated criteria are summarized in Table 3.12. The
lowest values of all the criteria for ARX(9,3,1,4) represent this model as the best for the
second scenario. Considering that both criteria values for this model are significantly
lower compared to the models in the first scenario, we can label this model as the best
data-based model.
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Table 3.11: Comparison of model accuracy on the testing dataset using MSE and
RMSE for the first scenario.

Model MSE RMSE
ARX(9,8)MCD 0.1156 0.3401

ARX(11,7)GMM 0.1166 0.3414
ARX(8,5)SHV 0.0960 0.3099

Table 3.12: Comparison of model accuracy on the testing dataset using MSE and
RMSE for the second scenario.

Model MSE RMSE
ARX(11,9) 0.0998 0.3160
ARX(9,7,4) 0.0469 0.2165

ARX(9,3,1,4) 0.0085 0.0923

3.4 Hybrid modeling
The combination of the first-principles model and the data-based model leads to the
creation of a hybrid model. This concept takes advantage of both modeling approaches.
In this work, we focus on modeling the deviation between the gPROMS first-principles
model and real measurements from the plant. Such a modeling approach is also called
model error modeling. This approach is similar to the parallel model scheme described
in Section 2.3.1, where the data-based model is used for modeling residuals. Our goal
is to create an error model that can estimate the deviation between the value measured
in the plant y and the value predicted by the gPROMS model yFP as can be seen in
Figure 3.13. We assume that if this error model subtracts this estimated error êFP

from the real error eFP, the result should be approximately zero. In other words, we
want to achieve the correction between the gPROMS model and the real values. We
introduce three possible approaches - constant, static, and dynamic correction.

3.4.1 Constant correction
In Section 3.2.2, we discussed that despite the fact that the output from the gPROMS
model describes the dynamic trends of real temperature measurements, a deviation is
present. In the case of constant correction, a constant value c is added to the outputs
from the gPROMS model yFP as can be seen in Figure 3.13. The corrected output ŷ

can be calculated as:
ŷ = yFP + c, (3.3)
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Figure 3.13: Scheme of the hybrid model used for correcting the error.

where c is the constant correction value that is calculated as the mean value of the
error values between the real measurements and the values predicted by the gPROMS
model from the training dataset given by:

c = 1
N

N∑
i=1

(
yi − yFP

i

)
, (3.4)

where N is the number of data points in the training dataset.

The constant correction of the error is the simplest form of correction, because of its
easiest implementation. However, this approach may include disadvantages such as
a lack of adaptability and robustness in case of changes in the process dynamics or
operating conditions in the depropanizer column.

3.4.2 Static correction
One simple approach in parallel modeling involves using static correction, where the
estimated error is represented by the input u multiplied by a constant parameter a. This
approach includes solving an optimization problem with the objective of minimizing
the error eFP between the gPROMS model output yFP and the real measurements y,
by finding the optimal value of a that minimizes the objective function J :

J =
N∑

i=1

(
a · ui − eFP

i

)2
. (3.5)
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Corrected outputs are calculated as

ŷ = yFP + a · u. (3.6)

The static correction approach is a straightforward approach, that does not require
complex algorithms. Static correction can lead to improved model predictions, as it
can account for information from the input that may not be captured by the gPROMS
model. Nevertheless, static correction has limitations and may not be able to capture
dynamic changes or include the entire range of operating conditions of the studied
process, especially in the case of multiple operating points.

3.4.3 Dynamic correction
Dynamic correction takes into account the error model that can capture the time-
varying behavior of the model error eFP. In this approach, the selection of the model is
the SISO ARX model, which takes into account previous values of model error as the
output and the previous values of input to estimate the current value of the error. To
achieve this, we follow the procedure explained in Section 3.3.3 and 3.3.4, where the
output is the estimated model error. The advantage of applying this approach involves
taking into account the effect of the input u on the model error. In this case, the input
variable is feed flow rate F . Dynamic correction approach allows more accurate and
adaptive correction than the use of constant or static correction.

3.4.4 Results
The purpose of the hybrid model is to provide better predictions of the temperature
at the bottom of the column Tb by combining the output of the gPROMS model and
correction of its occurred model error. The model error of the gPROMS model can be
seen in Figure 3.15.

In constant correction, the model error represents its mean value in the training dataset.
The value of this constant is 7.8 ◦C. By adding this value to the output of the gPROMS
model, we obtain a hybrid model with a constant correction. The performance of this
model on testing data can be seen in Figure 3.15.

The static correction represents the model error as a static model using multiplying
the input by a constant value. The optimal value of the constant a, which minimizes
the objective function 3.5 was determined to be 3.2366 × 10−4 using a gradient-based
optimization method. The performance of the static correction of the output of the
gPROMS model can be seen in Figure 3.15.



42 Case Study

Figure 3.14: Partial autocorrelation function of eFP.

In the dynamic correction, it is needed to predict the model error by the ARX model.
Firstly, we determine the maximum order of the autoregressive part, the output part of
the model that is the model error. The maximum order is selected from using Figure
3.14 that shows the PACF function of model error. The value is 7, because at this lag
still protrudes the 99% confidence interval. After training and validating the different
combinations of orders, we selected the best model as ARX(5,2) with input variable
feed flow rate F . The prediction of this model error model is shown in Figure 3.15.

Table 3.13: AIC and BIC values for the validation dataset for three correction
scenarios.

Correction Scenario AIC BIC
Constant 408.0487 410.0241

Static 294.4329 294.4329
Dynamic 955.0727 955.0428

In Table 3.13 we present the calculated AIC and BIC for the validation dataset. The
highest values of both criteria are present for the model with dynamic correction. By
comparing with the values for the other corrections, we can suppose that this is caused
mainly by the presence of more parameters in the dynamic ARX model. While in
the case of static and constant correction, there is only 1 parameter, in the case of
dynamic correction there are 7 parameters. Table 3.14 summarizes the values of the
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Figure 3.15: Error model (blue) and its estimation by constant (magenta), static
(red), and dynamic (black) correction.

Figure 3.16: Normalized Tb (blue) with corrected outputs using constant (magenta),
static (red), and dynamic (black) correction.
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Table 3.14: Comparison of model accuracy on the testing dataset using MSE and
RMSE for three correction scenarios.

Correction Scenario MSE RMSE
Constant 0.1040 0.3021

Static 0.0413 0.2031
Dynamic 0.0343 0.1853

MSE and RMSE criteria considering corrected and real outputs to fairly compare
them with the results from the data-based modeling approach discussed in Section
3.3.5. From the results, we can notice that in the case of dynamic correction, the
lowest MSE and RMSE values are achieved, which means that this scenario is the
most accurate in terms of bias estimation. The values of the criteria for the static
correction are somewhere between the values for the constant and dynamic models.
The use of static correction could indicate that this approach is a compromise between
the simplicity of constant correction and the complexity of dynamic correction. Upon
comparing the values of criteria in Tables 3.11, 3.12, and 3.14, it becomes evident
that the dynamic and static correction methods outperform all of the data-based
models identified in Section 3.3.5. The only exception is the ARX(9,3,1,4) model,
which, due to its significantly lower MSE and RMSE values, can be considered the
best-performing model. It might be worth considering whether it is practical to use
the ARX(9,3,1,4) model with its multiple parameters and three inputs, given that
it requires more computation time. Alternatively, using a hybrid model with fewer
parameters could be a better compromise.

The Figure 3.16 we can see the corrected outputs using all three correction scenar-
ios. The corrected outputs for constant and static correction scenarios have similar
characteristics and represent a solid performance. However, we can observe some
areas such as around time t = 700 min, that corrected outputs deviate from the real
outputs. On the other hand, the corrected outputs using dynamic correction capture
the character of the real output data. Furthermore, the dynamic ARX model acts as a
filter, resulting in smoother model outputs, as observed around time t = 1200-1500
min. This filtering effect can be also seen in Figure 3.15, which means that dynamic
correction (ARX model) is smoother than model error.
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Conclusions

This diploma thesis deals with the system identification of the depropanizer, which is
part of the Fluid catalytic cracking unit in the refinery Slovnaft, a.s. Three different
modeling approaches are being considered, namely first-principles, data-based, and
hybrid methods.

First-principles model of the depropanizer column was modeled using gPROMS software,
with the aim of achieving the highest possible resemblance to the real-world process.
While some approximations and differences were necessary due to the challenging task
of constructing a model of a real-world process from a plant, the gPROMS model
provides a robust representation of the depropanizer column.

The procedure of obtaining a data-based model included various steps. The first step
is data treatment analysis, where three methods are used to detect outliers in the data:
Miminum covariance determinant, Gaussian mixture model, and Smallest half-volume
method. The Minimum covariance determinant method detected the most outliers,
with almost 14% of the original data points being detected. The other two methods
detected fewer outliers, but all three methods identified similar areas of change in
the system. The next step is correlation analysis, where the correlation between the
output variable and other variables is studied. It is found that the temperature at the
bottom of the column Tb has a strong positive correlation with the temperature at the
top of the column Tt and a negative correlation with the feed flow rate F . The final
step is selecting an appropriate model for predicting the output variable. We chose the
ARX model to predict the temperature at the bottom of the column Tb. To determine
the order of the autoregressive output part, we used PACF analysis. Then we tested
all combinations of the order of input and output parts of the ARX model to find the
best model based on the AIC criterion. We cleaned the data from outliers and split it
into experiments with over 100 measurements in the first scenario. Although we used
different numbers of samples for training and validation for each method, we aimed to
compare the impact of each data treatment in order to obtaining model.
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The last part introduced the hybrid modeling. We used parallel hybrid model, where
the data-based model is used to predict and correct the deviations between the first-
principles model predictions of temperature at the bottom of the column and its real
measured values. Three error correction models were considered - constant, static, and
dynamic.

In order to compare the models performance, we calculated the RMSE and MSE
criteria. In the first scenario of data-based modeling according to the lowest values
of criteria, results show that the best model is ARX(8,5)SVH. Considering the values
of criteria for other models, we can state that the values are similar, which means
that in this case, the effect of the different amount of data used for training models
is not playing an important role. However, it is worth noting, that all the methods
detected outliers at similar positions. Another interesting research could be to try to
remove outliers by other methods. The results of the second scenario indicate that
the ARX(9,3,1,4) model produces the lowest values of both criteria. This model is
characterized by three inputs - feed flow rate F , heat duty in the reboiler Q, and
reflux flow rate L - which are strongly correlated with the output. In hybrid modeling,
the lowest values of RMSE and MSE mean that the model with dynamic correction
has the best fit for the testing data. Interestingly, constant and static corrections
also demonstrate sufficient performance. Therefore, it is worth considering whether a
model with fewer inputs and parameters would be more sustainable in the long term.
Despite the success of data-based models, hybrid models offer the benefit of having
fewer parameters, making them simpler and more practical for recursive identification.
Therefore, in conclusion, while the ARX(9,3,1,4) model was considered as the best
model, it may be beneficial to explore the potential of error correction models for
future applications.

This thesis demonstrated how various modeling approaches can be applied to the
system identification of a complex chemical system - a distillation column. In future
work, it would be interesting to explore the use of different data-based models, such as
neural networks. One interesting possibility for future work could be exploring new
hybrid modeling approaches, not just for predicting the temperature at the bottom of
the column, but also for other areas of the distillation column.
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Resumé

V procesnom priemysle často nastáva situácia, kedy je potrebné použiť matematický
model procesu. Matematický model predstavuje abstrakciu procesu vo forme matem-
atických vzťahov. Tvorba modelu pre komplexné procesy je často časovo náročná
a vyžaduje si dostatočnú znalosť a vedomosti o študovanom procese. Pre získanie
matematického modelu je možné použiť niekoľko prístupov.

Prvý prístup sa nazýva mechanistické modelovanie. Tento typ modelovania zohľadňuje
fyzikálne a chemické vzťahy, ktoré opisujú daný systém. Mechanistické modelovanie sa
využíva aj na tvorbu digitálnych dvojčiat v simulačných programoch. Z toho dôvodu
takéto modely našli uplatnenie aj v priemysle, napríklad na tvorbu programov na
školenia operátorov v prevádzke. Jednou z nevýhod tohto princípu modelovania je
najmä časová náročnosť tvorby modelu.

Ak sú dostupné nameraná dáta z procesu, na tvorbu modelu môže byť použitý princíp
dátového modelovania. Z historických dát je možné získať nové poznatky a porozovania
o danom procese, čo vedie k tvorbe modelov založených na dátach. Základné rozdelenie
dátových modelov sa delí na umelé neurónové siete a regresné modely.

Kombináciou dátového modelu a mechanistikého modelu vzniká hybridný model,
ktorý môže mať viacero podôb. Zatiaľ čo model založený na prvých princípoch
opisuje základné fyzikálne vlastnosti systému, dátový model môže byť použitý na
odhad neurčitých parametrov alebo na korekciu odchýlok medzi reálnymi meraniami a
výstupom z mechanistické modelu.

V tejto práci je skúmaným procesom rektifikačná kolóna, konkrétne depropanizér,
ktorý slúži na separáciu butánovej zmesi. Depropanizér je časťou jednotky fluidného
katalytického krakovania v refinérii Slovnaft, a.s. v Bratislave. Produkt, resp. destilát z
prvej časti tejto jednotky, debutanizéra, je nástrekom do depropanizéra. Depropanizér
sa skladá z kolóny, kondenzátora a dvoch varákov. Na pochopenie a študovanie tejto
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kolóny je poskytovaná technická dokumentácia a P&ID diagram. Na meranie dát sú
poskytované online senzory. K dispozícií sú historické dáta z prevádzky z januára 2022
predstavujúce týždeň fungovania prevázky. Dáta obsahujú 9000 meraní s minútovou
periódou vzorkovania.

Simulačný model depropanizéra, ktorý predstavuje mechanistický model, bol vytvorený
v prostredí gPROMS ModelBuilder. Na validáciu modelu sú použité historické dáta
z testov pomocou skokových zmien, ktoré boli uskutočňované na prietoku nástreku
do kolóny. Na základe týchto dát je možné pozorovať dynamiku simulačného modelu,
pričom v prípade skúmanej teploty v dolnej časti kolóny je prítomná odchýlka 7,8 °C
od reálnych meraní.

Dátové modelovanie zahŕňalo viacero krokov. Prvým krokom je detekcia odľahlých
hodnôt v údajoch pomocou troch metód: determinant minimálnej kovariancie (MCD),
model Gaussovej zmesi (GMM) a metóda najmenšieho polovičného objemu (SHV).
Metóda MCD zistila najviac odľahlých hodnôt, pričom sa zistilo takmer 14 % pôvodných
údajových bodov. Ďalšie dve metódy odhalili menej odľahlých hodnôt, ale všetky tri
metódy identifikovali podobné oblasti zmien v systéme. Na lepšie pochopenie vzťahov
medzi premennými v rektifikačnej kolóne je vykonaná korelačná analýza. Hodnoty
Pearsonovho koeficienta, ktoré predstavujú numerickú hodnotu korelácie, sú uvedené v
tabuľke 3.2. Zistilo sa, že teplota v spodnej časti kolóny Tb má silnú pozitívnu koreláciu
s teplotou v hornej časti kolóny Tt a negatívnu koreláciu s prietokom nástreku F .

Na predpovedanie teploty v spodnej časti kolóny sme zvolili autoregresný ARX dá-
tový model. Tento typ modelu využíva na predpovedanie súčasnej hodnoty predošlé
hodnoty vstupov a výstupov. Výstupom a sledovanou veličinou je teplota na dne
kolóny. Na vytvorenie ARX modelu je nutné určiť rád modelu. Na určenie poradia
autoregresnej výstupnej časti je použitá analýza pomocou parciálnej autokorelačnej
funkcie. Trénovanie dátových modelov je rozdelené do dvoch scenárov. Prvý scenár
zahŕňa iba merania, ktoré ostali po čistení dát od outlierov tromi metódami. Druhý
scenár využíva všetky dostupné dáta. Na návrh ARX modelu, a teda na predikciu
výstupu je možné použiť aj viacero vstupov. Výber vstupov bol realizovaný na základe
korelačnej analýzy vzťahov výstupu s ostatnými premennými. Zatiaľ čo prvý model
druhého scenára zahŕňa ako vstup do ARX modelu prietok nástreku, v prípade druhého
modelu je k nemu pridaný aj tepelný výkon varáka. Tretí model zahŕňa okrem týchto
dvoch vstupov aj prietok refluxu, teda prietoku destilátu, ktorý sa vracia naspäť do
kolóny.

Hybridné modelovanie využíva dátový model na korekciu odchýlky výstupu z gPROMS
modelu a reálnych meraní teploty na spodku kolóny. Sú predstavené tri druhy korekcie.
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Prvou korekciou je konštantá korekcia, pri ktorej je k výstupu z gPROMS modelu
pripočítaná priemerná hodnota odchýlky v trénovacích dátach. Statická korekcia
zohľadňuje možný lineárny vzťah prietoku nástreku od odchýlky. V prípade dynamickej
korekcie je predstavený ARX model, ktorého vstupom je prietok nástreku a výstupom
hodnota odchýlky meniaca sa v čase.
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Appendix B

gPROMS data exchange

Preparation of .xls file

1. Copy the Batch_Reactor.xls file from the gProms Modelibuilder installation
located in the "examples/gO Product examples/gORUN" folder and paste it into
the desired folder.

2. Rename the Reactor Schematic sheet to InputData.

3. Delete the content of the InputData sheet.

4. Add the variable names and their values to the InputData sheet. For example,
to load the feed rate values F into the simulation, write the name "Feed" into
cell A1 and add the values below it.

5. If the data is already loaded in MATLAB, save it using the provided code.

1 filename = 'path to Excel file ';
2 sheetname = 'InpuData ';
3 % Define input variable , e.g. feed flow rate
4 F = [1, 2 ,3];
5 % Define the starting and ending cells of the range
6 startcell = 'A2 ';
7 endcell = ['A' num2str ( length (u)+1) ];
8 % Define the range of cells where you want to write

the data
9 cellrange = [ startcell ':' endcell ];

10 % Write the data to the specified range of cells
11 xlswrite (filename , F, sheetname , cellrange );
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Loading data

1. Load data into gPROMS using the gFO-initial data sheet.

(a) In the gFO-initial data sheet, specify the initial data in the Name and Cell
X-Ref fields.

(b) For example, enter "Feed" in the Name field and specify the data location
in the Cell X-Ref field as =InputData!A2:A4.

2. In the ModelBuilder, select the desired process to simulate in the Processes
section.

3. In the PARAMETER and SET section, add the following:

1 PARAMETER
2 RxnData AS FOREIGN_OBJECT " ExcelFO "
3 F AS ARRAY OF REAL
4
5 SET
6 RxnData := " ExcelFO :: path to Excel file ";
7 F := RxnData .Feed;

Note that RxnData.Feed must match the variable name in the gFO-initial data
sheet (in this example, Feed). If the variable name is different, change [variable
name] to RxnData.[variable name].

4. Click on the "Simulate Process" button in the ModelBuilder environment to
execute the simulation.

5. gO:RUN is automatically started and the values are loaded into Process.

Saving data

1. Add the following line to the end of the Process section in ModelBuilder:

1 FPI := " ExcelFP :: path to Excel file ";

2. Use the SEND statement to send data during the simulation. For example, to
send the Temperature data, use the following code:
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1 CONTINUE FOR sigma( v_time )
2 SEND
3 " Temperature " := bottom_temperature ;
4 END
5 END

3. In the gFPI sheet, define the Tag name in a predefined table. In this example,
the Tag name is Temperature.

4. In the Cell X-ref field in the gFPI sheet, define the range in the Results sheet
where you want to store the data from gPROMS. For example, =Results!A2
means that the data storage starts from cell A2 in the Results sheet.

5. In the predefined table in the gFPI sheet, specify C for column tabulation, and
R for row tabulation.

6. Data is stored in real-time during the simulation.

7. After the simulation, load the data into MATLAB using the following code:

% Load gPROMS simulation data
filename = 'path to Excel file ';
sheetname = 'Results ';
data_range = 'A2:A4 '; % Change this to match the range

of your data
sim_data = xlsread (filename ,sheetname , data_range );
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