
SLOVAK UNIVERSITY OF TECHNOLOGY IN BRATISLAVA

Faculty of Chemical and Food Technology

Reg. No.: FCHPT-5414-82048

Decentralized Machine Learning and
Optimization

Master thesis

2020 Bc. Kristína Fedorová

SLOVAK UNIVERSITY OF TECHNOLOGY IN BRATISLAVA

Faculty of Chemical and Food Technology

Reg. No.: FCHPT-5414-82048

Decentralized Machine Learning and
Optimization

Master thesis

Study programme: Automation and Information Engineering in Chemistry and Food In-
dustry
Study field: Cybernetics
Training workplace: Institute of Information Engineering, Automation and Mathematics
Thesis supervisor: doc. Ing. Michal Kvasnica, PhD.

Bratislava 2020 Bc. Kristína Fedorová

Slovak University of Technology in Bratislava
Institute of Information Engineering, Automation and Mathematics

Faculty of Chemical and Food Technology
Academic year: 2019/2020
Reg. No.: FCHPT-5414-82048

MASTER THESIS TOPIC

Student: Bc. Kristína Fedorová
Student’s ID: 82048
Study programme: Automation and Information Engineering in Chemistry and Food

Industry
Study field: Cybernetics
Thesis supervisor: doc. Ing. Michal Kvasnica, PhD.
Workplace: Department of information egineering and process control (IIEAM

FCHPT)

Topic: Decentralized Machine Learning and Optimization

Language of thesis: English

Specification of Assignment:

The objective of the thesis is to design and to implement a system that will be able to process machine learning
and optimization tasks in a decentralized environment where multiple computational units collaborate to
achieve the joint goal. These units will communicate with each other as to iteratively converge to the global
optimum of the complex problem. The designed system will be applied to machine learning with guaranteed
privacy where the training data never leave the local device.

Assignment procedure from: 17. 02. 2020

Date of thesis submission: 07. 06. 2020

Bc. Kristína Fedorová
Student

doc. Ing. Michal Kvasnica, PhD.
Head of department

prof. Ing. Miroslav Fikar, DrSc.
Study programme supervisor

Honour Declaration
I declare that the submitted diploma thesis was completed on my own, in cooperation

with my supervisor, with the help of professional literature and other information

sources, which are cited in my thesis in the reference section.

As the author of my diploma thesis, I declare that I didn’t break any third party

copyrights.

Signature

Acknowledgment
I would like to thank my thesis supervisor doc. Ing. Michal Kvasnica, PhD., for

providing guidance and feedback throughout this thesis and for his support and

encouragement.

Bc. Kristína Fedorová

Bratislava, 2020

Abstract

The aim of this thesis is to introduce the distributed optimization algorithms and their

application in a decentralized way, where the solution of the optimization problem

is reached by dividing the calculations to different computation units. Different

types of algorithms, such as ADMM or ALADIN are defined, in order to use them in

machine learning. The training process is described and explained on an artificial neural

network example. The thesis also provides the result of applying several distributed and

decentralized optimization algorithms on linear and nonlinear mathematical problems

and their comparison in convergence rate and computational burden. Finally, the same

approach is used on model evaluation in machine learning.

Keywords: distributed optimization; decentralized optimization; ADMM; ALADIN;

machine learning; artificial neural network

vi

Abstrakt

Cieľom práce je predstaviť algoritmy distribuovanej optimalizácie a ich aplikáciu

decentralizovaným spôsobom, kde riešenie optimalizačného problému je dosiahnuté

rozdelením výpočtov medzi rôzne výpočtové jednotky. V práci sú taktiež definované

rôzne typy algoritmov, akými sú napríklad ADMM alebo ALADIN, za účelom ich

využitia v strojovom učení. Trénovací proces, ktorý je súčasťou stojového učenia, je

popísaný a vysvetlený na umelých neurónových sieťach. Práca obsahuje zhodnotenie

aplikovania niekoľkých distribuovaných a decentralizovaných algoritmov na lineárne

ale aj nelineárne matematické problémy a ich porovnanie v rýchlosti konvergencie a

výpočtovej záťaži. Nakoniec je rovnaký prístup aplikovania a porovnania použitý aj

pri procesene trénovania v strojovom učení.

Kľúčové slová: distribuovaná optimalizácia; decentralizovaná optimalizácia; ADMM;

ALADIN; strojové učenie; umelé neurónové siete

viii

Contents

Abstract v

Abstrakt vii

1 Introduction 1

2 Distributed Optimization 5

2.1 Dual Ascent . 6

2.2 Dual Decomposition . 7

2.3 Augmented Lagrangians and the Method of Multipliers 8

2.4 Alternating Direction Method of Multipliers 9

2.5 ALADIN . 11

2.6 Decentralized Optimization . 13

3 Machine Learning 15

3.1 Types of Machine Learning . 15

3.1.1 Machine Learning Tasks . 16

3.1.2 Machine Learning Approaches 17

3.1.3 Model Structure . 18

3.2 Artificial Neural Network . 19

x CONTENTS

3.2.1 Structure and Calculations . 20

3.2.2 Training Process . 22

3.3 Decentralized Learning . 26

4 Application of Distributed Optimization 29

4.1 Data Fit with Affine Function . 29

4.1.1 Algorithms . 31

4.1.2 Results for Data Fitting . 33

4.1.3 Centralized vs. Decentralized Approach 35

4.2 Event Scheduling . 40

4.2.1 Algorithm . 42

4.2.2 Results for Event Scheduling 42

4.2.3 Centralized vs. Decentralized Approach 44

5 Decentralized Neural Network Training 49

5.1 Decentralized Training . 50

5.1.1 Convergence Comparison of Training with N Agents 54

5.1.2 Training with Nonuniform Distribution of Data 56

5.1.3 Centralized vs. Decentralized Training 57

5.1.4 Dynamical Change in Active Agents 59

6 Conclusions 63

7 Resumé 67

Bibliography 71

Chapter 1

Introduction

In recent years, nonlinear optimization problems arise in various fields. Economics,

banking, computer science, automotive industry, energy industry, process control, etc.

The most common solution to such problems is to use model predictive control (MPC).

Nowadays, a lot of approaches based on MPC were invented, in order to find the global

optimum of the nonlinear problem very precisely and as fast as possible. But we are

facing large-scale and more complex problems every day, where the application of MPC

is insufficient, because of high computation time and low memory space.

Fortunately, these problems are often structured to have separable objective and

constraints in the form

min
xi,...,xN

N∑
i=1

fi(xi)

s.t.

N∑
i=1

Aixi = b,

(1.1)

where fi : Rn → R can be convex or nonconvex functions and xi ∈ Rn , i = 1, . . . , N are

a vectors of optimized variables. Matrices A1, . . . , AN , and vector b are given and they

represent the model dependencies between subsystems [10]. Based on this structure, the

optimization problem can be divided into a large number of interconnected subsystems

(agents) in the network. The cooperation between agents is required to achieve a

desired global solution.

2 Introduction

Since the optimization problem is distributed among agents, it is called the distributed

optimization algorithm. This approach is known for decades, but mainly in a centralized

way. It means, the agents have connection only with one central unit, which stores

the information from agents and provides necessary calculations. But the centralized

framework has its limitations such as high computational burden, single point of failure,

limited flexibility, and substantial communication requirement. This is the reason, why

decentralized optimization is gradually used in large-scale nonlinear problems.

In decentralized algorithms, each agent holds the estimation of the optimized variable

and the update of its value is performed based on the information received from its

neighbors and its own information. This information exchange process iteratively leads

to a global solution. Modern algorithms for distributed and decentralized optimization

is often based on dual decomposition or augmented Lagrangians and the method of

multipliers.

Dual decomposition (DD) algorithms are based on solving the decoupled optimization

problem with separable, strictly convex cost function and separable constraints. The

way to solve such a problem is to use the gradient ascent method as suggested in

[14] or [16]. An alternative to DD algorithms is the alternating direction method

of multipliers (ADMM), originally introduced in [7]. In comparison with DD, the

construction of dual function is not required, but the solution is found by using the

augmented Lagrangian form.

In addition, this paper deals not only with algorithms for a convex objective but also

the algorithms, which have been developed for solving the distributed non-convex

optimization problems. One of these types of algorithms is recently proposed augmented

Lagrangian based alternating direction inexact Newton method (ALADIN). ALADIN

has a lot of benefits in comparison with ADMM and they are discussed in the paper.

The distributed and decentralized optimization is not only used for solving large-scale

problems, but its implementation arises also in the field of machine learning. We live

3

in a data era. Our phones, tablets and laptops are full of data, which can be very

useful not only for companies and their marketing strategies but mainly for us, for our

finance or our health. The sharing of the data could lead to an improvement in many

fields. However, the privacy concerns have appeared, in order to prevent a misusage of

the information. That is why the rapid development in decentralized machine learning

has been realized.

This represents the motivation of the thesis. To understand the distributed algorithms

and be able to use them in a decentralized way for solving the problems starting

with simple convex problems and ending with large-scale non-linear and nonconvex

problems. But mainly, to be able to apply this knowledge in machine learning in order

to keep privacy.

4 Introduction

Chapter 2

Distributed Optimization

To understand the definition of decentralized optimization, we will first introduce the

concept of distributed optimization. The distributed approach of solving optimization

problems is based on the decomposition of a problem (if it is possible) to several

other subproblems with certain cost functions. The subproblems are distributed to

the agents (calculation units, processors, etc.), where computations are performed

synchronously and the partial results are shared on the network, between agents [19].

This result exchange iteratively leads to the global solution of the initial optimization

problem.

Centralized optimization is a coordinated policy to solve a problem that considers

the system under study as a whole one system. Generally, it solves the optimization

problem in the form

min
x

f(x)

s.t. Ax = b,

(2.1)

which is explained further in Sec. 2.1. On the other hand, a no-coordinated policy to

solve a problem considering the system under study as a number of sub-systems which

are optimized separately is called decentralized optimization. In comparison with (2.1),

6 Distributed Optimization

a definition of the decentralized optimization problem can be constructed as

min
x

N∑
i=1

fi(xi)

s.t.

N∑
i=1

Aixi = b,

(2.2)

where constraints are defined in form, where variables are not interdepent [12].

2.1 Dual Ascent
The dual ascent method is the optimization algorithm, which provides some useful

background and motivation to algorithms of distributed optimization. We consider

the convex optimization problem with equality constraints in the form

min
x

f(x)

s.t. Ax = b,

(2.3)

with variable x ∈ Rn, where A ∈ Rm×n, b ∈ Rm and f : Rn → R is convex.

The Lagrangian for problem (2.3) is

L(x, λ) = f(x) + λ>(Ax− b), (2.4)

and the dual function is

g(λ) = inf
x
L(x, λ) = inf

x

(
f(x) + λ>(Ax− b)

)
, (2.5)

where λ is the dual variable or Lagrange multiplier. The dual problem of (2.3) is

max
λ

g(λ), (2.6)

with variable λ ∈ Rm. The optimal values of primal and dual problems are the same,

if we assume that strong duality holds. We can recover a primal optimal variable x?

from a dual optimal variable λ? as

x? = arg min
x
L(x, λ?). (2.7)

2.2 Dual Decomposition 7

Dual optimal point is obtained as a solution of (2.6)

λ? = arg max
λ

L(x?, λ). (2.8)

This solution cannot be used, because it could lead to infinity. So in the dual

ascent method, the dual problem is solved by using gradient ascent. If g(λ) is

differentiable, then the gradient ∇g(λ) can be evaluated as ∇g(λ) = Ax+ − b, where

x+ = argmin
x

L(x, λ). It is obvious that, ∇g(λ) is then the residual for equality

constraint. The dual ascent method consists of the following updates

xk+1 = arg min
x
L(x, λk), (2.9a)

λk+1 = λk + αk(Axk+1 − b), (2.9b)

where the superscript k is the iteration counter and αk > 0 is a step size. The dual

variable λ can be interpreted as a vector of prices. As we can see, with appropriate

choice of αk, the dual function increases in each step, i.e., g(λk+1) > g(λk) [3], so this

algorithm is called dual ascent. The biggest benefit of the dual ascent method is that

it can lead to distributed algorithms.

2.2 Dual Decomposition
Dual decomposition relies on the observation that many optimization problems can be

decomposed into two or more subproblems [16]. Let suppose, that the objective f is

separable, meaning that

f(x) =
N∑
i=1

fi(xi), (2.10)

where x = (x1, . . . , xN) and the variables xi ∈ Rni are subvectors of vector x. Also

the matrix A can be separated into A = [A1, . . . , AN], so Ax =
∑N
i=1Aixi and the

Lagrangian can be written as

L(x, λ) =
N∑
i=1

Li(xi, λ) =
N∑
i=1

(
fi(xi) + λ>Aixi

)
− 1
N
λ>b, (2.11)

8 Distributed Optimization

which is also separable in x. This can lead to the optimization problem, that can be

splitted into N suproblems. Then these subproblems are parallelly solved. Explicitly,

the algorithm is

xk+1
i = arg min

xi

Li(xi, λk), (2.12a)

λk+1 = λk + αk(Axk+1 − b). (2.12b)

The x-minimization step (2.12a) is realized independently, in parallel, for each iteration

k and each agent i. Once the dual variable λk+1 is computed in dual update step

(2.12b), it is immediately distributed back to agents, which again individualy perform

step (2.12a). In dual decomposition, the dual ascent method is also used on decomposed

optimization problem [7].

2.3 Augmented Lagrangians and the Method of Mul-

tipliers
Augmented Lagrangian methods were developed in part to improve the dual ascent

method. For now, the distributed algorithms assumed that f is strictly convex. The

augmented Lagrangian methods should bring robustness to distributed algorithms

without mentioned assumptions. The augmented Lagrangian for (2.3) has a form

Lρ(x, λ) = f(x) + λ>(Ax− b) + ρ

2 ||Ax− b||
2
2, (2.13)

where ρ > 0 stands for the penalty parameter. If ρ = 0, then L0 is the standard

Lagrangian for the problem. We can afford to add the term ||Ax − b||22 in (2.13),

because the augmented Lagrangian is equal to original for any feasible x. The benefit

of including the penalty parameter is that dual function

gρ = inf
x
Lρ(x, λ), (2.14)

can be differentiable under mild conditions in comparison to the original problem.

2.4 Alternating Direction Method of Multipliers 9

Applying dual ascent to the introduced, modified problem construct the algorithm

xk+1 = arg min
x
Lρ(x, λk), (2.15a)

λk+1 = λk + ρ(Axk+1 − b), (2.15b)

which is known as the method of multipliers. It can be seen, that the algorithm is

almost the same as the original dual ascent. But instead of standard Lagrangian L0,

the augmented Lagrangian Lρ is used and the step size αk is substituted by penalty

parameter ρ.

The benefit of this method is in good convergence properties, but it also has its limits.

Even the f is separable, the augmented Lagrangian is not and that is the reason, why

the decomposability is lost in the method of multipliers. We will see how to address

this issue next.

2.4 Alternating Direction Method of Multipliers
Alternating Direction Method of Multipliers (shortly ADMM) is an algorithm that

combines the good convergence properties of the method of multipliers with the

decomposability of dual decomposition. The algorithm solves problems in the form

min
x

N∑
i=1

fi(xi)

s.t. Ax = b,

(2.16)

that can be modified as follows

min
x

N∑
i=1

fi(xi)

s.t. Ax+By = b,

(2.17)

where y = (y1, . . . , yN) is vector of initial guesses which are updated in each iteration.

In general, the y represents the global optimal solution for the current iteration. As in

10 Distributed Optimization

the method of multipliers, we form the augmented Lagrangian

Lρ(x, y, λ) = f(x) + λ>(Ax+By − b) + ρ

2 ||Ax+By − b||22. (2.18)

ADMM consists of the iterations (for specific details see Algorithm 1)

xk+1 = arg min
x
Lρ(x, yk, λk), (2.19a)

yk+1 = arg min
y
Lρ(xk+1, y, λk), (2.19b)

λk+1 = λk + ρ(Ax+By − b), (2.19c)

where ρ > 0. The algorithm is very similar to the method of multipliers, but it consists

of one additional step, y-minimization step. In some application, this step can be

replaced by evaluating the average value of all local optimized variables. Then, the part

||Ax+By − b||22 can be also separable, what indicates the improvement in comparison

to method of multipliers.

Algorithm 1: ADMM

Input: Initial guesses y ∈ Rn and λi ∈ Rm and a numerical tolerance ε > 0.

Repeat:

1. Choose a penalty parameter ρ > 0 and solve for all i ∈ (1, . . . , N) the decoupled nonlinear

optimization problems (NLPs)

min
xi

(
f(xi) + λ>i (Aixi +Biy − b) +

ρ

2
||Aixi +Biy − b||22

)
. (2.20)

2. If ||
∑N

i=1 (Aixi +Biy − b) ||1 ≤ ε, terminate with x? = y as a numerical solution.

3. Solve the coupled quadratic problem

min
y+

(
λ>i (Aixi +Biy

+ − b) +
ρ

2
||Aixi +Biy

+ − b||22
)
. (2.21)

4. Implement the dual gradient steps

λ+
i = λi + ρ(Aixi +Biy

+ − b). (2.22)

5. Update the iterates y ← y+ and λ← λ+ and continue with Step 1.

2.5 ALADIN 11

In ADMM x and y are updated in an alternating fashion, which accounts for the

term alternating direction [3]. The separation of algorithm to three steps is what

allows for decomposition. The limitations of ADMM are that it may be divergent, if fi
are nonconvex functions and also the convergence rate of this method is very scaling

dependent.

The ADMM algorithm was applied on various types of problems, which needed to be

divided in subproblems and the results are described in experimental part of thesis.

2.5 ALADIN
Augmented Lagrangian based Alternating Direction Inexact Newton Method (shortly

ALADIN) concerns structured convex optimization problems of the form

min
x

N∑
i=1

fi(xi)

s.t.

N∑
i=1

Aixi = b.

(2.23)

It also can be transformed in form (2.17). We define the Augmented Lagrangian for

each iteration i as in ADMM

Lρ(x, y, λ) = f(x) + λ>(Ax+By − b) + ρ

2 ||Ax+By − b||2Σ, (2.24)

where x = (x1, . . . , xN) represents local optimization variable, y = (y1, . . . , yN) is

vector of initial guesses which are upgraded in each iteration according Algorithm 2.

And

||Ax+By − b||2Σ = (Ax+By − b)>Σ(Ax+By − b), (2.25)

where Σ is positive semi-definite matrix [10].

12 Distributed Optimization

It is obvious that the cost of one ALADIN iteration is exactly the same as the cost

of one ADMM iteration since the only difference between these two algorithms is

that ALADIN maintains only one dual variable λ ∈ Rm that is updated in a slightly

different manner than the dual variables λ1, . . . , λN ∈ Rm from Algorithm 1.

Algorithm 2: ALADIN

Input: Initial guesses y ∈ Rn and λ ∈ Rm and a numerical tolerance ε > 0.

Repeat:

1. Choose a penalty parameter ρ > 0 and positive semi-definite matrices Σi and solve for all

i ∈ (1, . . . , N) the decoupled NLPs

min
xi

(
f(xi) + λ>i (Aixi +Biy − b) +

ρ

2
||Aixi +Biy − b||2Σi

)
. (2.26)

2. If ||
∑N

i=1 (Aixi +Biy − b) ||1 ≤ ε and ρ||Σi(Aixi +Biy− b)||1 ≤ ε, terminate with x? = y as

a numerical solution.

3. Compute gi = ∇fi(xi), choose Hi ≈ ∇2fi(xi), and solve coupled quadratic problem

min
∆x

N∑
i=1

(1
2

∆x>i Hi∆xi + g>i ∆xi

)
s.t.

N∑
i=1

Ai(xi + ∆xi) = b | λ+.

(2.27)

4. Update the iterates y ← x+ ∆x and λ← λ+ and continue with Step 1.

For many cases, the choice of g and H is introduced in Algorithm 2. But the selection

must be different, if ALADIN is applied to the problem with private and sensitive data.

Therefore, the gradient and hessian matrix for our test cases were chosen randomly

and tuned to achieve a satisfactory result.

The advantages of ALADIN in comparison with ADMM were introduced in [10].

Shortly, ALADIN provides a significant improvement in convergence properties, even

with the non-convex optimization problems.

2.6 Decentralized Optimization 13

2.6 Decentralized Optimization
First we start with centralized optimization. In a centralized way of distributed

optimization, the local optimum of each agent is shared among the network and send

to the central unit (Fig. 2.1A.). The central unit provides global optimum (based on

global optimization, averaging etc.) and its distribution back to the agents.

Figure 2.1: A. Centralized configuration, B. Decentralized configuration

On the other hand, in a decentralized way, there is no central unit. The agents are

connected in some pre-defined pattern (for instance Fig. 2.1B.) and share the local

result only with their connected neighbors. The global result is then calculated in each

agent, based on the information and local results from mentioned neighbors [18]. To

understand the motivation of choice the decentralized approach over centralized, we

will discuss the pros and cons.

The centralized optimization is an algorithm with fast convergence (in comparison with

decentralized). The reason is, the central unit has knowledge about local optima from

all agents and provides the global result based on this information. More information,

better convergence. But with more information the memory demand and computation

burden increase. Because of these disadvantages of centralized optimization, we decided

14 Distributed Optimization

to focus on decentralized optimization.

Table 2.1: Pros and cons of centralized optimization

Centralized optimalization

Advantages Disadvantages

+ fast convergence - memory footprint

- computation burden

- one point of failure

- price

By selecting the decentralized approach, we decided to give up the fast convergence

properties. The information exchange works only locally and that is the explanation

of slower convergence. Hand in hand with less information, the computation burden

and memory demand decrease [20].

Table 2.2: Pros and cons of decentralized optimization

Decentralized optimalization

Advantages Disadvantages

+ memory footprint - slower convergence

+ computation burden - price

The price question is contentious. Each iteration cost something, so the faster conver-

gence, the less price. But it also depends on the number of connections between agents

or central units and agents. The difference between the two mentioned approaches

will be also discussed in the experimental part of the thesis.

Chapter 3

Machine Learning

Machine learning is an application of artificial intelligence that make systems to be

able to automatically learn and improve from experience without being explicitly

programmed. The main goal is to find a solution to the problem without any human

intervention. The learning process is based on training data, which has to be provided.

A lot of learning approaches and models exist. In this chapter, we will introduce the

deep learning approach to the artificial neural network model.

3.1 Types of Machine Learning
In recent years, rapid development in machine learning has been observed. The

behavior of machine learning has been tested on various tasks and problems based on

different learning approaches. With increasing discoveries and improvements in the

field of machine learning, the numbers of approaches, model structures, and even the

types of performed tasks have arisen and the existing types of machine learning have

been divided into several groups as shown in Tab. 3.1.

16 Machine Learning

Table 3.1: Categories of machine learning

MACHINE LEARNING

1. Performed task 2. Learning approach 3. Model structure

classification

regression

supervised neural networks

unsupervised decision trees

reinforcement support vector machines

3.1.1 Machine Learning Tasks

Even though there are many tasks, in various types of problems, that can be handled

by machine learning, the tasks are divided only into two main groups.

• Classification tasks

The classification predictive modeling task is based on approximating a mapping func-

tion from input variables to discrete output variables. In general, the mapping function

predicts the class or category for a given observation. It is common for classification

models to predict continuous values, which can be reffered as the probability of a given

example belonging to each output class. For instance, an email can be classified as

spam or not spam. The machine learning provides the prediction model, which can

distinguish between these two email classes. The output carries information about

probability, to which class a received mail belongs. To verify the skill of model the

classification accuracy has been introduced. It is a percentage of correctly classified

examples out of all predictions made.

• Regression tasks

On the other hand, the regression predictive modeling task is based on approximating

a mapping function from input variables to continuous output variables. The output

3.1 Types of Machine Learning 17

variable can be any real number, such as integer or floating-point value. These often

represent the quantities or other functional dependences [6]. A simple example is the

estimation of salary depending on the age of an employee. There are no categories, but

the dependence between age and salary is found, based on real data. This predictive

model can be very beneficial in healthcare or process control. The skill of the model

is reported as an error in the provided predictions. An error can be evaluated as an

absolute value between expected and predicted output or the square of this difference,

etc.

3.1.2 Machine Learning Approaches

Nowadays, there are three types of learning approaches for machine learning.

• Supervised learning

Supervised learning is the process of training based on a training input-output pairs set.

The main idea is to approximate the mapping function, to provide the desired output

for a given example, based on iterative learning and evaluation of error (correctness)

at the end of each iteration. Once the model is trained, it can be used to assign

output value to any input value even outside the training set. It is called supervised

because the process of learning from the training set can also be understood as a

teacher supervising the learning process. This approach is widely used in many fields,

for example for risk evaluation, fraud detection, or prediction of financial results.

• Unsupervised learning

Another approach is called unsupervised learning. This type of machine learning

searches patterns in supplied data set with no pre-defined outputs, in contrast to

supervised learning, where outputs are provided. This modeling process was introduced

mainly for classification tasks. Literally, the demand for machine learning is to learn,

18 Machine Learning

how to find or evaluate the output. The algorithm consists of logical and mathematical

operations, that allow machine learning to identify the differences between inputs and

then categorize them. The application of unsupervised learning is mainly in item

categorization, clustering customers, and similar item recommendations.

• Reinforcement learning

Reinforcement learning is a subfield of machine learning that teaches an agent, which

action to take in a particular environment, in order to maximize rewards over time. In

this notation, the agent represents the program we want to train to do a job we specify.

The environment is a real or virtual world, in which the agent performs actions. Each

action causes a status change in the environment. And the reward is the evaluation of

an action, that can be positive or negative and which represents the correctness of the

action. The goal is to maximize reward, which can be defined as some cost function.

The reinforcement approach is used in a very attractive area of robotics, games, or

self-driving cars [2].

3.1.3 Model Structure

In machine learning, we can also decide, which type of structure of the predictive model,

we want to use. There are artificial neural networks, where connections are created

based on neural networks in the human brain and the aim is to find mapping function,

representing the relationship between inputs and outputs. Then decision trees, which

classify instances by sorting them based on model, where braches representing the

observation about an item and the leaves representing the conclusions about the item’s

target value. Or supper vector machine that separates two data classes based on the

solution of optimization problem [13].

For the purpose is this thesis, we decided to choose an artificial neural network model.

Although the majority of machine learning models are suitable for the application

3.2 Artificial Neural Network 19

of a decentralized training approach, artificial neural networks are often and widely

used these days in a lot of machine learning problems. This is why we will only deal

in-depth with neural networks.

3.2 Artificial Neural Network
Artificial neural networks are systems inspired by biological neural networks. Such

systems are designed to learn to perform any computation or task. The programming

of rules or decision conditions is not necessary. The most important ingredient for

neural networks is datasets. The neural network can be trained to provide an expected

output based on given input in various industries (medicine, banking, computer science,

process control, etc.) [11]. There is only one condition. A sufficient amount of data.

Input neurons

Hidden layer Output layerInput layer

Hidden neurons Output neurons

𝑤1
𝑖

𝑤12
𝑖

.

.

.

.

.

.

.

.

.

𝑤1
ℎ

𝑤4
ℎ

.

.

.

.

.

.

.

.

Figure 3.1: The basic structure of neural network

20 Machine Learning

3.2.1 Structure and Calculations

In general, the neural network is composed of computational units called neurons or

nodes. They are organized in layers and each neuron has a connection with neurons

from different layers (see Fig. 3.1). The neurons in layers with their connections create

the network.

To explain how neural networks work, we have to start will layers. There are three

types of layers: input, hidden, and output layer. The number of neurons in the input

or output layer depends on the size of inputs or outputs from the training dataset

respectively. A system with three inputs and one output would have the three neurons

in the input layer and one neuron in the output layer. The hidden layer is a special

case. The neural network does not have to consist only of one hidden layer. The

number of hidden layers and the number of their neurons are not restricted. The

appropriate setup is described in [4].

-5 -4 -3 -2 -1 0 1 2 3 4 5

s

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Figure 3.2: The graph of hyperbolic tangent sigmoid function

3.2 Artificial Neural Network 21

To deeply understand, how a neural network works, we have to precisely define the

variables in it. So, let the nlk be the k-th neuron (node) in layer l. Then, let zlk be the

input vector to nlk, computed as

zlk = (al−1)>wlk, (3.1)

where wlk is the vector of weights assigned to node nlk, expressing the importance

of corresponding inputs to the outputs, and al−1 is the vector of outputs from the

previous layer. Now, the term bias will be introduced. Bias blk is the numerical value,

unique for each neuron, which is added to the zlk. The expression zlk + blk represents

the argument of the activation function, which provides the output from layer [9].

.

.

.

𝑎1
𝑙−1

 𝜎𝑡𝑎𝑛

𝑛𝑘

Neuron

In
p
u
ts

O
u
tp
u
ts

𝑎2
𝑙−1

𝑎𝑛
𝑙−1

𝑎𝑘
𝑙

𝑏𝑘
𝑙

𝑤𝑘,1
𝑙

𝑤𝑘,2
𝑙

𝑤𝑘,3
𝑙

𝑧𝑘,1
𝑙

𝑧𝑘,2
𝑙

𝑧𝑘,𝑛
𝑙

Figure 3.3: Structure of computations in neuron

In general, there are four types of activation (transfer functions). Unit step (threshold),

sigmoid, piecewise linear, and Gaussian. The purpose of the transfer function is to

translate the input signals to output signals and to keep the output values within

specified bounds. We have decided to use the hyperbolic tangent sigmoid transfer

22 Machine Learning

function σtan(s), defined as follows

σtan(s) = 2
1 + e−2s − 1. (3.2)

According to the (3.2), the result of each neuron in our case is between −1 and 1 (see

Fig, 3.2). After applying the activation function, the outcome of node nlk is computed

as

alk = σtan(zlk + blk) = 2
1 + e−2(zl

k
+bl

k
) − 1. (3.3)

If we consider the input layer as l = 0, then a0 is initialized as a0 = xi, where xi is the

input vector from given training dataset. Then (xi, yi) represents the input-output

pair, where i = 1, . . . , N , while N represents the length of training dataset. The

calculation are also illustrated in Fig. 3.3.

3.2.2 Training Process

We have just explained the function of each neuron in our network. But how is it

possible, the neural network provides the expected output? We will answer the question

in this section. But first, we have to understand the training process of the neural net

is composed of two stages:

• Forwardpropagation (model evaluation)

• Backpropagation (model training)

3.2.2.1 Forwardpropagation

Forward propagation is the stage, where weights and biases are fixed and inputs can

vary, which provides the predicted output. In the model evaluation part, the difference

between real outcome from neural network and target outcome is not important. This

stage is called feedforward because the output from one layer is used as input of the

3.2 Artificial Neural Network 23

next layer, there are no loops involved and the information is only passed forward and

never back [15].

The first step in the learning process is to initialize the weights and biases mentioned

in the neural network structure. Normally, their values are initialized randomly. Then,

the neural net is built and starts with a feedforward step to compute the output. In

short, the input layer provides the training set. The input to the (first) hidden layer is

obtained as a multiplication of the delivered training set and its weights (similar to

(3.1)). The output of this layer is computed as the result of the activation (transfer)

function described in (3.2). The result multiplied with another weights set represents

the input to the next layer. And the procedure is repeated again until the output is

achieved. This is the feedforward step.

The very important operation is to iterate over the whole training set to let the network

learn and to evaluate all predicted outputs. Obviously, the outcome of the feedforward

step does not match the expected output. So the learning procedure is switched to the

second phase called backpropagation.

3.2.2.2 Backpropagation

In the second stage, the model training stage, the inputs, and the predicted outcomes

are fixed, while weights and biases vary and the network ends with error evaluation.

The sequence of backward steps is executed in parallel with updating the weights and

biases based on the values of two parameters. The first is the value of cost function

describing the inaccuracy (error) of the result produced by the forward step and the

second is the learning rate. The most commonly used cost function is quadratic called

mean squared error (MSE)

E(X, θ) = 2
N

N∑
i=1
‖ŷi(x, θ)− yi‖22, (3.4)

24 Machine Learning

where ŷ is predicted output, weights and biases are collectively denoted as θ and X

stands for input-output vector pairs (xi, yi). Naturally, the cost function looks simple.

But we have to remember, y is computed as a long sequence of the mathematical

operations with a huge amount of variables. The aim of the neural network learning

is to equal target and computed output. It means, we have to find optimal values of

weights and biases by minimizing the cost function as

min
θ
E(X, θ) = min

θ

2
N

N∑
i=1
‖ŷi(x, θ)− yi‖22. (3.5)

Sometimes this optimization problem can be easily solved by calculating the derivates

of (3.4). Mostly, the problem includes a lot of optimized variables, which make this

computation quite impossible to make. That is the reason, why the gradient descent

method is used in neural network training.

In literature, the term backpropagation is referred to as an algorithm for computing

gradient. It does not include the information about, how this gradient is used [8]. This

is exactly what the gradient descent method serves for. But for the purpose of this

paper, we label the whole model training stage as backpropagation.

Gradient descent method is an iterative approach of finding the local minimum of the

problem. It is based on the evaluation of the function gradient (or its approximation).

The steps, proportional to the negative gradient, are taken (more information in

Algorithm 3), in order to reach the optimum.

In the neural network training process the step α, introduced in (3.7), is called learning

rate. α defines how fast, we move towards the global optimum. The choice of this

parameter is very important. If α is very small, a lot of iterations are needed for

reaching the minimum. On the other hand, the big numerical value of the parameter

could lead to failure in finding a minimum by passing it.

3.2 Artificial Neural Network 25

Algorithm 3: Gradient descent

Input: Initial guesses x0 and step α and a numerical tolerance ε = 10−6.

Repeat:

1. Evaluate the value of the gradient of function f(x) or its approximation

∇ =
df(x)
dx

. (3.6)

2. If ∇ ≤ ε, terminate with x? = x0 as a numerical solution.

3. Calculate the x-variable

x = x0 + α∇. (3.7)

4. Update the iterates x→ x0 and continue with Step 1.

As we mentioned, it is not always possible to evaluate the gradient of E(X, θ). So, in

order to use a gradient descent method, we have to find an efficient way to compute

∇E(X, θ). For this purpose, we will introduce the backpropagation algorithm. To

simplify the notation, we will consider the bias of neuron nk as a part of the weights

vector

W l
k = (blk, wlk,1, . . . , wlk,n)>, (3.8)

and also al is augmented as

Al = (1, al1, . . . , aln)>. (3.9)

That way, multiplication (Al−1)>W l
k represents the same expression as (al−1)>wlk + blk.

The backpropagation algorithm is characterized by evaluating subgradients, step by

step, in a backwards direction (from the output layer to the input layer). The gradient

of the cost function can be evaluated based on chain rule as

∇E(X, θ) =
(
∂E(X, θ)
∂AL

∂AL

∂ZL
∂ZL

∂AL−1
∂AL−1

∂ZL−1
∂ZL−1

∂AL−2 . . .
∂A1

∂Z1
∂Z1

∂xi

)>
, (3.10)

where L is the number of the last layer. Some parts can be substituted. The derivation

of input ZL in terms of previous output AL−1 is computed as a weight WL between

them. We also simplify the expression ∂AL

∂ZL to derivative of activation function (σL)′.

∇E(X, θ) = (W 1)>(σ1)′ . . . (WL−1)>(σL−1)′(WL)>(σL)′∇ALE(X, θ) (3.11)

26 Machine Learning

Then the term layer error is defined as

δl = (σl)′(W l+1)> . . . (WL−1)>(σL−1)′(WL)>(σL)′∇ALE(X, θ), (3.12)

and we can evaluate the subgradient for layer l

∇El = δl(Al−1)>. (3.13)

The δl can easily be computed recursively as

δl−1 = (σl−1)′(W l)>δl. (3.14)

Now, we finally have all ingredients to calculate the new weights WL for each layer,

based on gradient descent algorithm (Algorithm 3), starting with the last layer and

progressively approach the input layer [17]

W l
update = W l + α∇El. (3.15)

And this is the whole training process. Naturally, the mentioned steps are repeated,

until all weights and biases reach their optimal values and the neural network provides

the minimal MSE for each training set.

3.3 Decentralized Learning
Since we already know how the artificial neural network training works, we are able

to divide this process into several computational units (agents) as shown in Fig. 3.4.

That way, the computational burden and memory footprint of one calculation unit

are decreased by delegating the part of the calculations to the agents, and the whole

procedure can be more effective. Nowadays, this approach is widely studied, because

there are even more advantages relating to privacy.

We live in a data era. There are millions, billions, or even more datasets, which can

be very useful for machine learning. The data, that are publicly available and some

3.3 Decentralized Learning 27

companies have the right to use them in their machine learning algorithms, come from

user searches on the internet, from social media contribution, etc. Still, it is only a

small fraction of all data. The rest is the locked private data, that user’s (or generally

the agents) do not want to share and which stay untapped in users devices, such as

mobile phones, tablets, and laptops.

one powerful calculation unit several ordinary calculation units

with huge dataset
with small datasets

Figure 3.4: Scheme of distribution the calculations from one to several calculation

units

No one wants his privacy violated, so in order to keep it but be able to use the sensitive

data in the training process, the distributed and decentralized machine learning was

introduced. The main idea is simple. Since there is no way to obtain the user private

data for the training process, the opposite approach was devised. The training model

is provided to the agents, which allows them to run their own learning procedure on

their data and to share only partial results (parameters of the model), while the train

data never leave the local devices [1].

28 Machine Learning

It works as follows. Let’s have a network with K agents. The training dataset X,

consisting of input-output pairs (xi, yi), where xi ∈ Rn is input vector, yi ∈ Rm

is output vector of i-th sample, is created from the K data subsets. Each agent

receives the model of the neural network (number of hidden layers and neurons) and is

encouraged to start its own learning. After finding the optimal values of biases b and

weights w of models by each agent, these parameters are shared among network, the

average is computed (the ADMM or ALADIN approach can be used) and the training

process starts again with biases and weights initialized as mentioned average. These

steps are performed repeatedly until all agent models converge to the same values of b

and w.

The shared partial result can be processed in one place, parent agent, or central unit,

but it has some disadvantages. If the central unit fails or stops working, the whole

training process is interrupted. Therefore, a decentralized approach is increasingly

used [5]. This way agents communicate and exchange the information between them

without any intermediary or third party. It is called peer-to-peer communication. If

any agent stop working, the learning process is not compromised. The convergence

rate of both approaches is discussed in Chap. 5, with all graphic and numerical results.

Chapter 4

Application of Distributed

Optimization

In this part, we focus on the application of ADMM and ALADIN methods, in order

to compare their convergence properties, not only on problems with a smooth convex

objective but also with non-smooth and non-convex cost functions. The chapter also

contains a discussion dealing with a comparison of a centralized and decentralized

approach.

4.1 Data Fit with Affine Function
The problem of fitting the data is a very common and for the needs of the paper,

we assume this problem also for the demonstration of the efficiency of distributed

optimization. The general form of data fit problem, if we consider the approximation

of data by affine function, is defined as follows

min
a,b

N∑
i=1

((a2xi + a1)− yi)2
, (4.1)

where a1 and a2 are optimized variables and also a2 represents the slope of the function

and a1 its section. x = (x1, . . . , xN)> and y = (y1, . . . , yN)> are data sets (see Fig.

4.1) that are asssumed to be given.

In this particular problem, we have to deal with the issue that every agent in the

30 Application of Distributed Optimization

networked system has its own private data of position and this data are not allowed to

share. In this point, the problem (4.1) becomes more complex. The main task is to

solve the problem to global optimum on the condition of privacy. For this purpose, the

optimization problem has to be divided into a local and global optimization problem,

which is the base of decentralized optimization.

-6 -4 -2 0 2 4 6

x

0

1

2

3

4

5

6

7

8

y

data

Figure 4.1: Data set representing the position of agents

The local optimization problem is evaluated for each agent independently in the form

min
ai,1,ai,2

(ai,2xi + ai,1 − yi)2

s.t. ai,1 = ã1

ai,2 = ã2,

(4.2)

where i is the identifier for each agent and N is the number of agents in networked

system, ai,1, ai,2 are local optimized variable unique for each agent and ã1, ã2 represents

the global optimum. This problem definition is the same for ADMM and ALADIN,

but the global optimization differs and will be discussed in the next part.

4.1 Data Fit with Affine Function 31

4.1.1 Algorithms

The distributed algorithm for the data fitting problem consists of three steps, which

are performed sequentially and repeatedly. The algorithm terminates, when each agent

converges to the same global result, which means that each agent disposes of the same

value of optimized variables.

4.1.1.1 Local Optimization

In the local optimization, the augmented Lagrangian is applied to problem (4.2) in

the form

Liρ(ai, ã, λi) = (Xiai − Yi)2 + λ>i (ai − ã) + ρ

2 ||ai − ã||
2
2, (4.3)

where i is the agent identifier, ai = (ai,1, ai,2)> is a vector of local optimized variables,

ã = (ã1, ã2)> are global optimized variables, Xi = (xi, 1) and Yi = yi represents the

private dataset and λ>i is vector of Lagrange multipliers.

The local optimal values are then evaluated es follows

a?i = argmin
ai

Liρ(ai, ã, λi), (4.4)

where ã and λi are constants, with values calculated in the previous iteration by global

optimization and dual variable update steps. The a-minimization step is evaluated in

consideration of (4.4) for each agent independently and these results are shared among

network for global optimization step.

4.1.1.2 Global Optimization

The global optimization, ã-minimization step, running among all agents, and its

computation depends on the type of method.

32 Application of Distributed Optimization

1. ADMM METHOD

It uses the simplified version of (2.19b) and it is defined as

ã1

ã2

 = 1
N

a?1,1 + a?2,1 + · · ·+ a?N,1

a?1,2 + a?2,2 + · · ·+ a?N,2

 , (4.5)

and the result is sent back to the agents.

2. ALADIN METHOD

The output of global optimization in ALADIN is different. There is a vector of

global values, which is distributed to the agents, but its calculated in another

way, based on the result from minimization in form

min
∆a

N∑
i=1

(
1
2∆a>i Hi∆ai + g>i ∆ai

)
s.t. a? + ∆a = â? + ∆â,

(4.6)

where a? = (a?1, a?2, . . . , a?N)> is the vector of optimal results from agents with

a?i = (a?i,1, a?i,2)> and â? = (a?2, . . . , a?N , a?1)>. The same applies for increment

∆a = (∆a1,∆a2, . . . ,∆aN)> and ∆â = (∆a2, . . . ,∆aN ,∆a1)>. This optimiza-

tion problem is also solved by using the Lagrangian form and the global result is

then

ãi = a?i + ∆a?i . (4.7)

Here we must be careful about the choice of H and g. We could evaluate them

as the Hessian matrix and gradient, but only for a task, where data privacy

does not play a role. In problems concerning the privacy, H and g have to be

evaluated differently. In our case, they have been initialized randomly and tuned

to provide a satisfactory result.

4.1 Data Fit with Affine Function 33

4.1.1.3 Dual Variable Update

This step is executed again by each agent with its private data information. So the

dual variable update has a form

λk+1
i = λki + ρ(ai − ã). (4.8)

The algorithm is repeated until the stopping criterion is satisfied. For specific details

of ADMM or ALADIN algorithm, see Algorithm 1 or Algorithm 2 respectively.

4.1.2 Results for Data Fitting

The convergence of methods depends on intial values of optimized variables ã0, the

value of parameter ρ and value of tolerance for stopping criteria ε. The initial points

ã0 = (0, 0), tolerance ε = 10−3 and ρ = 10 have been specified.

-6 -4 -2 0 2 4 6

x

0

1

2

3

4

5

6

7

8

y

Figure 4.2: Comparison of ADMM and ALADIN for data fitting problem

34 Application of Distributed Optimization

As is shown on Fig. 4.2, we can compare methods by precision of approximation. The

value of cost function in optimum for ADMM is f(a?ADMM) = 0.3982 in comparison

with the value f(a?ALADIN) = 0.3674. There is also difference in the number of

iterations needed for the methods to convergate nearby the global optimum of the

original problem. Iterations needed for ADMM kADMM = 23 are incomparably to the

interations of ALADIN method kALADIN = 6. The convergence is ilustrated on Fig.

4.3 for ADMM and on Fig. 4.4 for ALADIN, where a? represents the global optimum

for initial problem (4.1).

5 10 15 20

iteration

0

0.2

0.4

0.6

0.8

1

5 10 15 20

iteration

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Figure 4.3: Convergence of ADMM

Thse results are also summarized in Tab. 4.1, where errors in optimum e1 and e2 are

calculated as follows

e1 = |a
?
1 − ã1|
a?1

, e2 = |a
?
2 − ã2|
a?2

. (4.9)

4.1 Data Fit with Affine Function 35

1 2 3 4 5 6

iteration

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

1 2 3 4 5 6

iteration

0

1

2

3

4

5

6

7

Figure 4.4: Convergence of ALADIN

Table 4.1: Comparison of ADMM and ALADIN method applied to data fit problem.

Method Objective value f(a?) No. of iterations
Error in optimum (%)

e1 e2

ADMM 0.3982 23 1.0 1.4

ALADIN 0.3674 6 0.4 0.3

As a result, we assume the ALADIN as a more effective method for solving data fitting

problem according to the number of iterations and precision of the minimization.

4.1.3 Centralized vs. Decentralized Approach

If we look at the algorithms introduced for this regression problem, we will understand,

it is assumed that there is some central unit, which provides global optimization.

The general idea of presenting the results above of a centralized approach is to prove

the functionality of algorithms before we will dive into a more complex decentralized

approach.

36 Application of Distributed Optimization

1

7

410

2

3

5

68

9

12

11

network

Figure 4.5: Structure of network with connections in decentralized approach

We have already discussed the advantages and disadvantages of both types of opti-

mizations in Sec. 2.6. When it comes to algorithms, the only difference is in the

global optimization step. It is no longer evaluated in some central unit, but each agent

computes their own global optimal variables, based on information from agents, with

which it is interconnected. In this comparison, the convergence rate of 5-th agent is

shown. Fig. 4.5 illustrates the connection between agents in the network, where the

central unit is absent. The connections of monitored 5-th agency are highlighted with

orange color.

4.1.3.1 ADMM

Let’s see the comparison of centralized and decentralized optimization provided by

the ADMM method. Even though this agent has only 4 connections, its convergence

properties are comparable to the properties of a centralized approach (Fig. 4.6 and

4.1 Data Fit with Affine Function 37

Fig. 4.7).

5 10 15 20

iteration

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

5 10 15 20

iteration

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Figure 4.6: ADMM convergance rate of 5-th agent in centralized approach

5 10 15 20 25 30 35

iteration

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

5 10 15 20 25 30 35

iteration

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Figure 4.7: ADMM convergance rate of 5-th agent in decentralized approach

The number of needed iterations for the decentralized ADMM method has increased

from 23 to 37 in comparison with a centralized algorithm. The accuracy of the result

(Tab. 4.2) is worse, but the difference is negligible.

38 Application of Distributed Optimization

Table 4.2: Comparison of centralized and decentralized approach of ADMM method

on data fitting problem

Approach Objective value f(a?) No. of iterations
Error in optimum (%)

e1 e2

Centralized 0.4012 23 1.0 1.3

Decentralized 0.4080 37 1.2 1.3

The more interesting thing is the increasing tendency to oscillate. It is caused by

indirect information exchange. Although the 5-th agent is not connected to each agent,

its neighbors are connected to other agents, so the result provided by them indirectly

carries information about all local optimized variables. In the end, the algorithm

converges to the global solution, due to this structure. It may seem that the algorithm

should have ended much sooner, but we need to keep in mind, there are eleven other

agents and the algorithm terminates when each agent will satisfy the stopping criteria.

4.1.3.2 ALADIN

Now, we will compare the centralized and decentralized approach for a more complex

ALADIN method.

Table 4.3: Comparison of centralized and decentralized approach of ALADIN method

on data fitting problem

Approach Objective value f(a?) No. of iterations
Error in optimum (%)

e1 e2

Centralized 0.3982 6 1.0 1.3

Decentralized 0.4218 21 1.3 1.4

4.1 Data Fit with Affine Function 39

1 2 3 4 5 6

iteration

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

1 2 3 4 5 6

iteration

0

1

2

3

4

5

6

7

Figure 4.8: ALADIN convergance rate of 5-th agent in centralized approach

5 10 15 20

iteration

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

5 10 15 20

iteration

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Figure 4.9: ALADIN convergance rate of 5-th agent in decentralized approach

It is obvious, that the decentralized approach is significantly worse in comparison

with centralized. It takes 15 iterations more, and the result is not that precise as in

centralized (see Tab 4.3). But it still converges very well. If we compare the number of

iteration in ADMM and ALADIN decentralized optimization, ALADIN still provides

a better result in the convergence rate.

40 Application of Distributed Optimization

4.2 Event Scheduling
Many times it happens that we meet with the problem when it is necessary to plan

a meeting to suit all participants. For the purpose of this thesis, the term event

scheduling refers to searching for a time slot that is empty for each participant’s

calendar. We assume three work calendars as shown in Fig. 4.10. The first issue of

this task is the non-smoothness of a cost function.

08:00 10:00 12:00 14:00 16:00

time

b
u
s
y
 r

a
te

Figure 4.10: Ilustration of the three work calendars

We decided to approximate the functions representing the calendar by a higher-degree

polynomial to achieve a smooth function. The most precise approximation of these

4.2 Event Scheduling 41

functions was provided using the 6th-degree polynomial in the form

P = p6x
6 + p5x

5 + p4x
4 + p3x

3 + p2x
2 + p1x+ p0, (4.10)

where p = (p0, . . . , p6) are coefficients of polynomial, which are calculated using

optimization and x is vector of data representing the calendar. The aproximation is

shown on Fig. 4.11.

7 8 9 10 11 12 13 14 15 16 17

time

b
u

s
y
 r

a
te

Figure 4.11: Aproximation of calendar functions

As we can see, this problem is nonconvex, which signifies the second issue of calendar

optimization. In general, ALADIN is designed to solve even nonconvex optimization

problems, but it was proven that ADMM may be divergent if f(x) is nonconvex

[10]. However, using ADMM on this particular problem (event scheduling) leads to a

satisfactory result. In this particular problem, the term satisfactory result signifies,

that each agent has found the same half-hour block for scheduling the event.

42 Application of Distributed Optimization

4.2.1 Algorithm

The distributed optimization algorithms for event scheduling is very similar to the

algorithms for data fitting problem. They consist of the same three parts: local

optimization, global optimization, and dual variable update. The original problem of

event scheduling is mathematically defined as

min
x
f(x) = min

x

N∑
i=1

fi(x) = min
x

N∑
i=1

Pi(x). (4.11)

Since we have different cost functions, the only difference between data fitting problem

and event scheduling problem is in the formulation of augmented Lagrangian, used in

the local optimization step. It has the following form

Liρ(xi, x̃, λi) = Pi(xi) + λ>i (xi − x̃) + ρ

2 ||xi − x̃||
2
2, (4.12)

where xi represents the optimized variable (in this case it is a time) of i-th calendar,

and Pi is the polynomial representing the participants availability. The local optimal

time for organizing a meeting is computed as

x?i = argmin
xi

Liρ(xi, x̃, λi). (4.13)

The global and dual variable update steps are then evaluated as in the data fitting

problem, depending on which method is applied. For ADMM the global optimization

step is evaluated as (4.5), for ALADIN as (4.6) and the update of the Langrangian

multiplier as (4.8).

4.2.2 Results for Event Scheduling

The setup for this problem was the same as for the data fitting problem, but tolerance

has to be adjusted, because the ε = 0.08, which represents the precision of 5 minutes,

was enough to achieve a good solution. The important thing to mention, the local

optimization was performed by numerical optimization methods (gradient method,

Luus-Jaakola method, etc.), so there is a high dependence on the initial point.

4.2 Event Scheduling 43

7 8 9 10 11 12 13 14 15 16 17

time

b
u
s
y
 r

a
te

ADMM

ALADIN

Figure 4.12: Solution of optimization for ADMM (blue line) and ALADIN (green

line)

As we can see on Fig. 4.12 the ALADIN methods provided more precise result then

ADMM. Summarization is in Tab. 4.4.

Table 4.4: Comparison of centralized and decentralized approach of ALADIN method

on data fitting problem

Method Objective value f(x?) No. of iterations x?

ADMM 5.0140 20 15.53

ALADIN 4.4397 9 15.77

44 Application of Distributed Optimization

Specifficaly, the value of cost function f(x?ALADIN) = 4.4397 for ALADIN result

x?ALADIN = 15.77 turned out to be smaller then f(x?ADMM) = 5.014 for ADMM result

x?ADMM = 15.53.

5 10 15 20

interation

0

2

4

6

8

10

12

14

16

ADMM

2 4 6 8

interation

0

2

4

6

8

10

12

14

16

ALADIN

Figure 4.13: Convergence rate for ADMM (blue line) and ALADIN (green line)

algorithms

The amount of iterations needed for convergence confirms the ALADIN method

kALADIN = 9 as more convenient for data fitting problem then ADMM kADMM = 20

(Fig. 4.13). The reason can be found in different global optimization step.

4.2.3 Centralized vs. Decentralized Approach

To compare the centralized and decentralized approach for event scheduling, we decide

to add more participants with their calendars, because the application of decentralized

optimization on the problem with three agents would not be very justified. That is

the reason, why we added two more agents to the system. So now, we are searching

for an empty spot among five calendars, as shown in Fig. 4.14. As we can see, the

block, where each agent is free, is between 9:00 am and 10:00 am.

4.2 Event Scheduling 45

7 8 9 10 11 12 13 14 15 16 17

time

b
u
s
y
 r

a
te

Figure 4.14: Illustration of all calendars with a common optimal time

The results of decentralized optimization algorithms differs based on defined connections

between agents. We decided to use the structure of the network as shown in Fig. 4.15.

2

34

1

5

network

Figure 4.15: Structure of network with connections in decentralized approach

46 Application of Distributed Optimization

To illustrate the convergence properties of a centralized and decentralized approach for

ADMM and also ALADIN method, we decided to show the result for only one agent.

It is not important, which agent is chosen because the algorithm terminates only when

each agent has a similar value of the optimized variable.

4.2.3.1 ADMM

After applying the ADMM method in both ways, it is evident, that the convergence

rate of a centralized approach is faster (Fig. 4.16) then in decentralized, although the

number of iterations, 35 for centralized and 41 for decentralized, is not very contrasting.

5 10 15 20 25 30 35

interation

0

2

4

6

8

10

Centralized

10 20 30 40

interation

0

2

4

6

8

10

Decentralized

Figure 4.16: ADMM convergance rate of 3-th agent in centralized and decentralized

approach

In terms of accuracy, both techniques have achieved excellent results. The values of

the optimal time and the objective function is located in Tab. 4.5. The decentralized

optimization process is a little bit slower, as expected, but the result is still very

precise.

4.2 Event Scheduling 47

Table 4.5: Comparison of centralized and decentralized approach of ADMM method

on event scheduling problem

Approach Objective value f(x?) No. of iterations x?

Centralized 9.9190 35 9.2910

Decentralized 9.9610 41 9.3507

These results are encouraging since the goal is to replace the centralized approach with

decentralized approach, so the whole procedure of searching the optimal variable can

be distributed to agents without any central unit involved.

4.2.3.2 ALADIN

In general, the convergence of the ALADIN method is faster, in comparison with

ADMM, regardless of the approach. Regarding the number of iterations and the

accuracy of the centralized and the decentralized algorithms, the results are almost

indistinguishable. Tab. 4.6 provides a summary of these values.

Table 4.6: Comparison of centralized and decentralized approach of ALADIN method

on event scheduling problem

Approach Objective value f(x?) No. of iterations x?

Centralized 9.9433 16 9.3248

Decentralized 10.2400 20 9.4123

A more interesting thing can be seen in Fig. 4.17, where the convergence rate has no

gradually decreasing character. The explanation can be found in Fig. 4.14. In this

48 Application of Distributed Optimization

case, the 3-th agent is used to present the results (yellow calendar). This agent is

interconnected with two other agents (green and blue calendars). The first iterations

of an algorithm provide the optimal time as 16:00. It is not an incorrect behavior,

because it is a local optimum for mentioned three agents. The further the algorithm

runs, the value of an optimized variable is affected by remaining calendars, which

causes convergence to the global optimum.

5 10 15

interation

0

2

4

6

8

10

Centralized

5 10 15 20

interation

0

2

4

6

8

10

Decentralized

Figure 4.17: ALADIN convergance rate of 3-th agent in centralized and decentralized

approach

In this particular comparison is shown, that ADMM provides smoother change in

convergence rate than ALADIN. Since ADMM is based on averaging the optimal

variables, convergence error decreases slowly without huge osciallations. On the other

hand, in ALADIN method the result of global optimization problem is calculated,

which leads to big changes in convergence rate, but also to faster termination.

Chapter 5

Decentralized Neural Network Training

In this chapter, we will declare the results of the proposed distributed and decentralized

artificial neural network training. Several special cases are introduced, in order to test

the robustness of the learning process. The structure of a neural network, which was

used in test examples is illustrated in Fig. 5.1.

𝑖1

𝑖2

ℎ1
1

ℎ2
1

ℎ3
1

ℎ4
1

ℎ1
2

ℎ2
2

ℎ3
2

ℎ1
3

ℎ4
2

ℎ2
3

ℎ3
3

ℎ4
3

𝑜1

input layer hidden layers output layer

Figure 5.1: Structure of the neural network used for the training tests

50 Decentralized Neural Network Training

A chosen neural network contains of

• 1 input layer with 2 neurons,

• 3 hidden layers with 4 neurons at each layer,

• 1 output layer with 1 neuron.

In order to provide all test trainings, the Deep Learning Toolbox build in MATLAB

is used. We need to supply this toolbox with information about the structure of the

neural network mention above, the input and target dataset and we can also initialize

the weights and biases. In MATLAB, three different data structures have to be defined.

IW =
{
{4× 2 double}

}
, LW =


{4× 4 double}

{4× 4 double}

{4× 1 double}

 , b =



{4× 1 double}

{4× 1 double}

{4× 1 double}

{1× 1 double}


.

The input layer weight structure IW with dimension 4×2, since there are 8 connections

between input neurons and neurons in the first hidden layer (Fig. 5.1). The hidden

layer weight LW contains of 36 values, 16 between each connected hidden layers and

4 between last hidden layer and output layer. Finally, there are 13 values in a bias

matrix b, 12 for neurons in all hidden layers and 1 for output neuron.

5.1 Decentralized Training
We consider the urgency to teach a neural network to control the simple system

(movement of a mass point). The system has the following form

ẋ = Ax+Bu =

0 1

0 0

x+

0

1

u, (5.1)

5.1 Decentralized Training 51

where A is dynamic matrix, B is input matrix, x = [x1, x2]> is a vector of two states

and u is control input.

0 10 20 30 40 50

sample

-1

0

1

u

NET 1

prediction

target

0 10 20 30 40 50

sample

-1

0

1

u

NET 2

prediction

target

0 10 20 30 40 50

sample

-1

0

1

u

NET 3

prediction

target

Figure 5.2: Comparison of predicted and target outputs of 3 trained networks

The data for the neural network training is available and the size of this dataset is

[1850× 3]. The aim is to train this a neural network in distributed way. So the dataset

is split into four sub-sets. The three of them are used for training three different neural

networks. Their parameters are shared between each other and the average of them

is computed in every single step. The convergence is reached iteratively. In the end,

there are three neural networks, with the same parameters. So in general, we can say,

there is one neural network, trained to control the given system. The last data sub-set

is used to verify the quality of the trained neural network.

52 Decentralized Neural Network Training

As we can see in Fig. 5.2, all sub-nets are trained very precise and provide the expected

result in comparison with test data (the last sub-set).

0 5 10 15 20 25 30 35 40 45 50

sample

-1

-0.5

0

0.5

1

u

NET
average

prediction

target

0 10 20 30 40 50 60 70 80 90 100

iteration

100

102

C
o

n
v
e

rg
e

n
c
e

 e
rr

o
r

Last iteration error: 0.35

Figure 5.3: The properties of average neural network

The convergence error (CE) is computed as follows

CE =
Ns∑
i=1

(ûi − ui)2, (5.2)

where Ns is the number of testing samples, û is the output provided by the trained

network (prediction) and u is the expected output (target) defined in the last sub-set.

The bias, input weight, and layer weight are structures with dimensions defined at

the beginning of this chapter. The parameter error (PE) of mentioned structures (as

shown on Fig. 5.4) is defined as

PE =
Np∑
i=1
|pi − pi|, (5.3)

5.1 Decentralized Training 53

where Np is the number of parameters in structures, p is the value of an exact parameter

in structure and p is the average value of this parameter calculated as

p = 1
NN

NN∑
i=1

pi, (5.4)

with NN defined as the number of trained neural networks.

0 50 100

iteration

10
0

10
2

E
rr

o
r

Convergence error

NET 1

NET 2

NET 3

0 50 100

iteration

10
0

E
rr

o
r

Bias error

0 50 100

iteration

10
-2

10
0

E
rr

o
r

Input weight error

0 50 100

iteration

10
-1

10
0

10
1

E
rr

o
r

Layer weight error

Figure 5.4: The CE and PE values in each iteration

As we can see on Fig. 5.4 and in Tab. 5.1, the convergence error is very small and the

convergence is very fast. CE = 1 is already reached in 10th iteration. The number of

(training) iterations is set to kmax = 100.

54 Decentralized Neural Network Training

Table 5.1: The errors of decentralized training of neural networks in last iteration

Neural net Convergence error Bias error Input weight error Layer weight error

Net 1 0.165 0.111 0.134 0.258

Net 2 0.163 0.060 0.141 0.288

Net 3 0.173 0.094 0.077 0.243

When the training part is over, the average neural network is obtained and it is used

to control the given system, even it was not trained at all. But its parameters are

gained as average values from parameters of trained networks. The final properties,

the precision, and convergence of the average neural network, are summarized in Fig.

5.3, where CE = 0.35.

5.1.1 Convergence Comparison of Training with N Agents

In this part, we will try to answer the following question. What happens with

convergence rate, if the initial dataset is decomposed to more than three agents? The

first guess would be, that if we have more agents, each of them operates with a smaller

amount of data, naturally, the convergence rate will be slower. The answer is in Tab.

5.2 based on Fig. 5.5.

Table 5.2: Comparison of training with different number of agents

No. of agents Convergence error
Iteration

CE = 1 CE = 0.5

10 0.153 10 20

20 0.171 10 35

50 0.914 50 -

100 1.897 - -

5.1 Decentralized Training 55

0 10 20 30 40 50

sample

-1

0

1

u

Total nets: 10

0 10 20 30 40 50

sample

-1

0

1

u

Total nets: 20

0 10 20 30 40 50

sample

-1

0

1

u

Total nets: 50

0 10 20 30 40 50

sample

-1

0

1

u

Total nets: 100

0 20 40 60 80 100

iteration

100

C
E

No. of active nets: 10

0 20 40 60 80 100

iteration

100

C
E

No. of active nets: 20

0 20 40 60 80 100

iteration

100

C
E

No. of active nets: 50

0 20 40 60 80 100

iteration

100

102

C
E

No. of active nets: 100

Figure 5.5: Comparison of precision and convergence rate of training with different

number of agents in network

It is obvious that our assumption was correct. The convergence error increases with a

higher number of agents. In parallel, the convergence rate is different. While the cases

with 10 and 20 agents attain the CE = 1 in 10th iteration, the case with 50 agents

needs 50 iterations and the case with 100 agents will never reach mention value. If

we compare the first and second cases, their convergence rate is quite similar at the

beginning. But it changes after several iterations. The convergence rate of 10 agents

is faster because CE = 0.5 is achieved after 20 iterations, while the second case needs

35 iterations.

56 Decentralized Neural Network Training

5.1.2 Training with Nonuniform Distribution of Data

A very important thing for neural network training is to test special cases. The term

special case signifies the situation, which is not commonly expected, but there is no

guaranty, it will not appear. One of the special cases is the non-uniform distribution

of data to the agents. It means, that each agent (for this example three agents were

used) gets the dataset with the different output region (see Fig. 5.6).

Figure 5.6: Nonuniform distribution of data (red region - 1. agent, blue region - 2.

agent, yellow region - 3. agent)

Even the agents have different training output regions, the output of the trained

(average) network is very precise. The convergence rate is not that fast as in previous

examples, which means the more iteration is needed to converge (almost 90), but it is

5.1 Decentralized Training 57

satisfactory since the convergence error is equal to 0.28. For the better visualization of

results and convergence graph see Fig. 5.7.

0 5 10 15 20 25 30 35 40 45 50

sample

-1

-0.5

0

0.5

1

u

NET
average

prediction

target

0 10 20 30 40 50 60 70 80 90 100

iteration

100

102

C
o

n
v
e

rg
e

n
c
e

 e
rr

o
r

Last iteration error: 0.28

Figure 5.7: Average network for nonuniform data distribution case

So, even each agent manipulates with completely different dataset concerning the same

problem, a common solution can be found, by sharing the partial results.

5.1.3 Centralized vs. Decentralized Training

As discussed before, the centralized and decentralized optimization has several pros and

cons. The same applies to both types of trainings. But how it differs in convergence

and precision properties?

58 Decentralized Neural Network Training

In centralized training, we assume all agents train in each iteration, and the parameters

are shared centrally. So the average parameters are computed based on parameters

from every agent. On the contrary, decentralized way point to the situation, where

each agent evaluates the average on its own in pursuance of the parameter values

provided by agents in the network to which it is connected.

0 5 10 15 20 25 30 35 40 45 50

sample

-1

-0.5

0

0.5

1

u

NET 3

prediction

target

0 10 20 30 40 50 60 70 80 90 100

iteration

100

102

C
E

Last iteration error: 0.37

Figure 5.8: Result of centralized neural network training

So we performed a simple scenario. Ten agents are used to train a neural network.

Fig. 5.8 illustrates the centralized way of training, meaning that all 10 agents train at

the same time and create one central average net. The convergence rate is very fast.

After 20th iteration, there is no significant change in CE. The last iteration error is

CE = 0.37.

5.1 Decentralized Training 59

0 5 10 15 20 25 30 35 40 45 50

sample

-1

-0.5

0

0.5

1

u
NET 3

prediction

target

0 10 20 30 40 50 60 70 80 90 100

iteration

100

102

C
E

Last iteration error: 0.93

Figure 5.9: Result of decentralized neural network training

On the other hand, Fig. 5.9 shows the decentralized training, where convergence rate

is much worse, slower, the number of needed iterations to converge is around 90, but

the last iteration error CE = 0.93 is tolerable. The explanation of the degraded quality

of the learning process is, that each agent is connected only with two more agents, so

the information flow is reduced in comparison with a centralized way.

5.1.4 Dynamical Change in Active Agents

The last test case is oriented on the possibility to train the network without having to

wait to receive data from all connected calculation units. So, we consider 10 agents in

network and only several of them contribute to the average computation. The number

of contributors called active agents is randomly generated in each iteration. The goal

60 Decentralized Neural Network Training

is to simulate the behavior of real devices, where their computational speed can differ,

there is some data transfer delay, the calculation stops working or it refuses further

cooperation.

0 10 20 30 40 50 60 70 80 90 100

iteration

0

2

4

6

8

10

N
o

.
o

f
a

c
ti
v
e

 a
g

e
n

ts

Figure 5.10: Number of active nets per iteration

Fig. 5.11 illustrates the number of iterations (corresponding iteration count) belonging

to a given number of active agents. The general distribution over the whole simulation

is shown in Fig. 5.10, so we can see, how many agents provided their information per

iteration.

Figure 5.11: Number of active agents corresponding to iteration count

5.1 Decentralized Training 61

0 5 10 15 20 25 30 35 40 45 50

sample

-1

-0.5

0

0.5

1

u
NET

average

prediction

target

0 10 20 30 40 50 60 70 80 90 100

iteration

100

102

C
o
n
v
e
rg

e
n
c
e
 e

rr
o
r

Last iteration error: 0.97

Figure 5.12: Result of neural network training with dynamical change in active

agents

The results are shown in Fig. 5.12. We can see, the convergence error starts to oscillate

around CE = 1 after 20 iterations and there is no improvement. But CE = 0.97, for

350 testing samples, is still satisfying. So, even there is a problem with communication

or some calculation units do not provide their results, the observed agent can still train

its neural network with satisfactory accurancy.

62 Decentralized Neural Network Training

Chapter 6

Conclusions

The aim of this thesis was to design and implement a system, that is able to process

optimization tasks and machine learning in a decentralized enviroment with guaranteed

privacy of agent’s data. The mentioned desgin and implementation were provided on

several tasks with satisfactory results as described in experimental part of thesis.

The first step of this thesis was to solve the optimization problem of a networked system,

where each agent keeps its private and sensitive data, important for the optimization

through the system. Therefore, distribued optimization and the modern algorithms for

its solution were introduced. The most commonly used, ADMM and ALADIN, were

implemented in MATLAB for cases with convex and also non-convex cost functions.

In both cases, ALADIN method came out as preferred, because of a faster convergence

rate. This statement is based on the results of the data fitting and event scheduling

problem.

Regarding the precision of the solution, both methods were comparatively good.

Both algorithms were affected by stopping criteria and mainly by chosen tolerance

ε. Tolerance changed according to the optimization problem. The results were also

influenced by the choice of the local optimization algorithm. The type of algorithm

depends on the convexity of the objective.

In addition, the comparison of a centralized and decentralized approach was realized for

64 Conclusions

all problems and each method. According to the results, the decentralized optimization

approach has a slower convergence rate than centralized. It is caused by indirect data

exchange among the network. But the accuracy of the result was almost the same as

in a centralized way. This is the positive information, because it means, that we do not

need any central unit to supervise the whole optimization process through the network.

On the contrary, we can benefit from all advantages of a decentralized approach, such

as lower computational burden and memory footprint per calculation unit, elimination

of single point of failure, etc.

The understanding of distributed and decentralized optimization was just the first

step of the thesis. The main goal was to apply this knowledge to machine learning

algorithms. We decided to choose the artificial neural network as a model that can

be trained in not only distributed but also a decentralized way. It can be used

in emerging Federated learning and other modern applications. The result of our

distributed training algorithms was the neural network, which provides very precise

result according to MSE parameter. To test the robustness of distributed training, we

came up with several special tests, such as the non-uniform distribution of data or

dynamical change in active agents. Both converged to the 100-th iteration with the

convergence errors, which were considered as sufficient.

Finally, the comparison of centralized and decentralized learning was made. The

convergence error of centralized learning was smaller in comparison with decentralized

and the same applies for the number of iterations. We expected the slower convergence

rate of a decentralized approach, but such a deterioration in accuracy was not predicted.

However, the convergence error was calculated as a difference between predicted and

target output on 350 samples, so it is still tolerable.

In conclusion, the centralized optimization algorithm can be replaced by decentralized,

if the slower convergence rate is not an issue. The choice of distributed optimization

method is based on the definition of the problem. Even though the ALADIN method is

65

preferred in our test problems, the H and g setup for tasks with privacy concerns can

be challenging. This is something, that could be further studied to avoid the laborious

tuning.

The previous conclusion about replacement of centralized approach by decentralized

applies also to machine learning. In addition, in neural network training, we must be

careful about the number of agents in the network. According to Sec. 5.1.1, the higher

number of agents, the worse convergence, and accuracy properties. But this is true

only for cases, where one dataset is divided between a huge amount of agents or the

agents manipulate with not a sufficient number of data. The all test cases for neural

network training provided sufficient values of convergance error. However, the learning

was evaluated based on data from simple system. It would be interesting to do further

research with more complex system.

66 Conclusions

Chapter 7

Resumé

Cieľom tejto práce bolo navrhnúť a implementovať systém, ktorý je schopný vykonávať

optimalizačné úlohy a strojové učenie v decentralizovanom prostredí s garanciou

privátnosti dát každého agenta. Spomínaný návrh a implementácia bola prevedená na

niekoľkých úlohách s uspokojivými výsledkami ako je popísané v experimentálnej časti

tejto práce.

Prvým z krokov bolo riešiť optimalizačný problém systému, ktorý sa skladá z viacerých

výpočtových jednotiek (agentov) navzájom pospájaných a dokopy vytvárajúcich sieť,

kde každý agent disponuje svojími privátnymi citlivými dátami, ktoré sú dôležité

pre optimalizáciu bežiacu v spomínanej sieti. Práve preto bol predstavený koncept

distribuovanej optimalizácie a moderných algoritmov na jej riešenie. Tie najčastejšie

používané, ADMM a ALADIN, boli implementované v softvéri MATLAB na príkladoch

s konvexnými ale aj nekonvexnými účelovými funkciami. V oboch prípadoch, ALADIN

metóda vyšla ako preferovaná, pretože vykazovala rýchlejšiu mieru konvergencie. Toto

tvrdenie je založené na výsledkoch problému fitovania dát a problému naplánovania

udalosti.

Ak uvažujeme presnosť riešenia, obidve metódy boli porovnateľne dobré. Oba algoritmy

boli ovplyvňované stopovacím kritériom, hlavne vybranou hodnotou tolerancie. Táto

hodnota sa menila na základe definície optimalizačného problému. Okrem toho boli

výsledky ovplyvnené aj výberom algoritmu pre lokálnu optimalizáciu, ktorého typ

68 Resumé

závisí od konvexnosti účelovej funkcie.

Okrem tohoto bolo realizované aj porovnanie centralizovaného a decentralizovaného

prístupu pre všetky problémy a každú metódu. Na základe výsledkov, decentralizovaná

optimalizácia vykazuje pomalšiu konvergenciu ako centralizovaná. Je to spôsobené

nepriamou výmenou dát v sieti. Napriek tomu presnosť riešenia bola takmer rovnaká

ako pri centralizovanom spôsobe. Toto považujeme za pozitívnu informáciu, pretože

to znamená, že centrálna jednotka nie je potrebná na dohliadanie na optimalizačný

proces v sieti. Naopak, môžeme čerpať z výhod decentralizovaného prístupu, akými

sú napríklad nižšia výpočtová záťaž a menšie pamäťové miesto výpočtovej jednotky,

eliminácia jedného bodu zlyhania, atď.

Pochopenie distribuovanej a decentralizovanej optimalizácie bolo len prvým krokom.

Hlavným cieľom bola aplikácia týchto vedomostí na algoritmy strojového učenia.

Rozhodli sme sa použiť umelé neurónové siete ako model, ktorý môže byť natrénovaný

nie len distribuovaným ale aj decentralizovaným spôsobom. Niečo takéto môže byť

použité v mnohých moderných aplikáciach v oblasti zdravotníctva, bankovníctva, a

pod. Výsledok našich algoritmov distribuovaného trénovania bola neurónová sieť,

ktorá poskytuje veľmi presné výstupné hodnoty, na základe informácie CE parametra.

Použili sme viacero špeciálnych príkladov na odtestovanie robustnosti distribuovaného

trénovania, ako napríklad nerovnomerné rozdelenie dát alebo dynamickú zmenu v ak-

tívnych agentoch. Oba prípady skonvergovali počas 100 iterácii s chybou konvergencie,

ktorá bola považovaná za uspokojivú.

Nakoniec bolo prevedené porovnanie centralizovaného a decentralizovanho učenia.

Chyba konvergencie centralizovaného učenia bola menšia v porovnaní s decentralizo-

vaným a to isté platí aj pre počet iterícii. Pomalšia konvergencia decentralizovaného

prístupu bola očakávaná, ale také zníženie presnosti riešenia nebolo predpokladané.

Každopádne, chyba konvergencia bola počítaná ako rozdiel predikovaného a cieľového

výstupu na 350 vzorkách, takže je to stále tolerovateľné.

69

Ak si to zhrnieme, algoritmus centralizovanej optimalizácie môže byť úplne nahradený

decentralizovaným, ak pomalšia konvergencia nie je prekážkou. Výber metódy dis-

tribuovanej optimalizácie závisí od definície problému. Aj keď je ALADIN metóda

preferovaná v našich testovacích príkladoch, nastavenie H a g, pre úlohy vyznačujúce

sa obavami o ochranu súkromia, môže predstavovať výzvu. Toto je niečo, čo by mohlo

byť ďalej skúmané za cieľom vyhnutia sa pracnému ladeniu.

Predošlé tvrdenie o nahradení centralizovaného prístupu decentralizovaných platí aj

pre strojové učenie. Naviac, pri trénovaní neurónových sietí musíme byť opatrní, čo sa

týka počtu agentov v sieti. Podľa Sek. 5.1.1 platí, že čím je väčší počet agentov v sieti,

tým je presnosť a miera konvergencie horšia. Ale toto platí iba pre prípady, kde je jeden

dataset rozdelený medzi vysoký počet agentov alebo agenti manipulujú s nedostatočným

množstvom dát. Všetky príklady trénovania neurónových sietí predkladané v tejto

práci, poskytovali uspokojivé hodnoty chyby konvergencie. Napriek tomu, učiaci proces

bol vykonávaný na základe dát z jednoduchého systému. Bolo by zaujímavé previesť

ďalší prieskum so zložitejším systémom.

70 Resumé

Bibliography

[1] T. Addair. Decentralized and distributed machine learning model training

with actors. Online. Accessed: 2019-22-05, http://www.scs.stanford.edu/

17au-cs244b/labs/projects/addair.pdf.

[2] T. Ayodele. Types of Machine Learning Algorithms. 02 2010.

[3] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein. Distributed optimization

and statistical learning via the alternating direction method of multipliers. Found.

Trends Mach. Learn., 3(1):1–122, January 2011.

[4] L. Camargo and T. Yoneyama. Specification of training sets and the number of

hidden neurons for multilayer perceptrons. Neural Computation, 13:2673–2680,

12 2001.

[5] X. Chen, J. Ji, C. Luo, W. Liao, and P. Li. When machine learning meets

blockchain: A decentralized, privacy-preserving and secure design. In 2018 IEEE

International Conference on Big Data (Big Data), pages 1178–1187, 2018.

[6] S. Dreiseitl and L. Ohno-Machado. Logistic regression and artificial neural network

classification models: a methodology review. Journal of Biomedical Informatics,

35(5):352 – 359, 2002.

[7] D. Gabay and B. Mercier. A dual algorithm for the solution of nonlinear variational

http://www.scs.stanford.edu/17au-cs244b/labs/projects/addair.pdf
http://www.scs.stanford.edu/17au-cs244b/labs/projects/addair.pdf

72 BIBLIOGRAPHY

problems via finite element approximation. Computers & Mathematics with

Applications, 2(1):17 – 40, 1976.

[8] R. Hecht-Nielsen. Theory of the backpropagation neural network based on nonin-

dent by robert hecht-nielsen, which appeared in proceedings of the international

joint conference on neural networks 1, 593–611, june 1989. c© 1989 IEEE. In

Neural Networks for Perception, pages 65–93. Elsevier, 1992.

[9] S. Herzog, C. Tetzlaff, and F. Wörgötter. Evolving artificial neural networks with

feedback. Neural Networks, 123:153 – 162, 2020.

[10] B. Houska, J. Frasch, and M. Diehl. An augmented lagrangian based algorithm

for distributed nonconvex optimization. SIAM Journal on Optimization, 26, 04

2016.

[11] A. K. Jain, J. Mao, and K. Mohiuddin. Artificial neural networks: A tutorial.

IEEE Computer, 29:31–44, 1996.

[12] E. Kostarelou and G. K. D. Saharidis. In IGI Global J. Wang, editor, Encyclopedia

of Business Analytics and Optimization, chapter Centralize vs. Decentralize Supply

Chain Analysis, page 429–439. 2014.

[13] S. B. Kotsiantis. Supervised machine learning: A review of classification techniques.

Informatica (Ljubljana), 31, 10 2007.

[14] I. Necoara, D. Doan, and J. Suykens. Application of the proximal center de-

composition method to distributed model predictive control. volume 290, pages

2900–2905, 01 2008.

[15] M. A. Nielsen. Neural networks and deep learning, 2018.

[16] A. Rantzer. Dynamic dual decomposition for distributed control. In 2009 American

Control Conference, pages 884–888, June 2009.

[17] J. Schmidhuber. Deep learning in neural networks: An overview. Neural Networks,

61:85 – 117, 2015.

BIBLIOGRAPHY 73

[18] J. Tsitsiklis. Problems in decentralized decision making and computation. 08

2005.

[19] T. Yang, X. Yi, J. Wu, Y. Yuan, D. Wu, Z. Meng, Y. Hong, H. Wang, Z. Lin,

and K. H. Johansson. A survey of distributed optimization. Annual Reviews in

Control, 47:278 – 305, 2019.

[20] C. Zhang, Q. Li, and P. Zhao. Decentralized optimization with edge sampling.

In Proceedings of the Twenty-Eighth International Joint Conference on Artificial

Intelligence, IJCAI-19, pages 658–664. International Joint Conferences on Artificial

Intelligence Organization, 7 2019.

	Abstract
	Abstrakt
	Introduction
	Distributed Optimization
	Dual Ascent
	Dual Decomposition
	Augmented Lagrangians and the Method of Multipliers
	Alternating Direction Method of Multipliers
	ALADIN
	Decentralized Optimization

	Machine Learning
	Types of Machine Learning
	Machine Learning Tasks
	Machine Learning Approaches
	Model Structure

	Artificial Neural Network
	Structure and Calculations
	Training Process

	Decentralized Learning

	Application of Distributed Optimization
	Data Fit with Affine Function
	Algorithms
	Results for Data Fitting
	Centralized vs. Decentralized Approach

	Event Scheduling
	Algorithm
	Results for Event Scheduling
	Centralized vs. Decentralized Approach

	Decentralized Neural Network Training
	Decentralized Training
	Convergence Comparison of Training with N Agents
	Training with Nonuniform Distribution of Data
	Centralized vs. Decentralized Training
	Dynamical Change in Active Agents

	Conclusions
	Resumé
	Bibliography

