
SLOVAK UNIVERSITY OF TECHNOLOGY IN

BRATISLAVA

FACULTY OF CHEMICAL AND FOOD TECHNOLOGY

Reference number: FCHPT-10881-77258

EMBEDDED IMPLEMENTATION OF

EXPLICIT MODEL PREDICTIVE CONTROL

DISSERTATION THESIS

Bratislava, 2017 Deepak Ingole

SLOVAK UNIVERSITY OF TECHNOLOGY IN

BRATISLAVA

FACULTY OF CHEMICAL AND FOOD TECHNOLOGY

Reference number: FCHPT-10881-77258

EMBEDDED IMPLEMENTATION OF

EXPLICIT MODEL PREDICTIVE CONTROL

DISSERTATION THESIS

Study programme: Process Control

Study field number: 2621

Study field: 5.2.14 Automation

Workplace: Department of Information Engineering and Process Control

Thesis supervisor: doc. Ing. Michal Kvasnica, PhD.

Bratislava, 2017 Deepak Ingole

Slovak University of Technology in Bratislava

Faculty of Chemical and Food Technology

Institute of Information Engineering, Automation and Mathematics

DISSERTATION THESIS TOPIC

Author of the thesis: Deepak Ingole

Study programme: Process Control

Study field: 5.2.14. automation

Registration number: FCHPT-10881-77258

Student’s ID: 77258

Thesis supervisor: doc. Ing. Michal Kvasnica, PhD.

Title of the thesis: Embedded Implementation of Explicit Model Predictive Control

Date of entry: 03.09.2014

Date of submission: 05.09.2017

Deepak Ingole

Solver

prof. Ing. Miroslav Fikar, DrSc.

Head of Department

prof. Ing. Miroslav Fikar, DrSc.

Study Programme Supervisor

To my dear wife Shrutika

Acknowledgments

I am deeply indebted to my supervisor doc. Ing. Michal Kvasnica, PhD. for his

support, motivation, and inspiring ideas. I thank him for giving me total freedom

to choose my research direction that allowed me to collaborate with several people

and for allowing me to travel around the Europe several times. His energy and

enthusiasm, particularly during the scientific seminars have been a constant source

of motivation for me. My sincere gratitude goes to prof. Ing. Miroslav Fikar, DrSc.

for his support and motivation. He introduced me to the theory of optimal control

which was a nice learning experience.

Several people outside of the Slovak University of Technology have had a sub-

stantial impact on this thesis. I would like to thank Dr. Paul Goulart for hosting

me at the Control Group at the University of Oxford during winter of 2017. He

has willingly shared his knowledge and software tools with me. The discussions

we had during my visits were of great importance for my understanding about

the software development and my subsequent work. I am grateful to Dr. Eric

Kerrigan for hosting me Imperial College London during the wonderful summer of

2017. Throughout my stay, he has taken an active interest in my work, and our

discussions have made this collaboration particularly fruitful. He has taught me

that results can always be presented better. I would like to take an opportunity to

thank Prof. John Gustafson from the National University of Singapore for intro-

ducing the idea of universal numbers which have significant impact on this thesis. I

would like to thank Dr. Simon Byrne from University College, London and Himeshi

De Silva from the National University of Singapore. They always made time to

answer my questions. It was a great support during the development of mnum

toolbox. I am also thankful to Bulat Khusainov from Imperial College London for

always having time to answer my numerous questions about PROTOIP and FPGA

i

ii

implementation. My thanks go to Goran Banjac and Bartolomeo Stellato from the

University of Oxford for their support during my stay in Oxford. My thanks go

to Dr. Dayaram Sonawane and Dr. Divyesh Ginoya from College of Engineering

Pune and Vihangkumar Naik from IMT Institute of Advance Studies Lucca for

their support and encouragement.

The research was made possible by the financial support by the People Pro-

gramme (Marie Curie Actions) of the European Union’s Seventh Framework Pro-

gramme (FP7/2007-2013) under REA grant agreement number 607957 (Training

in Embedded Predictive control and Optimization (TEMPO) - A Marie Curie Ini-

tial Training Network (ITN)). I consider myself very fortunate to have been the

part of TEMPO network.

Within STU I would especially like to thank Prof. Monika Bakošová, Prof. Ján

Mikleš and Prof. Alajos Mészáros for guidance during my coursework. I would

like to thank my friends and colleagues Martin Klaučo, Ján Drgoňa, Martin Kalúz,

Juraj Holaza, Juraj Oravec, Luboš Čirka, Radoslav Paulen, Filip Janeček, Anna

Vasičkaninová, and Stanislav Vagač for their support and fruitful discussions. My

special thanks go to Ayush Sharma and Richard Valo for their lovely friendship,

always ready to lend a helping hand, boosting my mood, and arranging nice trips

to explore Slovakia. I also thank former colleagues Martin Jelemenský, Bálint

Takács, Juraj Števek, and Daniela Pakšiová for their help. Also, thanks to sec-

retaries, Katarína Macušková and Andrea Kalmárová, who helped me with the

administration, forms and financial matters.

My thanks must be to my family. I am grateful to my in-law’s family, who has

always encouraged and supported me and my decisions. Last but not the least, I

am grateful for the endearing and patience support from my wife Shrutika, for her

love and kindness.

Deepak Ingole

Bratislava, 2017

Abstract

The Model Predictive Control (MPC) feedback law is given by the solution to

a multi-parametric Quadratic Programming (mp-QP) problem that can be pre-

computed off-line and stored in the form of Look-Up Table (LUT) to be used in on-

line synthesis. The on-line computation reduces to simple evaluations of a Piecewise

Affine (PWA) function, allowing implementations on simple hardware and with fast

sampling rates. One of the main bottlenecks in the embedded implementation of

explicit MPC is the memory required to store optimal solutions; this often limits

its applicability to systems with a few states and controls, simple constraints, and

short prediction horizons.

Therefore, the focus of this thesis lies on the embedded implementation of low-

memory explicit MPC feedback laws for the real-time control of constrained linear

systems. In detail, a novel memory reduction technique for low-memory explicit

MPC laws is proposed. The technique is based on encoding all data (i.e., the

critical regions and the feedback laws) as universal numbers (unums), which can

be viewed as a more memory efficient extension of IEEE floating-point standard

for representing real numbers. Specifically, we show that the controller data (in

the form of a floating-point standard) to be stored on the hardware memory can

be replaced by the unum format which takes fewer bits to store same value and

get more accurate answers than floating-point arithmetic. As unum needs fewer

bits to represent a number, it saves memory and bandwidth. Unlike floating-point

numbers, unums make no rounding errors, and cannot overflow or underflow.

To show the feasibility of unums in explicit MPC, a Matlab toolbox called

munum is developed which can be used to export unum-based explicit MPC algo-

rithm in low-level C language code. For the implementation of explicit MPC in

C application, we developed a unum toolbox called cunum. The hardware specific

iii

iv

routines of unum arithmetic are developed in C and implemented on Field Pro-

grammable Gate Array (FPGA). The closed-loop simulation results of software

and real-time FPGA implementation are presented with anesthesia control prob-

lem. The memory comparisons (floating-point and unum) indicates that the total

memory footprint can be reduced by 80% without sacrificing the control perfor-

mance. Another advantage of the proposed approach is; that it can be applied on

top of other existing complexity reduction techniques.

Abstrakt

Spätnoväzbový prediktívny regulátor (MPC) je daný riešením parametrického kvadrat-

ického programovania, ktorý môže byť dopredu vypočítaný a uložený vo forme

vyhľadávacej tabuľky. Výpočtové nároky získania optimálnych akčných zásahov,

prostredníctvom zostrojenej vyhľadávacej tabuľky, sú následne znížené na jednoduché

vyhodnocovanie po častiach affinej funkcie. Dôsledkom takéhoto zníženia výpoč-

tových nárokov je možné implementovať MPC aj na jednoduchý riadiaci hardvér,

pri súbežnom dosahovaní rýchlej vzorkovacej frekvencie. Avšak jednou z hlavných

prekážok implementácie MPC, v jeho zmienenej explicitnej podobe, je pamäťová

náročnosť predpočítaného riešenia, ktoré je potrebné uložiť do riadiaceho hardvéru.

Z tohoto dôvodu je použiteľnosť explicitného MPC obmedzená na nízko-rozmerové

systémy, jednoduché ohraničenia a krátke predikčné horizonty.

Zameranie tejto práce preto spočíva v integrovanej implementácii pamäťovo

nízko náročných explicitných MPC regulátorov pre riadenie obmedzených lineárnych

systémov v reálnom čase. Je navrhnutá nová metóda na redukciu potrebnej pamäte

pre explicitné MPC regulátori. Technika je založená na kódovaní všetkých úda-

jov (t.j. kritických oblastí a zákonov o spätnej väzbe) pomocou univerzálnych

čísiel (unums), ktoré možno považovať za pamäťovo efektívnejšie rozšírenie normy

IEEE s pohyblivou desatinou čiarkou pre reprezentáciu reálnych čísel. Konkrétne

ukážeme, že dáta regulátora (vo forme štandardnej veličiny s pohyblivou desatinou

čiarkou), ktoré sa majú uložiť do hardvérovej pamäte, môžu byť nahradené formá-

tom unum, ktorý potrebuje menej bitov na ukladanie rovnakej hodnoty a získanie

presnejších odpovedí ako aritmetika s pohyblivou desatinou čiarkou. Keďže unum

potrebuje menej bitov na reprezentáciu čísla, šetrí pamäť a šírku pásma. Na rozdiel

od čísel s pohyblivou desatinou čiarou, kódovanie unum neumožňuje žiadne chyby

pri zaokrúhľovaní a nemôže pretekať alebo spadnúť.

v

vi

Pre aplikáciu aritmetiky unums, v kontexte explicitného prediktívneho riadenia,

bol v prostredí Matlabzostrojený balík s názvom munum, ktorý slúži na export ex-

plicitného MPC regulátora v tvare nízko-úrovňového jazyka C. Na vyhodnocovanie

aritmetiky unums v jazyku C bola vytvorená knižnica cunum. Hardvérové špecifické

rutiny unum aritmetiky sú vyvíjané v C a implementované na programovateľnom

hradlovom poli (FPGA). Výsledky simulácie uzavretého regulačného obvodu, soft-

véru a implementácie FPGA v reálnom čase, sú prezentované prostredníctvom

riadenia systému anestézie. Porovnávanie pamäte (s pohyblivým a nekonečným

bodom) ukázalo, že celkové použitie pamäte môže byť znížené o 80% bez toho,

aby sme ovplyvnili výkonnosť riadenia. Ďalšou výhodou navrhovaného prístupu je,

že môže byť použitý nad ostatnými existujúcimi technikami znižovania implemen-

tačnej zložitosti prediktívnych regulátorov MPC.

Contents

1 Introduction 1

1.1 Motivation . 1

1.2 Goals and Contributions of the Thesis 3

1.2.1 Reduction of Memory Footprints of Explicit MPC Controllers 3

1.2.2 Development and Implementation of Open-Source Toolboxes

for Low-Memory Controller 4

1.2.3 Testing of Developed Approaches on Anesthesia Control Prob-

lem . 4

1.3 Collaborations . 6

1.4 Organization of the Thesis . 7

2 Model Predictive Control 9

2.1 Introduction . 9

2.1.1 Concept of MPC . 11

2.1.2 Components of MPC . 12

2.2 MPC Formulations . 13

2.2.1 State Regulation MPC . 14

2.2.2 Reference Tracking MPC . 14

2.2.3 Integral Action in Reference Tracking MPC 15

2.2.4 State-Space Model . 16

2.2.5 Prediction . 17

2.2.6 QP Problem Formulation for State Regulation MPC 18

2.2.7 QP Problem Formulation for Reference Tracking with Inte-

gral Action . 22

2.3 Solving QP Problems in MPC . 29

vii

viii CONTENTS

2.4 Summary . 30

3 Explicit Model Predictive Control 31

3.1 Introduction . 31

3.1.1 Explicit MPC Concept . 32

3.2 MPC Problem as a Multi-Parametric QP Problem 32

3.2.1 Solution of mp-QP Problem 35

3.2.2 Properties of the mp-QP Problem 37

3.2.3 Multi-Parametric QP Algorithm 38

3.3 Point Location Algorithm . 39

3.4 Advantages and Disadvantages of Explicit MPC 41

3.5 Complexity . 42

3.5.1 An Overview of Complexity Reduction Techniques 43

3.6 Software Tools . 48

3.7 Problem Statement . 49

3.7.1 Memory Calculations . 50

3.7.2 Solution . 50

3.8 Summary . 51

4 Number System 53

4.1 Fixed-Point Number System . 54

4.1.1 Examples . 55

4.1.2 Advantages . 56

4.1.3 Disadvantages . 56

4.2 Floating-Point Number System . 56

4.3 The Floating-point Standard . 58

4.3.1 History . 58

4.3.2 Formats Defined In Standard 59

4.3.3 Ranges of FP Numbers . 61

4.3.4 Special Values . 62

4.3.5 Special Operations . 66

4.3.6 Exceptions . 66

4.3.7 Rounding . 69

4.3.8 Flag . 70

4.4 FP Arithmetic . 70

CONTENTS ix

4.4.1 Addition/Subtraction . 70

4.4.2 Multiplication . 72

4.4.3 Limitations of FP . 73

4.5 Interval Arithmetic . 74

4.5.1 Basic Terms and Concepts . 75

4.5.2 Relation, Width, Absolute Value, Midpoint 75

4.5.3 Operations of Interval Arithmetic 76

4.6 Summary . 76

5 Universal Numbers 79

5.1 Unum Format . 80

5.1.1 Environment . 81

5.1.2 Utag . 82

5.2 Type Conversion . 83

5.2.1 Exact Unum To Floating-Point Number 83

5.2.2 Inexact Unum to Floating-Point Number 84

5.3 Special Values in Unum Environment 86

5.4 No Overflow, No Underflow, and No Rounding 88

5.5 How Unum Saves Number of Bits? 88

5.6 The Vast Range of Unums . 89

5.7 Three Layers . 90

5.7.1 The Unum Layer (u-layer) . 90

5.7.2 The Math Layer . 92

5.7.3 The Human Layer (h-layer) 93

5.8 Unum Arithmetic . 93

5.8.1 Addition/Subtraction: . 93

5.8.2 Multiplication . 95

5.8.3 Compare Operator: . 96

5.9 Summary . 97

6 Embedded Implementation 99

6.1 MATLAB Toolbox . 100

6.1.1 Unum Arithmetic in MATLAB 100

6.1.2 Unum-based EMPC using munum Toolbox 104

6.2 C/C++ Toolbox . 107

x CONTENTS

6.2.1 Math and Logical Operations 107

6.2.2 Unum-based EMPC using cunum Toolbox 107

6.3 FPGA Toolbox . 109

6.3.1 Introduction to FPGA Devices 109

6.3.2 Hardware Design Flow . 112

6.3.3 Tools and Resources . 114

6.3.4 Unum-based EMPC on FPGA 116

6.4 Summary . 119

7 Case Study and Results 121

7.1 Compartmental Models . 123

7.1.1 Pharmacokinetic Modeling 123

7.1.2 Pharmacodynamic Modeling 127

7.2 Drug Delivery in Anesthesia Control 129

7.2.1 Open-Loop . 130

7.2.2 Target Controlled Infusion (TCI) 130

7.2.3 Closed-Loop . 130

7.3 Problem Set-up . 131

7.3.1 Control Objective . 131

7.3.2 MPC Problem Set-up . 131

7.4 Simulation Results: C Implementation 132

7.4.1 Controller Complexity . 133

7.4.2 Execution Time and Optimality 136

7.5 HIL Co-Simulation Results: FPGA Implementation 138

7.5.1 Floating-point Explicit MPC 138

7.5.2 Unum-based Explicit MPC 140

7.5.3 Memory Comparison . 140

7.5.4 On-chip Memory and Cost Relationship 141

7.5.5 Resource Utilization . 144

7.6 Summary . 146

8 Conclusions and Future Research Directions 147

8.1 Conclusions . 147

8.2 Future Research Directions . 148

Appendix A Author’s Publications 151

CONTENTS xi

Appendix B Curriculum Vitae 155

Bibliography 158

xii CONTENTS

List of Figures

2.1 Characteristic behavior of a receding horizon control policy. 11

2.2 Basic structure of model predictive control. 12

3.1 Explicit model predictive control scheme. 34

3.2 The idea of point location algorithm in EMPC. 40

4.1 Representation of IEEE 754 half, single, double, and quad precision

floating-point format with three sub-fields. 62

5.1 General representation of the universal number format with six sub-

fields. 80

6.1 Basic arithmetic and logical functions available in munum toolbox. . . 103

6.2 Design flow of unum-based explicit MPC using munum toolbox. . . . 105

6.3 Design flow of unum-based explicit MPC using cunum toolbox. . . . 108

6.4 FPGA architectures, where arrays of logic blocks are surrounded by

a ring of input/output blocks, connected together via interconnect. . 110

6.5 FPGA design flow. 113

6.6 Development flow of unum-based EMPC on FPGA. 117

6.7 Design flow of unum-based EMPC on FPGA. 118

6.8 HIL co-simulation setup built by PROTOIP using the Xilinx Vivado

FPGA tool chain. 119

7.1 Three-compartment pharmacokinetic model with the effect-site com-

partment. 124

xiii

xiv LIST OF FIGURES

7.2 Three-compartment pharmacokinetic model with the effect-site com-

partment and pharmacodynamic model. 128

7.3 BIS scale to indicate the level of DoA in the patients. 129

7.4 Block diagram of the target controlled infusion system. 130

7.5 Schematic view of a closed-loop control scheme for drug delivery in

anesthesia. 131

7.6 Response of effect-site concentration and corresponding drug input

rate controlled by explicit MPC. 134

7.7 Response of measured BIS, MAP, and HR for BIS reference tracking. 135

7.8 Comparison of BRAM utilization for floating-point and unum-based

explicit MPC with different prediction horizons. 142

7.9 Prediction of embedded memories on the die area of a typical SoC

devices. 143

7.10 Picture of silicon wafer showing working (good) and non-working

(bad) die. (Source: www.neogaf.com) 144

7.11 Trade-off parameters of explicit MPC implementation of FPGA. (Re-

sources is sum of DSP, FF, and LUT.) 145

List of Tables

3.1 Applications of EMPC. 33

4.1 Main parameters of the formats specified by the IEEE 754 standard. 63

4.2 Main parameters of the formats specified by the IEEE 754 standard. 64

4.3 IEEE 754 Standard Special Values. 65

4.4 Results of Special Operations. 66

5.1 Features and values of the unum format for env{3, 2} 86

5.2 Features and values of the unum format for env{3, 4} and env{2, 2}. 87

5.3 Unums features for env{2, 2}, {3, 4}, and {4, 5} selected to match

IEEE FP formats (half, single and double precision). 91

5.4 Rules for adding the left endpoints in the g-layer. 94

5.5 Rules for adding the right endpoints in the g-layer. 95

5.6 Rules for multiplying the left endpoints in the g-layer. 96

5.7 Rules for multiplying the right endpoints in the g-layer. 96

7.1 Pharmacokinetic parameter values given as a function of patient’s

age(years) and BW(Kg)(Schüttler and Ihmsen, 2000). 125

7.2 Performance comparison of floating-point based explicit MPC for

different prediction horizons. 133

7.3 Comparison of memory footprints between double precision floating-

point and universal number-based explicit MPC. 137

7.4 Comparison of execution-time taken by floating-point (64-bit) and

universal number-based-explicit MPC. 139

7.5 Comparison of optimal values obtained by floating-point (64-bit) and

universal number-based explicit MPC. 140

xv

xvi LIST OF TABLES

7.6 Comparison of memory taken by floating-point (64-bit) and univer-

sal number based-explicit MPC. 141

7.7 Comparison of resources utilized for floating-point and unum-based

explicit MPC implementation of ZedBard. 145

List of Acronyms

ALU Arithmetic Logic Unit

BIS Bispectral Index

BRAM Block RAM

BW Body Weight

CFTOC Constrained Finite-Time Optimal Control

CLB Configurable Logic Block

cunum C/C++ -based Unum Toolbox

DoA Depth of Anesthesia

DSP Digital Signal Processor

EEG Electroencephalography

EMPC Explicit MPC

FF Flip-Flop

FP Floating-Point

FPGA Field Programmable Gate Array

HDL Hardware Description Language

HIL Hardware-In-the-Loop

HR Heart Rate

xvii

xviii List of Acronyms

IEEE Institute of Electrical and Electronics Engineers

ISE Integrated Square Error

KKT Karush–Kuhn–Tucker

LP Linear Programming

LTI Linear Time-Invariant

LUT Look-Up Table

MAP Mean Atrial Pressure

MIMO Multi-Input Multi-Output

mp-QP multi-paramtric Quadratic Programming

MPC Model Predictive Control

MPT Multi-Paramteric Toolbox

munum Matlab-based Unum Toolbox

OSQP Operator Splitting Quadratic Programming

PD Pharmacodynamic

PID Proportional–Integral–Derivative

PK Pharmacokinetic

PLA Point Location Algorithm

PLC Programmable Logic Controller

POP Paramteric Optimization

PWA Piecewise Affine

QP Quadratic Programming

RHC Receding Horizon Control

SIL Software-In-the-Loop

xix

SISO Single-Input Single-Output

SoC System on-Chip

unum Universal Number

Chapter 1

Introduction

“Prediction is very difficult, especially if it’s about the future.”

Niels Bohr (1885 - 1962)

The aim of this thesis is to develop and implement low-memory explicit Model

Predictive Controller (MPC) using Universal Numbers (unums). The thesis is

accompanied with open-source toolboxes for unum-based arithmetic and explicit

MPC. The toolboxes are Matlab-based unum toolbox called munum, C/C++ -based

unum toolbox called cunum and the FPGA specific unum implementation. The

main focus of this thesis is to reduce memory complexity of explicit MPC problems

which are excluded due to the high complexity of resulting control laws.

1.1 Motivation

Model predictive control is a modern control technology that enjoys great success

in process industries and in academia, due to its ability to control Multi-Input

Multi-Output (MIMO) systems with constraints. However, limitations on compu-

tational efficiency (to solve an on-line optimization problem at each time step) has

restricted the application range. This has lead to a substantial efforts to develop

hardware specific optimization solvers that have more attractive on-line computa-

tional properties than nominal solvers typically implemented on computers, laptops,

and servers.

Generally, real-time control applications are controlled by well-know Propor-

1

2 CHAPTER 1. INTRODUCTION

tional–Integral–Derivative (PID) controller implemented on embedded hardware

like Programmable Logic Controller (PLC), Field Programmable Gate Array (FPGA),

Digital Signal Processor (DSP), and microcontroller. Embedded hardware could

also be preferred because of power supply limitations, limited space, reliability,

crucial real-time, and safety requirements. MPC has capabilities beyond PID con-

troller to increase profit and reduce overall operating cost. However, the com-

putational efficiency becomes even more significant when dealing with embedded

platforms that have limited resources (memory, speed, and power) and one have

no flexibility to replace or extend the available hardware. The first motivation is

therefore to implement explicit MPC algorithm on hardware. This would create

base for further improvements in implementation.

In explicit MPC, the optimal control law is pre-computed off-line as a function

of all possible initial states and stored in the form of Look-Up Table (LUT) for on-

line evaluation to obtain optimal control action. There are two main limitations of

explicit MPC. First, the storage requirements of pre-computed off-line data grows

exponentially with respect to the number of constraints in MPC problems. Second,

as the controller complexity grows, the worst case computation time may rise above

a practical value, thereby eliminating it as a viable choice in a real-time system.

To tackle with these limitations, an effort has been made to reduce the com-

plexity of explicit MPC which is mainly focused on two distinct directions: first,

how to make the feedback law simple; second, how to reduce the amount of bits

required to store LUT data with the prescribed accuracy; this direction is less ad-

dressed in literature. To make simpler feedback laws an approximation techniques

have been proposed by many researchers. However, those techniques leads to a

simpler approximate suboptimal solution which is unacceptable in some practical

applications. Moreover, the common thing among all the existing techniques is that

the controller data is stored in the form IEEE-754 floating-point numbers (single

and double precision). The bit size of numbers is thus constant regardless of the

values they store. Here comes the second motivation that to reduce number of bits

required to store each number in the LUT while maintaining the original properties

of the controller. This allows one to use explicit MPC for a number of systems that

would otherwise be excluded due to the high complexity of the resulting explicit

controllers due to the lack of available memory or powerful computing devices to

make point location algorithms faster.

The final motivation is that bit reduction technique can be used on the top

1.2. GOALS AND CONTRIBUTIONS OF THE THESIS 3

of existing optimization solvers that are used for general purposes and embedded

MPC. First order optimization methods would get benefit of high accuracy and

hybrid explicit MPC would reduce memory.

1.2 Goals and Contributions of the Thesis

This section describes the goals of thesis and our contributions towards fulfilling

set goals as follows:

1.2.1 Reduction of Memory Footprints of Explicit MPC Con-

trollers

In explicit MPC one needs to store all the floating-point numbers associated with

the critical regions and control laws in the form of LUTs. The size of LUTs decide

the amount of memory required to store given controller. Embedded hardware

often comes with kilobyte (kB) to megabyte (MB) of on-chip memory which is

insufficient to store large LUTs and due to this issue the applicability of explicit

MPC has been restricted to the small systems. One of the main goal of this thesis

is to develop low-memory explicit MPC controller which will reduce the amount of

memory required on the target hardware.

One of the main contribution of this thesis is to present a novel way of memory

reduction in explicit MPC. The procedure is based on encoding all data (i.e., the

critical regions and the feedback laws) as Universal Numbers (Unums) (see, Chap-

ter 5), which can be viewed as a memory-efficient extension of IEEE floating-point

standard (see, Chapter 4). Since there is a one-to-one correspondence between

floating-point numbers and their unum representation, the unum-based control law

exhibits the same properties (e.g., control performance, closed-loop stability, and

constraint satisfaction) as the floating-point-based controller. Main results of the

proposed approach are presented in the Chapter 7 and reported in the following

article:

• Ingole D., Kvasnica M., De Silva H., Gustafson J., “Reducing Memory Foot-

prints in Explicit Model Predictive Control using Universal Numbers”, In

Preprints of the 20th IFAC World Congress, IFAC, Toulouse, France, vol. 20,

pp. 12100-12105, 2017.

4 CHAPTER 1. INTRODUCTION

1.2.2 Development and Implementation of Open-Source Tool-

boxes for Low-Memory Controller

There are several state-of-the-art software tools available for the constriction and

export of explicit MPC control laws. Existing software tools for explicit MPC con-

struction are Multi-Parametric Toolbox (MPT), Parametric Optimization (POP)

toolbox and hybrid toolbox. All these toolboxes export critical regions and con-

trol laws in the form of LUTs comprised of IEEE floating-point numbers which

needs more memory. Therefore, the goal of this thesis is to develop software tools

for the export of unum-based explicit MPC and implement exported controller on

embedded hardware. Specifically, our goal is to develop open-source Matlab and

C/C++ toolboxes for unum arithmetic, explicit MPC, and its implementation on

Xilinxs FPGA.

Next contribution of this thesis is the development of munum (Matlab toolbox)

and cunum (C/C++ toolbox) for universal number format and its arithmetic for

general purpose use which can be used to develop any algorithm incorporating

unum idea. The munum toolbox provides a functionality to export unum-based

explicit MPC algorithm in low-level C language which can be deployed on PLC,

FPGA, and microcontroller with the help of developed cunum toolbox for unum

arithmetic. To this end, these toolboxes are applied and tested on linear MPC and

hybrid MPC using explicit solutions. The functionality of munum and cunum and

FPGA implementation of unum-based explicit MPC presented in Chapter 6.

1.2.3 Testing of Developed Approaches on Anesthesia Con-

trol Problem

The final goal of this thesis is to test and validate developed low-memory unum-

based explicit MPC approach on anesthesia control problem where the objec-

tive is to test closed-loop performance, run-time, and memory complexity. De-

veloped unum toolboxes in Matlab and C/C++ will be tested via Software-In-

the-Loop (SIL) approach where controller and plant/model will be in Matlab or

C/C++ application. The implemented unum-based explicit MPC on FPGA will be

tested via Hardware-In-the-Loop (HIL) co-simulation approach where controller

will be on FPGA and plant/model will be in Matlab.

The results of unum-based explicit MPC (implemented using developed tool-

1.2. GOALS AND CONTRIBUTIONS OF THE THESIS 5

boxes (munum, cunum)) for anesthesia and double integrator control problem are

reported in the following article:

• Ingole D., Kvasnica M., De Silva H., Gustafson J., “Low-Memory Explicit

Model Predictive Controller using Universal Numbers”, Draft is ready for sub-

mission to IEEE Transactions on Control Systems Technology, IEEE, 2017.

Unum arithmetic and explicit MPC algorithm is implemented on FPGA and

tested on anesthesia control problem (see, Chapter 7). The proposed explicit MPC

algorithm stores LUT data in less bits and gives better accuracy and precision

as compared to that of floating-point format-based algorithm. The results of this

work will be appeared in the following article:

• Ingole D., Kvasnica M., Kerrigan E, Khusainov B., De Silva H., Gustafson

J., “FPGA Implementation of Memory Efficient Explicit Model Predictive

Controller using Universal Numbers”, Draft is under preparation for the sub-

mission to IEEE Transactions on Control Systems Technology, IEEE, 2017.

Apart from the explicit MPC we employed developed C/C++ toolbox in the im-

plementation of hybrid MPC for the anesthesia and hybrid vehicle control problem,

the results of which will be appear in the following article:

• Naik V., Ingole D., Kvasnica M., Bemporad A., De Silva H., Gustafson

J., “Embedded Mixed-Integer Quadratic Programming using Universal Num-

bers”, Draft is under preparation for the submission to IEEE Transactions

on Control Systems Technology, IEEE, 2017.

Other contributions are the embedded implementation of unum-based general

purpose Operator Splitting Quadratic Programming (OSQP) solver using C/C++

language and floating-point number-based explicit MPC for anesthesia control prob-

lem which is published in the following articles:

• Ingole D. and Kvasnica M., “FPGA Implementation of Explicit Model Pre-

dictive Control for Closed Loop Control of Depth of Anesthesia”, In Preprints

of the 5th Conference on Nonlinear Model Predictive Control, IFAC, Seville,

Spain, pp. 484–489, 2015.

• Ingole D., Holaza J., Takács B., and Kvasnica M., “FPGA-Based Explicit

Model Predictive Control for Closed-Loop Control of Intravenous Anesthe-

6 CHAPTER 1. INTRODUCTION

sia”, In Proceedings of the 20th International Conference on Process Control,

IEEE, Štrbské Pleso, Slovakia, pp. 42-47, 2015.

The author has also participated in research covering other areas of control

system, however, the results of that work are not included in this thesis. Specifically,

the implementation of model predictive control schemes has been explored and the

results of that are published/submitted in:

• Ingole D., Drgoňa J., Kalúz, M., Klaučo, M., Bakošová, M., Kvasnica M.,

“Model Predictive Control of a Combined Electrolyzer-Fuel Cell Educational

Pilot Plant”, In Proceedings of the 21th International Conference on Process

Control, IEEE, Štrbské Pleso, Slovakia, pp. 142-154, 2017.

• Ingole D., Drgoňa J., and Kvasnica M., “Offset-Free Hybrid Model Predic-

tive Control of Bispectral Index in Anesthesia”, In Proceedings of the 21th

International Conference on Process Control, IEEE, Štrbské Pleso, Slovakia,

pp. 422-427, 2017.

• Dani S., Sonawane D., Ingole D., and Patil S., “Performance Evaluation

of PID, LQR and MPC for DC Motor Speed Control”, In Proceedings of

International Conference for Convergence in Technology (I2CT), IEEE, Pune,

India, pp. 1-7, 2017.

• Ingole D., Drgoňa J., Kalúz, M., Klaučo, M., Bakošová, M., Kvasnica M.,

“Explicit Model Predictive Control of a Fuel Cell”, In The European Confer-

ence on Computational Optimization, Leuven, Belgium, vol. 4, 2016.

• Sonawane D., Ingole D., and Naik V., “FPGA implementation of linear

model predictive controller for real-time position control of DC motor”, In-

ternational Journal of Circuits and Architecture Design, Inderscience, vol. 1,

issue 4, pp. 281-294, 2015.

Full publication list of the author can be found in the Appendix A, which also

includes publications related to this thesis as well as other research work.

1.3 Collaborations

During the journey of this thesis, we collaborated with following universities.

1.4. ORGANIZATION OF THE THESIS 7

1. National University of Singapore: With the department of Computer Science

we have been working on developing unum arithmetic for control algorithms.

2. University of Oxford, United Kingdom: In collaboration with Control group

we implemented universal number format-based Operator Splitting Quadratic

Programming (OSQP) solver in C/C++ language. Also, the C++ wrapper

were developed to used unums on the top of existing algorithms. This work

is described in detailed in Section 6.2.

3. Imperial College London, United Kingdom: With the Control and Power

group we worked on FPGA implementation of unum-based explicit MPC

algorithm. The work of FPGA implementation is presented in Section 6.3.

4. IMT School for Advanced Studies Lucca, Italy: With Dynamical Systems,

Control, and Optimization research unit we worked on C implementation of

universal numbers for hybrid explicit MPC.

1.4 Organization of the Thesis

The thesis consists of eight chapters including this introductory chapter. Introduc-

tion to the model predictive control concept and its different formulations used in

control application and short discussion about the on-line optimization methods are

given in Chapter 2. The next Chapter 3 discusses concept of explicit MPC, point

location algorithms, overview of the complexity reduction techniques, and problem

statement. The idea of universal numbers lies on the floating-point standard. So,

understanding the floating-point format is important to understand unum idea. In

Chapter 4, the introduction of number systems, IEEE floating-point standard and

its arithmetic, and interval arithmetic is given. The idea of universal numbers and

its arithmetic is discussed in Chapter 5. Chapter 6 is devoted to the software and

FPGA implementation of unum toolboxes developed in Matlab, C/C++ , and

FPGA platforms. Applicability of unums is demonstrated with anesthesia control

problem in Chapter 7. Conclusions are drawn in Chapter 8 with some notes on

future research directions.

8 CHAPTER 1. INTRODUCTION

Chapter 2

Model Predictive Control

2.1 Introduction

Model Predictive Control (MPC) is a well-known family of control algorithms which

has made a significant impact on process industries where it proved to be highly

successful in comparison with alternative methods of multi-variable control for

its capability to take into account the operating constraints on input and output

variables. Its remarkable success in the process industries is mainly due to its ability

to handle Multi-Input Multi-Output (MIMO) systems with slow dynamics and

constraints on process variables. The MPC research literature is large, but review

papers have appeared at regular intervals. Introduction to the concept of MPC can

be found in Muske and Rawlings (1993), Rawlings (2000). The properties of MPC

are described in Mayne et al. (2000), de Oliveira and Biegler (1994). Theoretical

and practical issues associated with MPC technology are summarized in Mayne

et al. (2000), Maasoumy et al. (2014), Zong et al. (2017), Forbes et al. (2015). The

great success of MPC in the process industries is well described in Qin and Badgwell

(2003), Hrovat et al. (2012). Several papers describe the variant of MPC algorithms

such as linear MPC (Muske and Rawlings, 1993), non-Linear MPC (Findeisen and

Allgöwer, 2002), explicit (Bemporad et al., 2000), (Bemporad et al., 2002) MPC,

and hybrid MPC (Borrelli et al., 2015), (Lazar, 2006).

MPC is commonly applied to large systems with slow dynamics, but recently

with the increase of computational power and the development of new algorithms

that is more efficient, systems with faster dynamics are being targeted to be

9

10 CHAPTER 2. MODEL PREDICTIVE CONTROL

controlled by predictive methods. In the last few years, research has been di-

rected to develop fast MPC algorithms intended for embedded implementation see,

e.g., Wang and Boyd (2010), Johansen (2014), Jones and Kerrigan (2015).

A more recent overview of MPC theory development can be found in Mayne

(2014). Moreover, several excellent books (Maciejowski, 2002), (Rossiter, 2003),

(Kwon and Han, 2006), (Wang, 2009), (UNE and Pannek, 2011), (Camacho and

Alba, 2013) and review papers (Bemporad, 2006), (Lee, 2011), (Christofides et al.,

2013), (Yu-Geng et al., 2013) have appeared recently.

Model predictive control is a control strategy that offers attractive solutions

for the control of constrained linear or non-linear systems and, more recently, also

for the control of hybrid systems. MPC is an optimal control method, where the

control action is obtained by solving a Constrained Finite-Time Optimal Control

(CFTOC) problem for the current state of the plant at each sampling time. The

sequence of optimal control inputs is computed for a predicted evolution of the

system model over a finite-time horizon. However, only the first element of the

control sequence is applied, and the state of the system is then measured again

at the next sampling time. This so-called Receding Horizon Controller (RHC)

introduces feedback to the system, thereby allowing for compensation of potential

modeling errors or disturbances acting on the system (Borrelli et al., 2015, Chapter

13). While the basic idea of MPC is well-established, there exist many variants for

guaranteeing closed-loop feasibility, stability, robustness or reference tracking.

Despite the early implementation of MPC, its computational complexity has

restricted it to process industry, where slow dynamics is dominant. The successive

improvements in electronic systems which led to higher computation capabilities

opened the door for application of MPC to systems with faster dynamics to the

degree that it could be used for embedded systems that require advanced control

strategies (Johansen, 2014).

The success of MPC technology as a process control strategy can be attributed

to three significant factors (Qin and Badgwell, 2000).

• The incorporation of an explicit process model into the control optimization.

This allows the controller, in principle, to deal directly with all significant

features of the process dynamics.

• The MPC algorithm considers plant behavior over a future horizon in time.

Effects of measured and unmeasured disturbances can be predicted and elim-

2.1. INTRODUCTION 11

inated.

• MPC considers process input, state, and output constraints directly in the

optimization problem. It means, that constraint violations are far less likely,

resulting in tighter control at the optimal constrained steady-state for the

process. It is the inclusion of constraints that most clearly distinguishes

MPC from other process control strategies.

2.1.1 Concept of MPC

Nevertheless, all MPC algorithms have in common the same control structure. The

current control signal is obtained by solving a finite horizon open-loop optimal con-

trol problem in receding horizon fashion as stated above. Fig. 2.1 shows the basic

principle of MPC

Past Future

Prediction horizon

Sample

Legends

Reference trajectory
Predicted output
Measured output

Implemented inputs
Predicted inputs
Current input

k k + 1 k + 2 k + 3 . . . N − 1

Figure 2.1: Characteristic behavior of a receding horizon control policy.

Step 1: The predicted future outputs by ŷk; k = 1, . . . , N , for the prediction hori-

zon are calculated at each instant k using the process model. These depend upon

the known values up to instance k (past inputs and outputs), including the current

output (initial condition) y(t) and on the future control signals uk; k = 0, . . . , N−1,

to be calculated.

12 CHAPTER 2. MODEL PREDICTIVE CONTROL

Step 2: The sequence of future control signals is computed to optimize a per-

formance criterion, often to minimize the error between a reference trajectory rk

and the predicted process output. Usually, the control effort is included in the

performance criterion.

Step 3: Only the current control signal uk is transmitted to the process. At the

next sampling instant k := k + 1, yk+1 is measured and step 1 is repeated and

all sequences brought up to date. Thus uk+1 is then calculated using the receding

horizon concept, since the prediction horizon remains of the length as before, but

slides along by one sampling interval at each step.

The resulting controller is referred to a receding horizon controller. A receding

horizon controller where the finite-time optimal control law is computed by solving

an optimization problem on-line is usually referred to as MPC.

2.1.2 Components of MPC

The structure of MPC is illustrated in Fig. 2.2 and below its main components are

described.

Optimizer Plant Model
Input (u⋆(t)) Outputs (y(t))

Measuresments (x(t))

Reference (r(t))

Past Inputs

and OutputsConstraints

Cost

Function

Figure 2.2: Basic structure of model predictive control.

• System model and predictions

The modeling stage in MPC design is one of the most important activi-

ties. The plant model can be used to predict the future trajectories of the

plant outputs for a given sequence of future control signals. The simplest

2.2. MPC FORMULATIONS 13

model that gives accurate enough predictions is usually best. Accurate

enough is ill-defined, but practice predictions can often be 10− 20% out

is steady-state and still be highly effective as long as they also capture

major dynamic changes in transit. Also, small modeling errors can be

corrected by feedback control.

• Control problem and MPC formulation

This is an important part which usually requires practical experiences.

Sometimes, it is difficult to even identify what should be controlled and

optimized. We have to know all the basic properties and limitations of

MPC at this stage.

• Optimization problem

The last step is a translation of the MPC control problem to a numerical

optimization problem. It determines the future control signal such that

the objective function is minimized. The optimization may also account

for constraints on the process inputs and the process outputs.

2.2 MPC Formulations

When formulating the optimization problem in MPC, it is important to ensure that

it can be solved in the one sampling instant. For that reason, the optimization

problem is typically formulated into one of two standard forms:

1. Linear programming: In this formulation, both the objective function and

the constraints are linear. One can formulate the LP in a way that minimizes

the maximal deviation from the desired trajectory; this formulation is usually

called a robust MPC.

2. Quadratic programming: In QP formulation, the objective function is quadratic,

whereas the constraints have to be linear.

We will focus on the QP formulation since the quadratic penalization can be more

expressive than the linear one. A linear formulation penalizes large errors more

and additionally provides a deadband in the controller. In the following, we will

describe how to formulate MPC problem as a QP optimization problem considering

different objective functions.

14 CHAPTER 2. MODEL PREDICTIVE CONTROL

2.2.1 State Regulation MPC

We start by designing a controller to take the state of a deterministic, linear system

to the origin. If the reference is not the origin, or we wish to track a time-varying

reference trajectory, we will subsequently make modifications of the zero reference

problem to account for that. Considering the system state dynamics, most basic

control problem formulation using squared Euclidean norm (‖ · ‖2) can be written

as follows

min
U

xT
N P xN +

N−1∑

k=0

xT
k Qxk + uT

k Ruk (2.1a)

s.t. xk+1 = Axk + Buk, k = 0, . . . , N − 1, (2.1b)

xk ∈ X , k = 0, . . . , N − 1, (2.1c)

uk ∈ U , k = 0, . . . , N − 1, (2.1d)

xN ∈ Xf , (2.1e)

x0 = x(t), (2.1f)

where P, Q and R are the weighting matrices with conditions Q = QT � 0 and

P = P T � 0 to be positive semi-definite and R = RT ≻ 0 to be positive definite, N

is the prediction horizon, xk+1 is the vector of predicted states based on prediction

model (2.1b), U = {u0, . . . , uN−1} ∈ R
nuN×nuN is the sequence of control actions,

and X ,U , and Xf are the polyhedral constraint sets.

2.2.2 Reference Tracking MPC

Formulation of MPC control problem in (2.1) is one of the standard formulation

which handles an only regulation problem. Using such controller, we can regulate

the system toward its origin, i.e., to a zero state. When tracking of non-zero

references need to be achieved (which is needed in a vast majority of a control

application in industry), a modified cost function must be considered. For the

reference tracking MPC problem it is necessary to extend system model (2.2b) to

full state-space model by adding output dynamics (2.2c). The control problem

2.2. MPC FORMULATIONS 15

formulation for output tracking MPC is of as follows

min
U

N−1∑

k=0

(yk − rk)T
Q (yk − rk) +

N−1∑

k=0

uT
k Ruk (2.2a)

s.t. xk+1 = Axk + Buk, k = 0, . . . , N − 1, (2.2b)

yk = Cxk + Duk, k = 0, . . . , N − 1, (2.2c)

xk ∈ X , k = 0, . . . , N − 1, (2.2d)

yk ∈ Y, k = 0, . . . , N − 1, (2.2e)

uk ∈ U , k = 0, . . . , N − 1, (2.2f)

x0 = x(t), (2.2g)

where rk is the time-varying reference and Y is the output constraint set.

2.2.3 Integral Action in Reference Tracking MPC

The majority of industrial control systems have integral action (e.g., PID con-

trollers). This integral functionality has also been embedded in the predictive

control systems in conjunction with system model to achieve offset-free tracking.

The integral action uses the deviation of current and past measured output val-

ues relative to the desired state, to bias the discrete-time model predictions until

they converge upon their corresponding measured values. This method has been

demonstrated to be effective in providing offset-free tracking in the presence of

plant model mismatch (Maeder et al., 2009). In the following control problem for-

mulation, we are penalizing tracking error yk − rk, which we require to converge

to zero, along with increments of the control action, denoted by ∆u. This ∆u is

defined as a difference between current value of control action and previous one,

formally, ∆uk = uk − uk−1. When the reference is reached, thus the system is in

steady state, also the control action is not changing, thus ∆uk = 0. As a conse-

quence, the objective function is equal to zero. The mathematical formulation is

16 CHAPTER 2. MODEL PREDICTIVE CONTROL

as follows

min
U

N−1∑

k=0

(yk − rk)T
Q (yk − rk) +

N−1∑

k=0

∆uT
k R∆uk (2.3a)

s.t. xk+1 = Axk + Buk, k = 0, . . . , N − 1, (2.3b)

yk = Cxk + Duk, k = 0, . . . , N − 1, (2.3c)

∆uk = uk − uk−1, k = 0, . . . , N − 1, (2.3d)

xk ∈ X , k = 0, . . . , N − 1, (2.3e)

yk ∈ Y, k = 0, . . . , N − 1, (2.3f)

uk ∈ U , k = 0, . . . , N − 1, (2.3g)

∆uk ∈ ∆U , k = 0, . . . , N − 1, (2.3h)

u−1 = u(t− 1), (2.3i)

x0 = x(t). (2.3j)

The term integral control action originates from the definition of ∆uk as a discrete-

time integrator. Let us rewrite (2.3h) into following form

uk = uk−1 + ∆uk =⇒ uk+1 = uk + ∆uk+1, (2.4)

such form resembles dynamical system with integrating behavior. It is to be no-

tated that with this formulation we can not ensure offset-free controller if there is

model mismatch. To deal with the model mismatch case we can design observer

by augmenting plant model (2.3b)-(2.3c) with a disturbance model in order to

capture the mismatch between actual plant and it’s model in steady state. The

detailed procedure to design observer can be found in Pannocchia and Rawlings

(2003), Mohammadkhani et al. (2014), Borrelli et al. (2015)[Chapter 13].

To formulate above MPC problems we will need system model and its prediction

over finite-time horizon. In the next sections, we will describe common components

used in all formulations such as state-space model and prediction.

2.2.4 State-Space Model

As described in the Section 2.1.2, a mathematical model of the plant is one of the

main components of MPC which allows MPC algorithm to predict future move-

ments and react accordingly to the future measurements or estimations. We con-

sider the discrete-time Linear Time-Invariant (LTI) state space model of the type

2.2. MPC FORMULATIONS 17

xk+1 = Axk + Buk, (2.5a)

yk = Cxk + Duk, (2.5b)

where x(t) ∈ R
nx is the system state vector, u(t) ∈ R

nu is the system input vector

and y(t) ∈ R
ny is the system output vector, moreover, A ∈ R

nx×nx , B ∈ R
nx×nu ,

C ∈ R
ny×nx and D ∈ R

ny×nu are system matrices with the assumption that

pair (A, B) is stabilizable and (C, A) is detectable. The k ∈ N
0 denotes absolute

discrete time. Full state measurement and no disturbances or model uncertainty

are assumed, unless explicitly specified.

2.2.5 Prediction

The future response of the controlled plant is predicted using a dynamic model (2.5).

Let us consider the state dynamics in the system given by (2.5a). Assume that the

whole state vector is measured, so that x̂k = xk. Also, assume that we know

nothing about any disturbances or measurement noise. Then the predicted state

sequence (over a time-interval, from 1 to k) generated by the linear state-space

model (2.5a) with input sequence uk can be written as

x1 = Ax0 + Bu0, (2.6a)

x2 = Ax1 + Bu1, (2.6b)

= A (Ax0 + Bu0) + Bu1,

= A2x0 + ABu0 + Bu1,

x3 = Ax2 + Bu2, (2.6c)

= A
(
A2x0 + ABu0 + Bu1

)
+ Bu2,

= A3x0 + A2Bu0 + ABu1 + Bu2,

...

xk = Akx0 +
k−1∑

j=0

(
Ak−1−jB

)
uj . (2.6d)

Predictive control uses prediction of system evolution over some finite horizon for

a decision of optimal control strategy. The prediction is parametrized by currently

measured or estimated state xk. The state predictions xk+1 along the prediction

18 CHAPTER 2. MODEL PREDICTIVE CONTROL

horizon N can be formulated as

X = Ψx0 + ΥU, (2.7)

with Ψ ∈ R
nx(N+1)×nx and Υ ∈ R

nx(N+1)×nu , (2.7) can be summarized as















x0

x1

x2

x3

...

xN















︸ ︷︷ ︸

X

=















I

A

A2

A3

...

AN















︸ ︷︷ ︸

Ψ

x0+















0 0 0 0 . . . 0

B 0 0 0 . . . 0

AB B 0 0 . . . 0

A2B AB B 0 . . . 0
...

...
...

...
. . .

...

AN−1B AN−2B AN−3B AN−4B . . . B















︸ ︷︷ ︸

Υ















u0

u1

u2

u3

...

uN−1















︸ ︷︷ ︸

U

.

(2.8)

In the following sections we will use state predictions (2.7) in different types of

MPC formulations.

2.2.6 QP Problem Formulation for State Regulation MPC

In this type of problem formulation, the goal is to regulate system states to the

origin without violating the imposed constraints. Let us consider the system model

described in Section 2.2.4 and state predictions described in Section 2.2.5.

Cost Function

The set of control increments is calculated by minimizing an objective function for

a prediction horizon. Consider the objective function described in (2.1a) which can

be simplified as follows

min
U

J(U, x0) = xT
N P xN + XT QX + UT RU, (2.9)

where the weighting matrices Q and R are diagonal matrices with dimensions

R
nxN×nxN and R

(nuN)×(nuN), respectively. The terminal cost matrix P ∈ R
nx×nx

is solution of the associated algebraic Riccati equation (Borrelli et al., 2015, Chap-

ter 9). Taking the 2-norm of (2.1a) we can get

min
U

J(U, x0) = XT QX + UT RU. (2.10)

2.2. MPC FORMULATIONS 19

Substitute (2.7) in to (2.10), we get

XT QX + UT RU = (Ψx0 + ΥU)T
Q (Ψx0 + ΥU) + UT RU, (2.11a)

= (Ψx0)T
QΨx0 + (Ψx0)T

QΥU + (ΥU)T
QΨx0+ (2.11b)

(ΥU)T
QΥU + UT RU,

= UT ΥT QΥU + UT RU + 2xT
0 ΨT QΥU + xT

0 ΨT QΨx0, (2.11c)

= UT HU + 2xT
0 FU + xT

0 V x0, (2.11d)

where the matrix H , vector F , and constant V are given by

H = ΥT QΥ + R, (2.12a)

F = ΨT QΥ, (2.12b)

V = ΨT QΨ. (2.12c)

Unconstrained QP formulation of state regulation MPC (2.10) can be written as

J⋆(x0) = min
U

{
UT HU + 2xT

0 FU
}

+ xT
0 V x0. (2.13)

The optimization problem in (2.13) can be written in to the following standard

QP form

J⋆(x0) = min
U

{

1
2

UT HU + xT
0 FU

}

+
1
2

xT
0 V x0. (2.14)

Solution of Unconstrained Optimization QP Problem

In the absence of constraints, the optimization U⋆(x0) = J⋆(x0) has a closed-form

solution which can be derived by considering the gradient of J with respect to U

∇U J = 2Hu + 2Fx0. (2.15)

Clearly,∇U J = 0 must be satisfied at a minimum point of J , and since H is positive

definite, any U such that ∇UJ = 0 is necessarily a minimum point. Therefore, the

optimal U⋆ is unique only if H is non-singular and is then given by

U⋆ = −H−1Fx0. (2.16)

If H is singular (i.e. positive semi-definite rather than positive definite), then the

optimal U⋆ is non-unique, and a particular solution of δU J = 0 has to be defined

as U = −H†Fx0 where H† is a left inverse of H (so that H†H = I).

20 CHAPTER 2. MODEL PREDICTIVE CONTROL

Constraints

The purpose of MPC is clearly not to emulate the unconstrained optimal controller

like Linear Quadratic Regulator (LQR) (Maciejowski, 2002), which after all is sim-

ply a linear feedback law that can be computed off-line using knowledge of the

plant model. The real advantage of MPC lies in its ability to determine nonlinear

feedback laws which are optimal for constrained systems through numerical calcu-

lations that are performed on-line. In the following, we will show how to construct

constraints for MPC problem stated in (2.1).

Consider now polyhedral state and input constraint sets of the form

X = {x | Dxx ≤ dx} , (2.17a)

U = {u | Duu ≤ du} , (2.17b)

where X ∈ R
nx , U ∈ R

nu , Dx ∈ R
nxg×nx , Du ∈ R

nug×nu , dx ∈ R
nxg , and du ∈

R
nug . Here, nxg and nug are the number of inequality constraints associated with

state and input, respectively.

Input Constraints

Input polyhedral constraints allow the controller to find a solution (control actions)

that satisfies the input limitations of system actuators. We can find an analogy in

adding a saturation on control outputs of PID controller, but in MPC they are part

of the optimization problem. They can be modeled by set of inequalities taking

the following form

umin ≤ uk ≤ umax, (2.18)

this can also be written in vector form as









umin

umin

...

umin










︸ ︷︷ ︸

Umin

≤










u0

u1

...

uN−1










︸ ︷︷ ︸

U

≤










umax

umax

...

umax










︸ ︷︷ ︸

Umax

, (2.19)

which is equivalent to U ≤ Umax and −U ≤ −Umin

[

−I

I

]

︸ ︷︷ ︸

G1

U ≤
[

−Umin

Umax

]

︸ ︷︷ ︸
w1

+

[

0(Nl×n)

0(Nl×n)

]

︸ ︷︷ ︸

E1

x0. (2.20)

2.2. MPC FORMULATIONS 21

State Constraints

The ability to constrain particular state values is one of the main features of the

MPC. It can be used to drive the system within some safety region of state variables

and to find a control action that won’t push the system into unwanted states

(sometimes irreversibly, e.g., in chemical processes). By inducing state constraints

to the optimization task, it suddenly becomes more difficult to solve. Similar to

the input constraints, state constraints can be modeled as

xmin ≤ xk ≤ xmax, (2.21)

and can be re-written in stacked vector form for k = 0 to k = N − 1 as









xmin

xmin

...

xmin










︸ ︷︷ ︸

Xmin

≤










x0

x1

...

xN










︸ ︷︷ ︸

X

≤










xmax

xmax

...

xmax










︸ ︷︷ ︸

Xmax

. (2.22)

Predicted state X in (2.7) can be re-written in terms of U as ΥU = X − Ψx0.

Subsequently, (2.22) turns into the following form

Xmin ≤ X ≤ Xmax, (2.23a)

Xmin ≤ Ψx0 + ΥU ≤ Xmax, (2.23b)

Xmin −Ψx0 ≤ ΥU ≤ Xmax −Ψx0, (2.23c)

and (2.23c) can be simplified as ΥU ≤ Xmax − Ψx0 and −ΥU ≤ −Xmin + Ψx0.

The state constraints in terms of U can be written as
[

−Υ

Υ

]

︸ ︷︷ ︸

G2

U ≤
[

−Xmin

Xmax

]

︸ ︷︷ ︸
w2

+

[

Ψ

−Ψ

]

︸ ︷︷ ︸

E2

x0. (2.24)

By combining these two inequalities from (2.20) and (2.24), we obtain the con-

straints in the compact form

GU ≤ w + Ex0, (2.25)

with

G =

[

G1

G2

]

, w =

[

w1

w2

]

, E =

[

E1

E2

]

. (2.26)

22 CHAPTER 2. MODEL PREDICTIVE CONTROL

Finally, combining (2.14) with (2.25) gives the QP formulation of the MPC problem

in (2.1) as

J∗(x0) = min
U

{

1
2

UT HU + xT
0 FU

}

+
1
2

xT
0 V x0 (2.27a)

s.t. GU ≤ w + Ex0, (2.27b)

where x0 = x(t) is the initial condition, H ∈ R
nuN×nuN , F ∈ R

nx×nuN , V ∈
R

nxN×nxN , G ∈ R
nug×nuN , w ∈ R

nug and E ∈ R
nug×nxN . The QP problem is

strictly convex since, R in (2.10) is assumed to be positive definite. It is worth to

mention that it is always possible to reformulate QP problem (2.27) in to standard

QP form.

2.2.7 QP Problem Formulation for Reference Tracking with

Integral Action

In the reference tracking problem, we will need system model with state and output

dynamics as described in (2.5) with full state measurements and same assumptions.

Next, consider the predicted state sequence (over a time-interval, from 1 to k)

generated by the linear state-space model (2.5a) with input sequence uk as given

in (2.7). Here, the goal is to minimize the error between predicted output and

output reference for that we will need to predict output which can be done by

iterating output along the prediction horizon N as we did for states in Section 2.2.5,

i.e.,

y0 = Cx0 + Du0, (2.28a)

y1 = Cx1 + Du1, (2.28b)

= C (Ax0 + Bu0) + Du1,

= CAx0 + CBu0 + Du1,

y2 = Cx2 + Du2, (2.28c)

= C (Ax1 + Bu1) + Du2,

= CA2x0 + CABu0 + CBu1 + Du2,

... (2.28d)

yk = CAkx0 + CAk−1Bu0 + CAk−2Bu1 + · · ·+ Duk. (2.28e)

2.2. MPC FORMULATIONS 23

With the help of state prediction expression (2.7), output predictions (2.28e) can

be expressed as follows

Y = C̄Ψx0 + C̄ΥU, (2.29)

where Y ∈ R
nyN is the vector of predicted values of the output and C̄ ∈ R

Nnx×Nny

is the diagonal matrix of system output matrix C. Y and C̄ is given as

Y =















y0

y1

y2

y3

...

yN















, C̄ =















C 0 0 0 . . . 0

0 C 0 0 . . . 0

0 0 C 0 . . . 0

0 0 0 C . . . 0
...

...
...

...
. . .

...

0 0 0 0 . . . C















. (2.30)

Cost Function

The goal of the controller is, to make the difference between the output, yk and

the reference rk as small as possible without offset. This can be done by using a

least squares problem. The cost function for the reference tracking problem with

weighted 2-norm is given as

min
U

J(U, x0) =
N−1∑

k=0

‖ yk − rk ‖2
Q + ‖ ∆uk ‖2R. (2.31)

In above matrices, Q and R are assumed to be symmetric and positive definite.

In the above cost function, the first term provides a mechanism to allow differ-

ent weightings on different outputs and second term allows different penalties for

different input moves. Furthermore, as described in Section 2.2.3 for offset-free ref-

erence tracking we need to incorporate integral action in the controller i.e., defining

∆u = uk − uk−1 and applying uk to the system. By introducing Yr ∈ R
nyN as a

vector containing the output reference

Yr =















r0

r1

r2

r3

...

rN















, (2.32)

24 CHAPTER 2. MODEL PREDICTIVE CONTROL

and using output predictions (2.29) the objective function can be written as

min
U

J(U, x0) =
N−1∑

k=0

‖ Y − Yr ‖2Q + ‖ uk − uk−1 ‖2
R. (2.33)

To make this problem easier to solve, it is convenient to express it as a QP

problem. Next, we will show translation of (2.33) in to QP problem. Due to the

lengthy expressions we will first translate output term (Jy) and then input term

(Ju).

By substituting (2.29) for Y into (2.33) we get

Jy =‖ C̄Ψx0 + C̄ΥU − Yr ‖
2

Q, (2.34a)

=‖ C̄ΥU − (Yr − C̄Ψx0) ‖2Q, (2.34b)

=‖ C̄ΥU − υ ‖2

Q, υ = (Yr − C̄Ψx0). (2.34c)

By taking the 2−norm of above expression we can further simplify it as follows

Jy =(C̄ΥU − υ)T Q(C̄ΥU − υ), (2.35a)

=UT ΥT C̄T QC̄ΥU − 2(ΥT C̄T Qυ)T U + υT Qυ, (2.35b)

=UT HyU + F T
y U + ρy, (2.35c)

where Hy, F T
y , ρy are given by

Hy =ΥT C̄T QC̄Υ,

Fy =− 2ΥT C̄T Qυ,

=2ΥT C̄T QΦx0 − 2ΥT C̄T QYr,

=2Mx0
x0 + 2MYr

Yr, Mx0
= ΥT C̄T QΦ, MYr

= −ΥT C̄T Q,

ρy =υT Qυ.

Since ρy does not influence the solution to the optimization problem, it can be

discarded. Also, note that the gradient Fy is dynamic and needs to be updated for

every time step, as opposed to the Hessian Hy, which is static. The unconstrained

QP problem for the objective function in (2.31) is

Jy =
1
2

UT HyU + F T
y U, (2.37)

where Hy = ΥT C̄T QC̄Υ and Fy = Mx0
x0 + MYr

Yr.

2.2. MPC FORMULATIONS 25

Now, we will formulate QP problem for input regularization. Similar to Jy we

can formulate Ju as a QP problem,

Ju =
N−1∑

k=0

‖ uk − uk−1 ‖2
R, (2.38a)

=
N−1∑

k=0

(uk − uk−1)T
R (uk − uk−1) , (2.38b)

=












u0

u1

u2

...

uN−1























2R −R 0 ... 0

−R 2R −R ... 0
...

. . .
. . .

. . .
...

0 0 −R 2R −R

0 0 0 −R R












︸ ︷︷ ︸

Hu












u0

u1

u2

...

uN−1












(2.38c)

+ 2












−R

0

0
...

0












︸ ︷︷ ︸

Mu−1

uT
−1












u0

u1

u2

...

uN−1












+ u−1Ru−1,

=UT HuU + 2(Mu−1u−1)T U + u−1Ru−1. (2.38d)

This shows, that introducing Ju extends the QP problem by following term

Fu = Mu−1u−1. (2.39)

Like with ρy, the term u−1Ru−1 is discarded, because the lack of influence on the

solution to the problem. The unconstrained QP problem the objective function

in (2.38a) is

Ju =
1
2

UT HuU + F T
u U. (2.40)

Now, its time to combine QP problems for output and input objective functions (2.37)

and (2.40), we will get

J⋆(x0) = min
U

{

1
2

UT HU + F T U

}

, (2.41)

where U is the vector of control inputs, H = Hy+Hu is the Hessian and F = Fy+Fu

is the gradient which is updating at every time instant.

26 CHAPTER 2. MODEL PREDICTIVE CONTROL

Constraints

Similar to the constraints in regulation problem, we can apply constraints for the

tracking problem stated in (2.2). Having determined quadratic cost as a function

of input predictions in Section (2.2.5), the input, output, state, and slew rate

constraints are formulated in next sections.

Input Constraints

These are the most commonly encountered constraints among all constraint types.

These are the hard constraints on the system. Simply, we demand that

umin ≤ uk ≤ umax, (2.42)

this can also be written in vector form as









umin

umin

...

umin










︸ ︷︷ ︸

Umin

≤










u0

u1

...

uN−1










︸ ︷︷ ︸

U

≤










umax

umax

...

umax










︸ ︷︷ ︸

Umax

, (2.43)

which is equivalent to U ≤ Umax and −U ≤ −Umin

[

−I

I

]

︸ ︷︷ ︸

G1

U ≤
[

−Umin

Umax

]

︸ ︷︷ ︸
w1

. (2.44)

Input Slew Rate Constraints

In the industrial system, it is important to take care of wear-and-tear of actuators

due to a sudden increase or decrease of input, e.g., control valve or motor. To

prevent some stress on actuators of the system, we can impose constraints on a

change in input rate so that actuator will operate smoothly. The input rate of

movement is the change from k to k + 1 and therefore it is called ∆u. These

constraints can be modeled as

∆umin ≤ ∆uk ≤ ∆umax, (2.45)

2.2. MPC FORMULATIONS 27

in vector form it can be written as









∆umin

∆umin

...

∆umin










︸ ︷︷ ︸

∆min

≤










∆u0

∆u1

...

∆uN−1










︸ ︷︷ ︸

∆U

≤










∆umax

∆umax

...

∆umax










︸ ︷︷ ︸

∆max

, (2.46)

as we know ∆uk = uk − uk−1, we can replace ∆uk with uk − uk−1 in (2.46)









∆umin

∆umin

...

∆umin










≤










u0 − u−1

u1 − u0

...

uN−1 − uN−2










≤










∆umax

∆umax

...

∆umax










, (2.47)










∆umin

∆umin

...

∆umin










+










−I

0
...

0










︸ ︷︷ ︸

I

u−1 ≤










I 0 0 0

−I I 0 0

0 0
. . .

. . .

0 0 −I I










︸ ︷︷ ︸

Λ










u0

u1

...

uN−1










︸ ︷︷ ︸

U

≤










∆umax

∆umax

...

∆umax










+










−I

0
...

0










︸ ︷︷ ︸

I

u−1,

(2.48)

subsequently, we obtain

∆Umin + Iu−1 ≤ ΛU ≤ ∆Umax + Iu−1. (2.49)

The relation (2.49) is equivalent to ΛU ≤ ∆Umax + Iu−1 and −ΛU ≤ −∆Umin +

Iu−1. Finally, it can be re-written in the vector form as

[

−Λ

Λ

]

︸ ︷︷ ︸

G2

U ≤
[

−∆Umin + Iu−1

∆Umax − Iu−1

]

︸ ︷︷ ︸
w2

. (2.50)

Output Constraints

Output constraints are analogous to the input constraints, i.e., limitations to the

maximum and minimum output. The output at k = 0 cannot be affected, so the

constraint here is disregarded. The output constraints are expressed as

ymin ≤ yk ≤ ymax, (2.51)

28 CHAPTER 2. MODEL PREDICTIVE CONTROL

and in vector from as









ymin

ymin

...

ymin










︸ ︷︷ ︸

Ymin

≤










y0

y1

...

yN










︸ ︷︷ ︸

Y

≤










ymax

ymax

...

ymax










︸ ︷︷ ︸

Ymax

. (2.52)

From (2.29) insert Y = C̄Ψx0 + C̄ΥU in (2.52) we get

Ymin ≤ Y ≤ Ymax, (2.53a)

Ymin ≤ C̄Ψx0 + C̄ΥU ≤ Ymax, (2.53b)

Ymin − C̄Ψx0 ≤ C̄ΥU ≤ Ymax − C̄Ψx0. (2.53c)

The expression in (2.53) can be re-written as C̄ΥU ≤ Ymax− C̄Ψx0 and −C̄ΥU ≤
−Ymin + C̄Ψx0. Output constraints in terms of U can be written as

[

−C̄Υ

C̄Υ

]

︸ ︷︷ ︸

G3

U ≤
[

−Ymin + C̄Ψx0

Ymax − C̄Ψx0

]

︸ ︷︷ ︸
w3

. (2.54)

State Constraints

Inequality state constraints can be represented as

xmin ≤ xk ≤ xmax, (2.55)

and can be re-written in stacked vector form for k = 0 to k = N − 1 as









xmin

xmin

...

xmin










︸ ︷︷ ︸

Xmin

≤










x0

x1

...

xN










︸ ︷︷ ︸

X

≤










xmax

xmax

...

xmax










︸ ︷︷ ︸

Xmax

. (2.56)

Predicted state X = Ψx0 + ΥU in (2.7) can be re-written in terms of U as ΥU =

X −Ψx0. Subsequently, (2.56) turns into the following form

Xmin ≤ X ≤ Xmax, (2.57a)

Xmin ≤ Ψx0 + ΥU ≤ Xmax, (2.57b)

Xmin −Ψx0 ≤ ΥU ≤ Xmax −Ψx0. (2.57c)

2.3. SOLVING QP PROBLEMS IN MPC 29

The expression (2.57c) can be simplified as ΥU ≤ Xmax−Ψx0 and −ΥU ≤ −Xmin+

Ψx0. The state constraints in terms of U can be written as
[

−Υ

Υ

]

︸ ︷︷ ︸

G4

U ≤
[

−Xmin + Ψx0

Xmax −Ψx0

]

︸ ︷︷ ︸
w4

. (2.58)

Combining all the constraints from (2.44), (2.50), (2.54), and (2.58), we get








G1

G2

G

G4









︸ ︷︷ ︸

G

U ≤









w1

w2

w3

w4









︸ ︷︷ ︸
w

. (2.59)

Th unconstrained QP problem stated in (2.41) can be extended for constrained QP

problem as

J∗(x0) = min
U

{

1
2

UT HU + cT U

}

, (2.60a)

s.t. GU ≤ w. (2.60b)

2.3 Solving QP Problems in MPC

Once the MPC problem is formulated as a constrained quadratic programming

problem, the next task is to obtain optimal control actions based on current mea-

surements, which can be carried out using different optimization methods. The

reliable general purpose solvers are available for the solution of QP problems and

nominal MPC problems are solved by directly applying one of the solver on-line,

which has, however, restricted the applicability of MPC to slow dynamic processes.

In recent years, various methods have been developed with the goal of enabling

MPC to be used for fast sampled systems. These approaches can generally be clas-

sified into two main paradigms: on-line MPC and explicit/off-line MPC methods.

The most general approach used to solve QP problems is to use the Active

Set (Fletcher, 2013), Interior Point (Nocedal and Wright, 2006, Chapter 16), and

gradient (Snyman, 2005) methods, which have shown good convergence and sta-

bility properties. In particular, the active set and interior point methods provide

an excellent framework for the solution of very large-scale optimization problems

30 CHAPTER 2. MODEL PREDICTIVE CONTROL

arising in the process industries. However, the main challenge that arises for appli-

cations in fast-sampled dynamic systems is the requirement of solving the optimal

control problem in real-time that to on embedded devices. To accomplish this

requirement, it is necessary to implement an efficient solver that exploits the char-

acteristics of the problem and the available hardware resources in order to reduce

the computational time, memory requirements and power consumption.

2.4 Summary

This chapter has presented the concept of model predictive control and the features

which make this control strategy one of the most employed for controlling complex

systems. In MPC, at each sample time, an open-loop optimal control problem is

solved over a finite horizon considering current state of the plant. The computed

optimal input signal is applied to the plant, in the next sample time and corre-

sponding measurements are sent back to the controller. This procedure is repeated

iteratively, which makes MPC a kind of feedback controller. MPC offers an ele-

gant framework to solve a wide range of control problems such as state regulation,

output tracking, supervision, etc. and have ability to handle constraints on input

and state. This chapter gives detailed formulations of state regulation MPC (see

Section 2.2.6) and reference tracking MPC with integral action (see Section 2.2.7).

The formulated QP problem can be solved using active set or interior point meth-

ods (see Section 2.3). MPC has been widely employed in oil and gas refineries,

automotive, aerospace, biomedical, process industries, and many more. The main

bottleneck in the success of MPC lies in solving one optimization problem at each

sample time. This restricts MPC in many fast sampled applications or needs pow-

erful computational unit. The issues of computational complexity can be overcome

by moving the on-line burden of optimization to off-line. This concept of off-line

MPC or explicit MPC is presented in next chapter.

Chapter 3

Explicit Model Predictive

Control

3.1 Introduction

In Chapter 2, we have seen that the model predictive control problem intended for

regulation or tracking can be formulated into an unconstrained or constrained QP

problem. The formulated QP problem can be solved using on-line optimization

methods presented in Section 2.3. On-line methods have shown good convergence

and stability properties. However, the main challenge appears when MPC is used

for controlling real-time dynamic systems with high sampling rates and running

on resource-constrained embedded platforms, such as PLCs, FPGAs, and micro-

controllers. In this type of set-ups, the computational time, limited resource, and

the requirement of control accuracy becomes a crucial factor (Johansen, 2014). To

extend the use of MPC on embedded hardware, it is necessary to implement an

efficient solver that exploits the characteristics of the problem and the available

hardware resources in order to reduce the computational time, memory require-

ments, and power consumption.

To overcome the limitations of on-line implementation of MPC, a multi-parametric

Quadratic Programming (mp-QP) (Pistikopoulos et al., 2007a) (Borrelli et al.,

2015) based approach called Explicit Model Predictive Control (EMPC) was pro-

posed by Bemporad et al. (2000), Bemporad et al. (2002) where the on-line burden

31

32 CHAPTER 3. EXPLICIT MODEL PREDICTIVE CONTROL

of optimization is moved off-line. In a multi-parametric programming, the optimal

solution of an optimization problem is determined as an explicit function of certain

varying parameters. Therefore, multi-parametric programming avoids the need to

solve a new optimization problem when the parameter changes since the optimal

solution can readily be updated using the pre-computed function. In relation to

MPC, the multi-parametric programming can be used to obtain the optimal con-

trol inputs as an explicit function of the state measurements, considering these as

the parameters of the optimization problem. This allows the on-line computational

burden to be reduced to a sequence of function evaluations, eliminating the need

of a real-time optimization solver which is the main bottleneck of the embedded

implementation of MPC controllers. Explicit MPC has found its applications in

many areas of science, engineering and technology. Table 3.1 summarizes some

application reported till the date.

3.1.1 Explicit MPC Concept

In explicit MPC, the optimal control law is pre-computed off-line and once as a

function of all possible initial states. For a large class of MPC problems, such a

control law can be shown to take a form of the Piecewise Affine (PWA) function

defined over a polyhedral partition in the state-space, which maps state measure-

ments onto the optimal control inputs. Having a pre-computed PWA function at

hand, explicit MPC needs to evaluate the PWA function on-line at each sample time

to compute the optimal control actions based on the current state measurement.

Fig. 3.1 shows the explicit MPC scheme where the task is divided into two phases,

i.e., off-line and on-line. In off-line phase, the PWA control law is constructed, and

in on-line phase, it is evaluated at each sample time using point location algorithm.

3.2 MPC Problem as a Multi-Parametric QP Prob-

lem

Recall the discrete-time LTI system model presented in Section 2.2.4,

xk+1 = Axk + Buk, (3.1a)

yk = Cxk + Duk, (3.1b)

3.2. MPC PROBLEM AS A MULTI-PARAMETRIC QP PROBLEM 33

Table 3.1: Applications of EMPC.

Area of Application Contributors

Electric Beccuti et al. (2007), Beccuti et al. (2009),

Mariethoz et al. (2009), Ameen et al. (2012),

Mariethoz et al. (2012), Shen et al. (2013),

Dirscherl et al. (2015)

Automotive Lee and Line (2008), Naus et al. (2010),

Alamir et al. (2010), Oliveri et al. (2011),

El Hadef et al. (2013), Montague et al. (2013),

Honek et al. (2015), Csekő et al. (2015)

Chemical Grancharova et al. (2003), Grancharova et al. (2004),

Ławryńczuk (2009), Zanini et al. (2009),

Sanchez-Cossio et al. (2015), Pu and Yu-hong (2015),

Drgoňa et al. (2017)

Aerospace Krogstad et al. (2005), Liu et al. (2011),

Liu et al. (2012), Zhao et al. (2014),

Liu et al. (2015), Pu and Yu-hong (2015),

Zhang et al. (2016)

Bio-medical Pistikopoulos (2009), Kirubakaran et al. (2013),

Naşcu et al. (2016)

Power Generation Puig et al. (2007), Hredzak et al. (2015),

Jiang et al. (2016)

Industrial Systems de la Peña et al. (2005), Stephens et al. (2011),

Kirubakaran et al. (2016)

Mechatronic Ulbig et al. (2008), Almurib et al. (2010),

Gerkšič and de Tommasi (2013), Takács et al.

(2016b),

Klaučo et al. (2017)

Smart Buildings Drgona et al. (2013), Koehler and Borrelli (2013),

Parisio et al. (2014), Sahu et al. (2015)

34 CHAPTER 3. EXPLICIT MODEL PREDICTIVE CONTROL

mp-QP Algorithm Controller

System
y(t)

x(t)
u⋆(t)

Off-line On-line

Figure 3.1: Explicit model predictive control scheme.

where x(t) ∈ R
nx is the system state vector, u(t) ∈ R

nu is the system input vector

and y(t) ∈ R
ny is the system output vector, moreover, A ∈ R

nx×nx , B ∈ R
nx×nu ,

C ∈ R
ny×nx and D ∈ R

ny×nu are system matrices.

In Section 2.2, we have seen that using system model (3.1) the MPC problem

can be designed for state regulation (see, Section 2.2.6) or for reference tracking (see,

Section 2.2.7) purpose. For the convenience recall, the CFTOC problem designed

for state regulation purpose

min
U

xT
N P xN +

N−1∑

k=0

xT
k Qxk + uT

k Ruk (3.2a)

s.t. xk+1 = Axk + Buk, k = 0, . . . , N − 1, (3.2b)

xk ∈ X , k = 0, . . . , N − 1, (3.2c)

uk ∈ U , k = 0, . . . , N − 1, (3.2d)

xN ∈ Xf , (3.2e)

x0 = x(t), (3.2f)

where Q ∈ R
nx×nx , P ∈ R

nx×nx , and R ∈ R
nu×nu are the weighting matrices with

conditions Q � 0 and P � 0 to be positive semi-definite and R ≻ 0 to be positive

3.2. MPC PROBLEM AS A MULTI-PARAMETRIC QP PROBLEM 35

definite. Moreover, N is the prediction horizon, xk+1 is the vector of predicted

states based on prediction model (3.1a), U = {u0, . . . , uN−1} is the sequence of

control actions, and X , U , and Xf are the polyhedral constraint sets.

In Section 2.2.6, it is shown that the MPC problem can be formulated as a QP

problem,

J∗(x0) = min
U

{

1
2

UT HU + xT
0 FU

}

+
1
2

xT
0 V x0 (3.3a)

s.t. GU ≤ w + Ex0, (3.3b)

where H ∈ R
nuN×nuN , F ∈ R

nx×ng , V ∈ R
nx×nx , G ∈ R

ng×nuN , w ∈ R
ng ,

E ∈ R
ng×nx , and x0 is the current state of the system.

The on-line solution of this QP problem is computationally demanding which

restricts the use of MPC controller in real-time and resource constrained systems.

To overcome this issue, an idea of reformulating optimization problem (3.3) as a

multi-parametric quadratic programming problem was proposed by Bemporad et al.

(2000). It has been shown that by doing some algebraic manipulation the CFTOC

problem (3.2) can be reformulated as a mp-QP problem, i.e.,

J⋆
z (x0) = min

z

1
2 zT Hz (3.4a)

s.t. Gz ≤ w + Sx0, (3.4b)

where z ∈ R
nz := U + H−1F T x0 and x0 is treated as vector of parameters. S =

E + GH−1F T and J⋆
z (x0) = J⋆(x0) − 1

2 xT
0 (V − FH−1F T)x0. The number of

inequalities are denoted ng and the number of free variables is nz = nuN . The

goal of explicit MPC/mp-QP problem is to find the solution of the optimization

problems(3.4) in an explicit form z⋆ = z⋆(x0). In the next, we will present the

solution mp-QP problem which is a continuous PWA function of the current state

x0.

3.2.1 Solution of mp-QP Problem

The solution of mp-QP problem (3.4) can be approached by employing the princi-

ples of parametric non-linear programming, and in particular the first-order Karush-

Kuhn-Tucker (KKT) optimality conditions (Karush, 1939) to derive theH-polyhedral

representation of the critical regions and to compute the optimizer function z⋆(x0)

36 CHAPTER 3. EXPLICIT MODEL PREDICTIVE CONTROL

and the value function J⋆(x0) inside each critical region. The first-order (KKT)

optimality conditions mp-QP problem are given as

Hz⋆ + GT µ = 0, µ ∈ R
ng , (3.5a)

µ⋆
j (Gjz⋆ − wj − Sjx0) = 0, j = 1, 2, . . . , ng, (3.5b)

µ⋆ ≥ 0, (3.5c)

Gz⋆ − w − Sx0 ≤ 0. (3.5d)

We solve (3.5a) for z⋆

z⋆ = −H−1GT µ⋆, (3.6)

and complementary slackness conditions can be obtained by inserting (3.6) in (3.5b).

µ⋆
j (−GjH−1GT

j µ⋆
j − wj − Sjx0) = 0 j = 1, 2, . . . , ng. (3.7)

Let µA denote the Lagrange multipliers corresponding to the active constraint.

For active constraint

(−GAH−1GT
A)µ⋆

A − wA − SAx0 = 0, (3.8)

where GA, wA, and SA are the sub-matrices of G, w, and S respectively, consisting

of the rows indexed by active constraint A.

If the set of active constraint A is empty, then µ⋆ = 0 and therefore z⋆ = 0

which implies that the critical region CRA is

CRA = {x0 : w + Sx0 > 0}. (3.9)

If the rows of GA are linearly independent then it implies that (GAH−1GT
A) is a

square full rank matrix and therefore

µ⋆
A = −(GAH−1GT

A)−1(wA + SAx0). (3.10)

Combining (3.6) with (3.10) we get the expression for z⋆ as

z⋆ = H−1GT
A(GAH−1GT

A)−1(wA + SAx0). (3.11)

Note that z⋆ is also an affine function of x and objective function J⋆(x0) is quadratic

as J⋆(x0) = z⋆Hz. In the back-transformation, the minimizer U⋆(x0) of the prob-

lem (3.3) is given as

U⋆(x0) = Tix0 + vi, (3.12)

3.2. MPC PROBLEM AS A MULTI-PARAMETRIC QP PROBLEM 37

which is an affine function of x0 and Ti and vi are given as

Ti = H−1GT
A(GAH−1GT

A)−1SA −H−1F T , vi = H−1GT
A(GAH−1GT

A)−1wA.

Moreover, as the active constraints are defined over the set A(x0), conditions (3.5c)

and (3.5d) must be satisfied. Therefore by plugging in (3.10) in (3.5c) and (3.11)

in (3.5d) one obtains a polyhedral description in the parameter space where U⋆(x0)

is valid

Ri = {x0 ∈ R
nx | Lix0 ≤ hi}, (3.13)

where,

Li =

[

G(Ti + H−1F T)− S

(GAH−1GT
A)SA

]

, hi =

[

w −Gvi

−(GAH−1GT
A)wA

]

.

Note that the optimizer (3.12) is actually associated with the region of active

constraints (3.13). To cover the whole feasible area, the algorithm traverses through

the parameter space and iteratively detects the active sets A(x0). By this way a

sequence of affine functions (3.12) is generated, each corresponding to the given

region (3.13). The final result of the mp-PQ problem forms i = 1, . . . , nR partitions

of PWA function defined over K⋆ = ∪Ri partitions, where K⋆ is the set of feasible

parameters.

In the above, we have seen that if Linear Independence Constraint Qualification

(LICQ) holds we get optimizer (3.13). But, if there can be a situation where LICQ

does not hold meaning the rows of GA are not linearly independent. For instance,

this happens when more than nz constraints are active at the optimizer, i.e., in a

case of primal degeneracy. In this case, the vector of Lagrange multipliers λ⋆ might

not be uniquely defined, as the dual problem of (3.4) is not strictly convex. Note

that dual degeneracy and non-uniqueness of optimizer cannot occur, as H ≻ 0.

The optimizer can be obtained for this case using procedure as given in (Borrelli

et al., 2015, Chapter 7).

3.2.2 Properties of the mp-QP Problem

It has been shown by several authors, see, e.g., Bemporad et al. (2002), Dua et al.

(2002), (Borrelli et al., 2015, Chapter 7) that the multi-parametric programs have

the following properties

1. the closure of critical regions CRA is a polyhedron,

38 CHAPTER 3. EXPLICIT MODEL PREDICTIVE CONTROL

2. the optimizer U⋆(x0) is a linear PWA function of the state inside CRA, i.e.,

U⋆(x0) = Tix0 + vi as shown in (3.13),

3. the objective function J⋆(x0) is a quadratic function of the parameter inside

CRA, i.e., J⋆(x0) = z⋆Hz.

First of all, this gives us the ability to finitely represent and compute the explicit

solution. Second, a PWA function is well suited for real-time applications, which

can be stored in the form of a LUT.

3.2.3 Multi-Parametric QP Algorithm

The goal of a mp-QP algorithm is to determine the partition of K⋆ into critical

regions CRA, and find the expression of the functions J⋆(x0) and z⋆(x0) for each

critical region. The mp-QP algorithm has two components:

• active set generator: it computes the set of active constraints A(x0)

• KKT solver: it computes CRA and the expression of J⋆(x0) and z⋆(x0) re-

quired for CRA as descried in(3.11)

The active set generator is the critical part in the mp-QP algorithm. In principle,

one could simply generate all the possible combinations of active sets. However, in

many problems only a few active constraints sets generate full-dimensional critical

regions inside the region of interest. Therefore, the goal is to design an active set

generator algorithm which computes only the active sets A with the associated

full-dimensional critical regions covering only K⋆.

There are several approaches to solve mp-QP algorithm. The methods of solv-

ing mp-QP problem were discussed in detailed in Bank et al. (1982). A geomet-

ric method for solving mp-QPs was presented in Bemporad et al. (2002). The

method constructs a critical region in a neighborhood of a given parameter, by

using the KKT conditions for optimality, and then recursively explores the param-

eter space outside such region. However, as this method introduces many artificial

cuts, several researchers have proposed modifications, such as a variable step-size

approach (Baotić, 2002), exploiting the active set of the neighboring critical regions

from the irredundant constraints (TøNdel et al., 2003). These algorithms cannot

guarantee that the entire parameter space will be explored. So, to overcome this

issue, a facet-to-facet property of problem is explored in Spjøtvold et al. (2006).

3.3. POINT LOCATION ALGORITHM 39

Each region of optimality, i.e. critical region, is uniquely identified by its active set.

An enumeration based approach was suggested in Seron et al. (2002) which needs

the exhaustive enumeration of all active sets in order to solve mp-QP problems.

Until the beginning of this decade, mp-QP solvers were computational intractable

but, it was improved when a branch-and-bound algorithm was suggested in Gupta

et al. (2011) which is based on the fact that if a candidate active set is infeasible,

so it is its superset. The efficiency of this algorithm was improved in Feller et al.

(2013) by considering symmetry elements. Recently, a graph-based approach is pre-

sented in Oberdieck et al. (2017). In graph-based method the solution of mp-QP

problem is given by connected graphs. Each node is thereby an active set and a

connection between two nodes is generated based on geometrical arguments which

indicate adjacency. This approach limits the number of candidate active sets to

be considered. In the case of primal and dual degeneracy, it can be proven that

there exists a single graph which solves the problem, resulting in a set of disjoint

critical regions. For the overview of theoretical and algorithmic advances in multi-

parametric programming see, e.g., Pistikopoulos et al. (2007a), Pistikopoulos et al.

(2007b), Pistikopoulos et al. (2012).

3.3 Point Location Algorithm

Once the state-space is divided off-line into critical regions, the on-line evaluation

of explicit MPC controllers is reduced to find the critical region in which the cur-

rent state variables belong to, and then to evaluate the control action as the PWA

function associated with that region. Since the critical regions tend to be irregular,

the problem of determining the region is known as the point location problem. In

Point Location Algorithm (PLA), current state, x(t) of the system is measured/es-

timated and based on that state index, i of the region containing the current state

is identified. Then, based on the index, the corresponding control law (u⋆(t)) is ap-

plied to the system. Fig. 3.2 shows the working of the Sequential search algorithm

used in the on-line evaluation of EMPC. Sequential search algorithm is the most di-

rect way of determining the index, i of the region, R in which the current state, x0

belong to. Once we get an index of the region from (3.13), then the optimal control

action is obtained by evaluation the corresponding PWA function (3.12). For the

on-line synthesis of explicit MPC, one has to store all the data related to regions

and PWA function (i.e., Ti, vi, Li and hi) in the form of LUTs. Algorithm 1 repre-

40 CHAPTER 3. EXPLICIT MODEL PREDICTIVE CONTROL

mp-QP Algorithm PWA Function

Region Finder

System
y(t)

i

x(t)u⋆(t)

PLA

Off-line On-line

Figure 3.2: The idea of point location algorithm in EMPC.

3.4. ADVANTAGES AND DISADVANTAGES OF EXPLICIT MPC 41

sents the idea of sequential search. The algorithm traverses sequentially through all

Algorithm 1 Sequential search.
INPUT: Regions Ri, feedback laws Ti, vi, number of regions nR, initial condition

x0.

OUTPUT: U⋆(x0) solving (3.12) for a given x0.

1: for i = 1, . . . , nR do

2: if Lix0 ≤ hi then

3: return U⋆(x0)← Tix0 + vi

4: end if

5: end for

the regions of (3.12). At Step (2) the algorithm verifies whether x0 belongs to the

i-th region by checking the inequality representation in (3.3). If x0 ∈ Ri, the opti-

mal solution to (3.3) is given by (3.12) upon which the algorithm terminates. The

worst-case run-time of the sequential search algorithm is O(M), i.e., linear in the

number of regions. Some other point location algorithms used in the on-line eval-

uation of EMPC are, extended sequential search (Takács et al., 2016a), Truncated

Binary Search Tree (TBST) (Bayat et al., 2011), multi-way trees (Mönnigmann

and Kastsian, 2011), etc.

3.4 Advantages and Disadvantages of Explicit MPC

Advantages

• The on-line evaluation of the PWA function is usually faster and simpler

compared to solving the on-line QP problem. This is particularly useful in

high-bandwidth applications when high control update rates are required.

• On-line synthesis of PWA function needs only addition and multiplication

whereas on-line QP needs the inverse of KKT matrix.

• Once the explicit optimal solution has been computed off-line, it can be im-

plemented into simple hardware such as a microchip and can be replicated

cheaply for mass production.

• In contrast to the implicit nature of standard MPC implementations, explicit

MPC solutions provide a more accurate and deep intuitive understanding of

42 CHAPTER 3. EXPLICIT MODEL PREDICTIVE CONTROL

the control behavior and properties, allowing analysis of performance such as

safety verification needed in safety-critical application.

Disadvantages

• Both the computation time and the complexity of the regions grow in the

worst case exponentially with the problem size (length of the prediction hori-

zon (N), dimension of the states (nx) and inputs (nu), number of constraints

due to the combinatorial nature of the problem.

• If the explicit solution can be computed, it can still be highly complex and

needs to store all pre-computed data in the memory of the target control

hardware, which may prohibit its application due to restricted storage space

and on-line computation time.

3.5 Complexity

In the above sections, we have seen the properties of explicit MPC which makes

it a suitable controller for real-time applications demanding high control updates

rates in milliseconds to microseconds. However, the applicability of this controller

is limited to fairly small problems, since the complexity of controller increase more

or less exponentially with problem size. Generally, with the complexity of explicit

MPC one refers to the number of regions required to construct the corresponding

PWA controller (3.12). The number of regions increases exponentially when the

problem size grows, and this results in increased off-line computations. The re-

quired memory and on-line computations also increase and this, in turn, makes the

explicit solutions inefficient for large-scale problems. For the detailed analysis of

explicit MPC complexity see, e.g. (Pistikopoulos et al., 2007b, Chapter 1), Borrelli

et al. (2009). The complexity of EMPC can be categorized into two factors:

1. Off-line complexity: This complexity is associated with the constructions of

critical regions. In other words, as problem size increases the computational

burden on mp-QP algorithms increases. Generally, mp-QP algorithm runs on

Personal Computer (PC) which typically perform numerical calculations in

64-bit floating-point arithmetic, which is too expensive and power demanding.

This restricts the use of EMPC for the system with large number of states,

3.5. COMPLEXITY 43

inputs and large prediction horizon. To handle the issue, Gupta et al. (2011)

presented a novel approach which uses an implicit enumeration of active sets.

Using this approach, it is possible to extend EMPC for large systems, e.g.,

distillation column with 82 states (Feller and Johansen, 2013).

2. On-line complexity: By the on-line complexity we mean storage memory

and computational time. As it is mentioned above, in the on-line phase of

EMPC one has to synthesis PWA function defined over polytopic regions.

It is reasonable to say that the on-line complexity of controller depends on

a number of regions required to store PWA functions. In other words, we

can say that it is number of floating-point numbers which decides memory

required to store all the data related to the PWA function, i.e., (Ti, vi, Li and

hi). In particular, an explicit PWA function often consumes hundreds of kilo-

bytes (kB) to several megabytes (MB) of memory. Such an amount can easily

exceed capabilities of a given hardware implementation platform, especially

when the hardware has to accommodate multiple feedback loops. In order to

implement an EMPC algorithm on resource constrained embedded hardware,

it is therefore of imminent importance to reduce the memory footprint to an

acceptable level.

In the literature, various complexity reduction techniques have been presented

to make low-memory EMPC controllers that easily fits on embedded devices with

several kB of memory. In this thesis, we are mainly focusing on the on-line com-

plexity reduction technique to reduce memory footprints of the EMPC controller

for the embedded implementation.

3.5.1 An Overview of Complexity Reduction Techniques

In the last few years, an effort has been made to reduce the complexity of ex-

plicit MPC which is mainly focused on two distinct directions: first, how to make

the feedback law simple; second, how to reduce the amount of bits required to

store LUT data with the prescribed accuracy. Following are the some techniques

suggested for low-complexity controller.

44 CHAPTER 3. EXPLICIT MODEL PREDICTIVE CONTROL

Suboptimal Techniques

• Short prediction horizon: The number nR mainly depends on the number

of constraints (ng), and only mildly on the number of states (nx). It also

depends on the number of optimization variables (nz), but mainly because

ng depends on nz. At the price of a possible loss of closed-loop performance,

one way of reducing complexity is to shorten the prediction horizons (and/or

blocking input moves (Tøndel and Johansen, 2002), (Oldewurtel et al., 2009))

in order to decrease nz and ng.

• KKT relaxation: To reduce the number of region, authors Bemporad and

Filippi (2003) suggests solution which consists of finding an approximate

solution to mpQP by relaxing the KKT conditions for optimality, except

primal feasibility.

• Interpolation: With negligible deterioration of performance authors in Rossiter

and Grieder (2005) shown that one can reduce on-line effort by a factor of 10

by using interpolation.

• Orthogonal partition: In Johansen and Grancharova (2003), Cychowski and

O’Mahony (2005) it is shown that the approximate solution to MPC problem

can be pre-computed off-line in an explicit form as a PWA state feedback

law defined on an orthogonal partition of the state space. It has shown this

approach leads to a real-time computational complexity that is logarithmic

in the number of regions in the partition, and the algorithm yields guarantees

on the suboptimality, asymptotic stability and constraint fulfillment.

• Model reduction: It has been proposed in Hovland et al. (2008) which reduces

number of states and subsequently the number of regions required to store

feedback law. But, if the performance obtained by model order reduction

approach is low then it one need longer control horizons as compared to

horizons needed for the original model to obtain good performance.

• Bilevel optimization: An approximation approach that generates a low-complexity

piecewise affine function directly from the optimal MPC formulation (i.e.

without computing the optimal solution first) was proposed in Jones and

Morari (2009).

3.5. COMPLEXITY 45

• Delaunay tessellation: The concept from computational geometry theory

called Delaunay tessellation was used by Scibilia et al. (2009) to approxi-

mate PWA controller which allows fast online implementation without the

need for any additional support structure.

All the above techniques lead to a simpler PWA controller with the remarkable

reduction of controller complexity. However, these techniques lead to suboptimal

solutions which are unacceptable in the mission critical application. Therefore,

the another direction of research is devoted to simplifying the PWA feedback law

while preserving optimality. Following are some performance-lossless complexity

reduction techniques suggested for the complexity reduction in EMPC.

Optimal Techniques

• Optimal Region Merging (ORM): For a given PWA function (3.12), the au-

thors in Geyer et al. (2008) provide an approach to reduce the number of

partitions by optimally merging regions where the affine gain is the same,

so that the original solution is maintained but equivalently expressed with a

minimal number of partitions.

• Lattice representation: A general lattice representation for continuous EMPC

solutions obtained by the mpQP were proposed in Wen et al. (2009). The

main advantage of a lattice expression is, it is a global and compact represen-

tation, which automatically removes the redundant parameters in an EMPC

solution.

• Saturated region clipping: An idea of eliminating regions of the PWA function

over which the function attains a saturated value and replace it by extensions

of unsaturated regions was proposed in Kvasnica and Fikar (2012). In this

procedure, a new control law is constructed which is simpler and faster than

original control law.

• Region separation: The separating functions were employed to define PWA

functions in Kvasnica et al. (2011), Kvasnica et al. (2013). If a current state

resides in a region where the optimal control action attains a saturated value,

the optimal control move is determined from the sign of the separator. Thus,

in this approach instead of storing all regions, only the unconstrained regions

46 CHAPTER 3. EXPLICIT MODEL PREDICTIVE CONTROL

and the separator was stored, and the complexity of explicit MPC feedback

laws is reduced considerably without sacrificing optimality.

• Partial selection: Authors in Kvasnica et al. (2012) shown that a simpler

equivalent explicit feedback can be obtained by selecting a particular subset

of the controller regions which avoids pre-processing.

• Inner and outer approximation of EMPC solutions: A polygonic representa-

tion of regions of the explicit PWA feedback law was presented in Oravec

et al. (2013) to reduce the memory footprints of controller. In this approach

one needs to store only the outer boundaries of such polygons, a significant

amount of memory can be saved. But, this comes at the price of increased

computational resources required to perform the point location task.

• Low rank: A method for exploiting low-rank structure in the parametric

solution of a multi-parametric programming problem is introduced in Nielsen

and Axehill (2016), to reduce the memory footprints.

In all the techniques one can obtain less complex and performance-lossless explicit

MPC solution, but the downside is that these techniques are limited to small sys-

tems due to the significant pre-computing efforts required to solve non-trivial opti-

mization problems.

A common drawback of all aforementioned approaches (optimal and subopti-

mal) is, the data of the simplified EMPC feedback law needs to be stored as a

floating-point numbers in the IEEE-754 format, 32-bits for single precision and

64-bits for double precision numbers. The bit size of numbers is thus constant

regardless of the values they store. Thus, another direction of research is focused

on reducing the bit size of underlying controller data (Ti, vi, Li and hi) by using

different data representation techniques.

Complexity Reduction Via Data Representation Techniques

• Data de-duplication and Huffman encoding: One way of reducing mem-

ory footprints of explicit MPC by exploiting geometric properties is shown

in Szücs et al. (2011). They used three-layer procedure, first identifies sim-

ilarities between polytopic regions in the form of an affine transformation.

If such a mapping exists, certain regions can be represented using less data.

3.5. COMPLEXITY 47

The second layer then applies data de-duplication to identify and remove re-

peating sequences of data (where identical half-spaces are not duplicated in

the description of the critical regions). Regions are then described by inte-

ger pointers to such a unique set. Finally, Huffman encoding (Knuth, 1985)

is applied to compress such integer pointers using prefix-free variable-length

bit encoding. The memory reduction comes at the price of having to per-

form additional computation on-the-fly, amount of which was quantified for

each level. Since, there is a one-to-one correspondence between the origi-

nal data and their compressed counterparts, the compressed feedback law

exhibits the same properties (e.g., control performance, closed-loop stability

and constraint satisfaction) as the original one.

• Low-precision data representation: An alternative was presented by Suardi

et al. (2014) and Suardi et al. (2016) where the authors have proposed the use

of low precision arithmetic. However, the use of low precision requires extra

effort to guarantee the constraint satisfaction in explicit MPC Suardi et al.

(2016). Using this approach one can gain speed and save hardware resources

but, at the price of losing controller performance.

Limitations of the Complexity Reduction Techniques

Using above mentioned complexity reduction techniques, one can achieve a drastic

reduction in the complexity of controller or speed-up the on-line computations.

However, this is achieved at the price of suboptimality, performance deterioration,

and in some cases constraint violation. Following are some limitations of complexity

reduction techniques for the use in real-time applications running on embedded

hardware.

• Approximation techniques leads to the suboptimal solutions which are un-

acceptable in safety critical applications such as in bio-medical, aerospace,

automotive, etc.

• With some techniques performance of the systems reduces with the reduced

complexity which is generally not allowed in aerospace applications for exam-

ple in spacecraft where it is expected to use less fuel with more performance.

• Performance-lossless techniques can overcome above two limitations but down-

side is that these techniques are limited to small problems and generally in-

48 CHAPTER 3. EXPLICIT MODEL PREDICTIVE CONTROL

dustrial problems are of medium to large. For such problem size the controller

needs more memory which is not the case with embedded hardware like PLC,

where memory is in kB.

• Generally, all techniques use floating-point representation for data storage

and arithmetic operations. It is the fact that floating-point format gives

different output on different hardware with round-off, overflow and underflow

errors which are not considered in the design of the controller.

• Although significant amount of memory can be saved by performance-lossless

techniques, it suffers from the increase of on-line computational complexity

needed to evaluate the PWA function.

3.6 Software Tools

There are several software frameworks available for design of explicit MPC control

laws for linear and hybrid systems. Following are some popular and well-known

toolboxes used in EMPC design and export of on-line algorithms in different low

level languages such as C.

• Multi-Parametric Toolbox (MPT): It is a freely available Matlab based tool-

box which implements state of the art numerical solvers for solving EMPC

problems. MPT contains easy to use interfaces for modeling, control design,

computation, analysis, and post-processing of optimal controllers in an ex-

plicit form. The obtained solution can be exported as a stand-alone lookup

table to the C programming language and compiled on a target application.

It can be downloaded from the link:

http://people.ee.ethz.ch/∼mpt/3/.

Some complexity reduction techniques are available in MPT and demon-

strated in Kvasnica et al. (2015). More details can be found in Kvasnica

et al. (2004). Herceg et al. (2013b)

• Hybrid Toolbox: It is a Matlab based toolbox for modeling, simulating,

and verifying hybrid dynamical systems, for designing and simulating model

predictive controllers for hybrid systems subject to constraints, and for gener-

ating linear and hybrid MPC control laws in a piecewise affine form that can

3.7. PROBLEM STATEMENT 49

be directly embedded as C code in real-time applications. It can be down-

loaded from following link

http://cse.lab.imtlucca.it/∼bemporad/hybrid/toolbox/.

• Parametric Optimization Toolbox (POP): It is a Matlab based state-of-the-

art multi-parametric programming solver for continuous and mixed-integer

problems. It supports a comprehensive problem library featuring an ever-

increasing number of example problems. It can be downloaded from the

following link

http://parametric.tamu.edu/POP/.

• MOBY-DIC: It is a Matlab toolbox for the integrated design of MPC state-

feedback control laws and the digital circuits implementing them on FPGAs.

Explicit MPC laws can be designed using optimal and suboptimal formu-

lations, directly taking into account the specifications of the digital circuit

implementing the control law, together with the usual control specifications.

Tools for a-posteriori stability analysis of the closed-loop system, and for the

simulation of the circuit in Simulink, is also included in the toolbox. It can

be downloaded from the following link

http://ncas.dibe.unige.it/software/MOBY-DIC_Toolbox/

• Model Predictive Control Toolbox: Explicit MPC can be designed using Mat-

lab MPC Toolbox is available at https://www.mathworks.com/.

3.7 Problem Statement

Explicit MPC is the attractive solution for the real-time applications demanding

high update rates. The main bottleneck in implementation of EMPC for real-time

applications are the controller complexity expressed in the form of a number of

regions. Storing controller data requires larger and larger memory blocks in the

hardware implementation as the number of regions grows. Needless to say, unless

all pre-computed data can be fit into memory, the controller cannot be implemented

in practice. Therefore, it is of imminent importance to keep the memory footprint

of the controller on an acceptable level defined by any hardware. Therefore, in

order to deploy EMPC controller on embedded hardware without losing optimality

and closed-loop performance accuracy, we intended to represent controller data in

50 CHAPTER 3. EXPLICIT MODEL PREDICTIVE CONTROL

a more efficient data format which requires less number of bits to store the same

information as floating-point format stores. Before going into the solution, we will

see how many floating-point numbers do we need to store for a controller.

3.7.1 Memory Calculations

The total memory footprint of the explicit solution in (3.12) expressed in floating-

point numbers can be compactly given by

S(κ) = nRnuN(nx + 1) +
nR∑

i=1

ci(nx + 1), (3.14)

where the first part represents the size of all Ti, vi pairs1 (which have constant

dimensions for all regions), and the second part represents the memory footprints

of all polyhedral regions (with ci being the number of half-spaces2 of the i-th region).

The bit size of κ is then B(κ) = bS(κ) where either b = 32 or b = 64, depending on

whether single precision or double precision floating-point numbers are used.

3.7.2 Solution

Our objective is, to reduce the bit size of a given explicit optimizer in (3.12) by de-

vising a more memory efficient representation of floating-point numbers contained

in the real-valued vectors/matrices Li, hi, Ti, vi. This will be achieved by repre-

senting each floating-point number as a universal number (unum) with a variable

size of its bit code. In other words, instead of using a constant value of b as the

bit size of each floating-point number, each such number is represented by bj bits

with bj ≤ b. This needs to be done in such a way that the variable-sized bit

codes encode the same information as fixed-size floating-point numbers, i.e., the

encoding/decoding is done in a performance-lossless fashion.

The key idea of unums is to store a real number with a variable bit length format

using six sub-fields: the sign bit, exponent, fraction, uncertainty bit, exponent

size, and fraction size. Basically, unum is a superset of IEEE-754 floating-point

formats (Muller et al., 2009) that tracks whether a number is an exact float or lies

1In fact, if the MPC controller is implemented in a receding horizon fashion, then only the

first component of U⋆, i.e., u⋆
0
, is required. In such case, the matrices Ti, vi can be truncated to

just the first nu rows and the first part in (3.14) becomes nRnu(nx + 1).
2At this point we assume that only the non-redundant half-spaces are stored, i.e., ci ≤ ng

where ng is the number of constraints in (3.4b).

3.8. SUMMARY 51

in an open interval between two exact floats. Compared to the standard floating-

point formats; the variable size in unum offers an ability to change its representative

range and precision, and the uncertainty bit indicates the exactness of the value

represented. Thus, unums use fewer bits, obey algebraic laws, and do not require

rounding, overflow, and underflow for proper operations Gustafson (2015). Flexible

dynamic range and precision allow one to avoid fixed bit size data format. Generally,

control engineers choose either single (32-bit) or double (64-bit) precision data

formats to get higher accuracy and precision. However, this typically wastes storage

and bandwidth by a factor of two or more since the maximum precision is only

needed for some fraction of the calculations. The base of the unum format is

floating-point formats, therefore the next chapter is devoted to the floating-point

numbers.

3.8 Summary

This chapter has presented the concept of explicit model predictive control which is

an attractive approach to overcome the limitations of on-line optimization problems.

The idea of explicit MPC is to pre-compute a constrained optimization problem

considering the current state of the plant as a parameter. This is so-called explicit

solution yields a look-up table of optimal feedback gain matrices. Then on-line

synthesis of controller boils down to a point location problem (see Section 3.3)

which can be solved very quickly on low-cost and low-end embedded hardware. The

main advantage of this approach is to simplify the on-line computational burden

to off-line. However, this approach suffers from the curse of dimensionality. The

number of region, computed by the mp-QP algorithm, increases exponentially with

the number of constraints, length of prediction horizon and is highly sensitive to

the dimension of parameter space. Several efforts has been made to reduce the

computational complexity of explicit MPC, the brief summary of many of memory

reduction techniques is given in Section 3.5. The computational complexity of

explicit MPC can be reduced by approximating the controller or by reducing the

number of bits to store controller data. Existing approximation techniques turns

to reduce complexity but it gives suboptimal controller. Generally, controller data

is stored in the form of IEEE floating-point number standard which takes the same

number of bits to store all the numbers irrespective of the value. So, this thesis

focuses on reducing the number of bits for store controller data. We propose to use

52 CHAPTER 3. EXPLICIT MODEL PREDICTIVE CONTROL

universal number format to design low-memory explicit MPC (see Section 3.7.2).

The back bone of universal number format is IEEE floating-point standard therefore

next chapter presents number systems and floating-point format.

Chapter 4

Number System

The focus of this chapter is, representation of data in an embedded devices such as

FPGAs, PLCs, micro-controllers, and DSPs. We begin with a brief introduction

to fixed-point and floating-point number systems and a discussion of floating-point

arithmetic.

Representing and manipulating real numbers efficiently is required in many

fields of science, engineering, finance, and more. Nowadays, in all these fields

computers are used to make calculations. Computers were originally built as fast,

reliable, and accurate computing machines. It does not matter how large computers

get, one of their main tasks will be to always perform the computation. The history

of computer arithmetic is always intertwined with that of digital computers. In all

microprocessor based computers, the Arithmetic Logic Unit (ALU) is one of the

units that takes most of the design effort to introduce more accurate and faster

techniques. Most of these computations need real numbers as an essential category

in any real-world calculations. Real numbers are not finite; therefore no finite

representation method is capable of representing all real numbers, even within a

small range. Thus, most real values will have to be represented in an approximate

manner. To be able to finish calculations in a reasonably short time, a computer

must limit the numbers it may represent for all number types. For an integer,

this limits the maximum value it can take and for a real number it limits both

the maximum value and the precision of the numbers it may represent. While this

technically makes a real number to a rational number, which may be represented by

two integers such a scheme is not efficient, and there are better ways to represent

53

54 CHAPTER 4. NUMBER SYSTEM

these rounded reals. Following are some number systems used to represent real

value.

4.1 Fixed-Point Number System

The finite-word representation of fractional numbers is known as fixed-point. A

fixed-point representation of a number consists of an integer and fractional compo-

nents. In the system of fixed-point, a real number is represented as follows

x = xnt−ni−1, . . . , x1, x0 . x−1, x−2, . . . , x−nf
, (4.1)

where ni is the number of digits to the right of the decimal point or integers, nf is

the number of digits to the left or fraction and nt is the total number of digits used

to represent a real number. In the actual practical implementation, the decimal

point is not stored physically. Instead, a particular choice of base, b̄, e.g., (2 or

10) is adopted where the real number corresponding to the above representation

(without the point) is given by xi

bni
, where xi is the integer represented by the same

sequence of digits without a point.

Representing sign numbers in binary fixed-point is normally done using 2’s

complement notation for easy addition and subtraction. The value, x, of a fixed-

point number is given by

x = −sb̄ni +
nt−1∑

j=0

xib̄
j−nf , (4.2)

where s is the sign of the number. In this thesis, we use different colors to specify

various bits in a number presentation. There are two parameters go with every

computer-based system used in manipulating real numbers. The first parameter is

the possible range of the values that can be represented. In the fixed-point system,

the range of real numbers that can be represented is given as follows

(xmax

b̄ni

,
xmin

b̄ni

)

, (4.3)

where xmin and xmax are integers whose values depend on the representation scheme.

If a sign-magnitude is being adopted to represent the integer x, the range would

be given respectively by
(1− b̄nt−1

b̄ni

,
b̄nt−1 − 1

b̄ni

)

. (4.4)

4.1. FIXED-POINT NUMBER SYSTEM 55

If on the other hand, a b̄’s complement representation is used, the range of values

is given by
(b̄nt/2

b̄ni

,
b̄nt/2− 1

b̄ni

)

. (4.5)

The other parameter necessary to characterize a number representation system is

related to the accuracy of the system. This parameter refers to the Unit of Least

Precision (ULP).

Definition 4.1.1. (ULP). ULP is a difference between exact values represented

by bit strings that differ by one unit in the last significant position, the last bit of

the fraction.

The maximum error that can be incurred as a result of representing a real

number with infinite precision in a finite-precision machine is ULP/2. For the

system of fixed-point, ULP is given by 1/bnt , thus making the maximum error

(emax) associated with that system equal to

emax =
1/b̄nt

2
. (4.6)

Another related parameter is the maximum relative error (remax) which is scaled

by the absolute value of xi, as shown next

remax =
1

(2× |xi| × b̄nt)
≤ 0.5. (4.7)

The fixed-point number is defined by its format nt, ni, nf or its properties range,

resolution, and bias. For detailed description and fixed-point arithmetic see, e.g., Pad-

gett and Anderson (2009), Parhami (1999). In this thesis, we are dealing with base

2 so, in all the examples we will consider b̄ = 2.

4.1.1 Examples

Example 1: Represent a real number 2.75 in to 8-bit fixed-point format with 3

fraction bits.

Solution: To store value 2.75 in given bits we will need 8-bits out-off that 3-bits

will be reserved for a fraction, the steps to represent a number in the fixed-point

format are:

Step 1: Represent number in binary format, i.e., 10.112

Step 2: Insert above bits into 8-bit format with 3-bits for fraction, i.e. 00010.1102.

56 CHAPTER 4. NUMBER SYSTEM

Example 2: Represent a real number −2.75 in to 10-bit fixed-point format with

5 fraction bits.

Solution: To store value −2.75 in given bits we will need 10-bits out-off that 5-bits

will be reserved for fraction, as this is a negative number we will need to store the

steps to represent number in the fixed-point format are

Step 1: Represent number in binary format, i.e. −10.112,

Step 2: Insert above bits into 10-bit format with 5-bits for a fraction, i.e.,

−00010.110002,

Step 3: Represent number in 2’s complement form, i.e., 11101.001112.

4.1.2 Advantages

• Arithmetic and logical operations may be performed on fixed-point numbers

using integer arithmetic.

• A fixed-point number representation can use less memory to store values.

4.1.3 Disadvantages

• It is easy for an arithmetic operation to produce an “overflow” or “underflow”.

• A fixed-point number has a limited integer range. It is not possible to repre-

sent very large and very small numbers with the same representation.

• A fixed-point number has limited accuracy. You must choose the representa-

tion which will best suit your needs.

Definition 4.1.2. (Overflow). Overflow occurs when the result of an arithmetic

operation is too large to fit into the given representation of a real number.

Definition 4.1.3. (Underflow). Underflow occurs when the result of an arith-

metic operation is too small to fit into the given representation of a real number.

4.2 Floating-Point Number System

Floating-Point (FP) arithmetic is a popular method of implementing real numbers

on computers and embedded devices. The binary point is not fixed and can be

4.2. FLOATING-POINT NUMBER SYSTEM 57

placed anywhere concerning the significand digits of the number. The main idea

behind the floating-point representation is, only a fixed number of bits are used

and the binary point “floats” to wherever it is needed in those bits. As a matter

of fact, the computer only holds bit patterns. Floating-point expressions can rep-

resent a wide span of numbers. When a floating-point calculation is performed,

the binary point floats to the correct position in the result. But the floating-point

format requires slightly larger storage to represent the binary point. The speed

of floating-point operations is one of the important figures of merit for computers

in many application domains. It is usually measured in Floating-Point Operations

Per Second (FLOPS).In general, real numbers are represented approximately by

a fixed number of significand digits and scaled using an exponent. The base for

scaling is normally 2, 10 or 16. The typical number that can be represented exactly

is of the form:

m× b̄e, (4.8)

where m is the mantissa or significand which is a non-negative number represented

by fixed-point form and e is the exponent. A typical floating-point number repre-

sentation is composed of four main components: the sign (s), the mantissa (m),

the exponent base (b̄), the exponent (e). The exponent base (b̄) is usually implied

(not explicitly represented) and is usually a power of 2, except of course in the case

of decimal arithmetic. A floating-point number x has the value

x = (−1)s × (2)e × (1.m). (4.9)

The mantissa (m) is made up of the leading “1” and the fraction, where the leading

“1” is implied in hardware. This means that for computations that produce a

leading “0”, the fraction must be shifted. The only exception for a leading one is

for gradual underflow. The exponent is usually kept in a biased format, where the

value of e is

e = etrue + bias, (4.10)

where etrue is the true exponent and e is the biased exponent with following bias

bias = 2es−1 − 1, (4.11)

where es is the size of the exponent (in bits). This is done to make comparisons

of floating-point numbers easier. The main point to observe is that there are two

signs involved in a floating-point number

58 CHAPTER 4. NUMBER SYSTEM

1. The number sign indicates a positive or negative floating-point number and

is usually represented by a separate sign bit (signed-magnitude convention).

2. The exponent sign is embedded in the exponent and it indicates mainly a large

or small number. If the bias is a power of 2, the exponent is the complement

of its Most Significant Bit (MSB).

The use of biased exponent format has virtually no effect on the speed or cost

of exponent arithmetic (addition/subtraction), given the small number of bits in-

volved. It does, however, facilitate zero detection (zero will be represented with the

smallest biased exponent of 0 and all-zero significant) and magnitude comparison

(we compare normalized floating-point numbers as if they were integers).

4.3 The Floating-point Standard

4.3.1 History

The current standard on floating-point numbers is called IEEE Std 754−1985 IEEE

Standard for binary floating-point arithmetic and is probably the most popular

standard that the IEEE ever published. As far as most young programmers and

hardware designers are concerned, IEEE 754 numbers are the only floating-point

numbers that ever existed. But floating-point arithmetic has existed on commercial

computers since the 1950’s and has a long history of inconsistent behavior as well

as producing different results on different computer types.

In 1976 Intel, long before it becomes a household name, decides that they want

to create the best floating-point arithmetic on a single chip based on the popular

VAX minicomputer by Digital Equipment Corporation (DEC). Their competitors

around the Silicon Valley begin to hear rumors about this chip and form the IEEE

754 working group in 1977. Intel joins the group and discloses a part of their

specification mainly the representation formats and the basic arithmetic operations

along with some of the reasoning behind it. The standard process takes years

mainly due to a battle over gradual underflow which specifies how numbers between

the smallest representable number and zero should be handled. DEC believes that

gradual underflow is infeasible with current technology, if not impossible, but a

Berkeley student proves them wrong by designing a floating-point unit for the

VAX that handles gradual underflow. IEEE 754 is released in 1985 and today only

4.3. THE FLOATING-POINT STANDARD 59

old Macs with Motorola 68 K processors lack IEEE 754 support (Kahan, 1996).

Every IEEE Standard has a lifetime of five years, whereafter it must reaffirm.

IEEE 754 has been reaffirmed twice (Overton, 2001), (Muller et al., 2009), but in

2001 it was determined to be so out-of-date that a revision was due. One of the

major changes in the revision is the incorporation of the lesser known IEEE Std

854− 1987 IEEE Standard for radix-independent floating-point arithmetic (IEEE

854) which is the decimal version of IEEE 754. Other changes include the Fused

Multiplication and Addition (FMA) operation which is common in modern floating-

point units, representations of floating-point numbers in 16-bit, 128-bit and higher

in addition to the 32-bit and 64-bit, a new list of recommended operations, as

well as resolution of some ambiguities. Finally, the revision emphasizes that an

implementation of the standard may be designed hardware, written in software or

be a combination of both. As in the initial standardization process which took

eight years, progress is slow and despite seven years of work, the standard has

not been published at the time of writing. Fortunately, the public drafts have

been publicly available and quite stable, so there has been considerable research

on implementing arithmetic operations with the new decimal formats. In 2008, the

revised format was published by IEEESA standards board (IEEE Std 2008, 2008).

In the literature, IEEE 754− 1985 and its new revision are frequently called IEEE

754 and IEEE 754−R, respectively.

For the more detailed description about standard see, e.g., ANSI/IEEE Std

1985 (1985), Overton (2001), IEEE Std 2008 (2008), Muller et al. (2009).

4.3.2 Formats Defined In Standard

The IEEE standard defines, in fact, four floating-point formats in binary form,

half-precision (16-bits), single precision (32-bits), double precision (64-bits), and

quadruple precision (128-bits). As mentioned above, every format is composed of

three fields: sign(s), exponent (e), and mantissa (m). Fig. 4.1 shows the represen-

tation of half precision format. Table 4.1 shows the parameters each format like

number of total number of bits, bits in each field, and values of true and biased

exponents.

60 CHAPTER 4. NUMBER SYSTEM

Half Precision

This is relatively new as a standard format with a width of 16-bits. It was promoted

starting around 2002 by graphics and motion picture companies as a format that

could store visual quantities like light intensity, with a reasonable coverage of the

accuracy and dynamic range of the human eye. Only recently chip designers have

started to support the format as a way to store numbers, and existing processors

do not perform native arithmetic in half precision; they promote to single precision

internally and then demote the final result. The real value of a number x assumed

by a given 16-bit data with a given biased sign, exponent, and mantissa is

x = (−1)s ×
(
1 +

10∑

j=1

x10−j2−j
)
× 2(e−15). (4.12)

Single Precision

Single precision binary floating-point is used due to its wider range over fixed-point

(of the same bit-width), even if at the cost of precision. The real value of a number

x assumed by a given 32-bit data with a given biased sign, exponent (the 8-bit

unsigned integer), and a 23-bit mantissa is

x = (−1)s ×
(
1 +

23∑

j=1

x23−j2−j
)
× 2(e−127). (4.13)

Single precision floats are often used in imaging and audio applications (medical

scans, seismic measurements, video games) where their accuracy and range is more

than sufficient.

Double Precision

This gives 15˘17 significant decimal digits precision. If a decimal string with at

most 15 significant digits is converted to IEEE 754 double precision representation

and then converted back to a string with the same number of significant digits,

then the final string should match the original. If an IEEE 754 double precision is

converted to a decimal string with at least 17 significant digits and then converted

back to double, then the final number must match the original. The real value

assumed by a given 64-bit double precision data with a given biased exponent and

4.3. THE FLOATING-POINT STANDARD 61

a 52-bit mantissa is

x = (−1)s ×
(
1 +

52∑

j=1

x52−j2−j
)
× 2(e−1023). (4.14)

Double precision and single precision are the most common sizes built into processor

chips as fast, hard-wired data types.

Quadruple Precision

This precision is mainly available through software libraries, with no mainstream

commercial processor chips designed to do native arithmetic on such large bit

strings. The most common demand for quad precision is when a programmer

has discovered that the double precision result is very different from the single

precision result, and wants assurance that the double precision result is adequate.

Because quad precision arithmetic is typically executed with software instead of

native hardware, it is about twenty times slower than double precision. Despite its

impressive accuracy and dynamic range, quad precision is every bit as capable of

making disastrous mathematical errors as its lower-precision kin. And, of course,

it is even more wasteful of memory, bandwidth, energy, and power than double

precision. In this format, the value of real number can be obtained by

x = (−1)s ×
(
1 +

112∑

j=1

x112−j2−j
)
× 2(e−16383). (4.15)

4.3.3 Ranges of FP Numbers

Let’s consider single-precision FP for a second. Note that we’re taking essentially

a 64-bit number and reinterpreting the fields to cover a much broader range. Some-

thing has to give, and it’s precision. For example, regular 32-bit integers, with all

precision centered around zero, can precisely store integers with 32-bits of resolu-

tion. Single-precision floating-point, on the other hand, is unable to match this

resolution with its 24-bits. It does, however, approximate this value by effectively

truncating from the lower end and rounding up. Consider a binary number in 32

bit integer,

11110000 11001100 10101010 10101111

62 CHAPTER 4. NUMBER SYSTEM

09101415

s e m

022233031

s e m

05263

s e m

5162

0112127

s e m

126 111

Figure 4.1: Representation of IEEE 754 half, single, double, and quad precision

floating-point format with three sub-fields.

in single precision FP it is given as

1.11100001100110010101011× 231

which is exactly equal to

11110000 11001100 10101011 00000000

This approximates the 32-bit value, but doesn’t yield an exact representation. On

the other hand, besides the ability to represent fractional components (which inte-

gers lack completely), the floating-point value can represent numbers around 2127,

compared to 32-bit integers maximum value around 232.

The range of positive floating-point numbers can be split into normalized num-

bers (which preserve the full precision of the mantissa), and denormalized numbers

which use only a portion of the mantissa’s precision. Table 4.2 summarizes the

ranges of all four FP formats for normalized numbers.

4.3.4 Special Values

There are several theorems and special cases which needed special attention for

floating-point numbers Muller et al. (2009). Such cases are documented in great

detail in the literature leaving no room for confusion. Even small changes in the

4.3. THE FLOATING-POINT STANDARD 63

Table 4.1: Main parameters of the formats specified by the IEEE 754 standard.

Parameter/Format Half Single Double Quad

Width 16 32 64 128

sign 1 1 1 1

exponent 5 8 11 15

mantissa 8 23 52 112

exponent min −14 −126 −1022 −16382

exponent max 15 127 1023 16383

bias 15 127 1023 16383

accuracy (decimals) 3 7 15 34

calculation of the final value can have disastrous effects with respect to the correct

result. The floating-point representation of zero and other special numbers will be

discussed below.

Normalized

As said before, they are represented by (4.9).

Denormalized

If all the bits of the exponent are 0 but the mantissa is non-zero (else it would be

interpreted as a zero), then the number is a denormalized number, which does not

have a hidden bit (1.) before binary point. It can be represented as follows:

x = (−1)s × (2)emin × (0.m). (4.16)

From this it can be seen that 0 is a special case of denormalized number.

Zero

According to IEEE 754 standard floating-point format it provides signed zeros,

that “+0” and “0”. The exponent and mantissa bits are zero. Computation of

64
C

H
A

P
T

E
R

4
.

N
U

M
B

E
R

S
Y

S
T

E
M

Table 4.2: Main parameters of the formats specified by the IEEE 754 standard.

Ranges/Format Normalized Approximate Decimal

Half ±2−14to(2− 2−10)× 215 ± ≈ 6.1× 10−5 to ≈ 6.5504× 104

Single ±2−126 to (2− 2−23)× 2127 ± ≈ 1.175× 10−38 to ≈ 3.403× 1038

Double ±2−1022 to (2− 2−52)× 21023 ± ≈ 2.225× 10−308 to ≈ 1.798× 10308

Quad ±2−16382 to (2− 2−63)× 216383 ± ≈ 3.362× 10−4932 to ≈ 1.190× 104932

4.3. THE FLOATING-POINT STANDARD 65

Table 4.3: IEEE 754 Standard Special Values.

Exponent Mantissa Represents

e = emin − 1 m = 0 ±0

e = emin − 1 m 6= 0 0.m× 2emin

emin ≤ e ≤ emax - 1.m× 2e

e = emin − 1 m = 0 ±0

e = emax + 1 m = 0 ±∞
e = emax + 1 m 6= 0 NaN

division might require signed zeros. A division operation performed with positive

zero results in positive infinity and the same operation with negative zero results

in negative infinity. Divide by zero operation will be handled by the exception

handler (discussed in the next section).

Not a Number (NaN)

The standard defines two types of NaNs;

1. signaling NaNs (sNaNs) do not appear, in default mode, as the result of

arithmetic operations. They signal the invalid operation exception whenever

they appear as operands. For instance, they can be used for uninitialized

variables;

2. quiet NaNs (qNaNs) propagate through almost all operations without signal-

ing exceptions. They can be used for debugging and diagnostic purposes. As

stated above, a quiet NaN is returned whenever an invalid operation excep-

tion occurs with the corresponding trap disabled.

Infinity

The values +∞ and −∞ are denoted with all the exponent bits equal to 1 and

mantissa bits equal to 0. The sign bit decides whether it is +∞ or −∞. Being able

to denote ∞ as a specific value is useful because it allows operations to continue

pass overflow situation. The IEEE standard specifies the following special values

(see Table 4.3): ±0, denormalized numbers, ±∞ and NaNs. These special values

are all encoded with exponents of either emax + 1 or emin.

66 CHAPTER 4. NUMBER SYSTEM

Table 4.4: Results of Special Operations.

Operation Result

x÷±∞ 0

±∞×±∞ ±∞
±x(6= 0)×±0 ±∞
±x(finite)×±∞ ±∞
∞+∞ +∞
∞−−∞ +∞
−∞−∞ −∞
−∞−+∞ −∞
∞−∞ NaN

−∞+∞ NaN

±0÷±0 NaN

±∞÷±∞ NaN

±∞× 0 NaN

4.3.5 Special Operations

Operations on special numbers are well-defined by IEEE. In the simplest case, any

operation with a NaN yields a NaN result. Other operations are as shown in the

Table 4.4:

4.3.6 Exceptions

The standard states five exceptions (invalid, division by zero, overflow, underflow,

inexact) must be signaled when detected. This can be done by taking a trap

(discussed below) or by setting a status flag. The default mode is not to use traps.

For each type of exception, a status flag must be provided: that status flag

is set each time the corresponding exception occurs and no corresponding trap

occurs. The status flags are “sticky”, so that the user does not need to check

them immediately, but after some sequence of operations, such as at the end of

a function. A system that is compliant with the standard must provide the user

with ways of resetting, testing, and altering the flags individually. The standard

also recommends (yet does not require) that the user should be able to save and

restore all the flags simultaneously.

4.3. THE FLOATING-POINT STANDARD 67

Traps

The standard allows the user to choose what should be done, when one of the five

exceptions occurs by specifying a trap handler for that exception. He can choose

to disable, save, or restore an existing trap.

• When a trap is disabled, the corresponding exception is handled according

to the default mode.

• When an exception is signaled and the corresponding trap handler is enabled,

the trap handler is activated. In some cases, a result is delivered to the trap

handler.

Now, we discuss the various cases that lead to an exception in the IEEE standard.

Divide by Zero

When computing x/0, if x is a nonzero finite number, the division by zero exception

is signaled. If no trap occurs, the result is infinity, with the correct sign.

Overflow

Let us call an intermediate result what would have been the rounded result if

the exponent range was unbounded. The overflow exception is signaled when the

absolute value of the intermediate result is strictly larger than the largest finite

number,

xmax = (2 − 2e)× 2emax , (4.17)

or, equivalently, when the exponent of the intermediate result is strictly larger than

emax. When there is an overflow and no trap occurs, the returned result depends

on the rounding modes:

• it will be ±∞ with the round-to-nearest mode, with the sign of the interme-

diate result;

• it will be ±xmax with the round-toward-zero mode, with the sign of the

intermediate result;

• it will be +xmax for a positive intermediate result and −∞ for a negative one

with the round-toward −∞ mode;

68 CHAPTER 4. NUMBER SYSTEM

• it will be +xmax for a negative intermediate result and +∞ for a positive one

with the round-toward +∞ mode.

Underflow

When a nonzero result of absolute value less than 2emin is obtained (i.e., it is in the

subnormal range), a significant loss of accuracy may occur. And yet, sometimes,

such a result is exact. To warn the user when an inaccurate very small result is

computed, the standard defines two events: tininess (a nonzero result of absolute

value less than 2emin is obtained), and loss of accuracy. Concerning the detection

of tininess, there is some ambiguity in the standard, (see, Muller et al. (2009)):

• tininess can be signaled either before rounding, that is, when the absolute

value of the exact result is nonzero and strictly less than 2emin;

• or it can be signaled after rounding, that is, when the absolute value of the

nonzero result rounded as if the exponent range were unbounded is strictly

less than 2emin .

Also, loss of accuracy may be detected either when the result differs from what

would have been obtained were exponent range unbounded, or when it differs from

what would have been obtained were exponent range and precision unbounded. If

an underflow trap is not implemented or is not enabled (which is the default), the

result is always correctly rounded and underflow is signaled only when both tininess

and loss of accuracy have been detected. When a trap has been implemented and

is enabled, underflow is signaled when tininess is detected.

Invalid operation

The invalid operation exception is signaled:

• when one of the operands is a signaling NaN;

• when performing one of the following additions/subtractions: (−∞)−(−∞), (+∞)−
(+∞), (−∞) + (+∞), (+∞) + (−∞);

• when performing multiplications of the form (±0)× (±∞);

• when performing divisions of the form (±0)/(±0) or (±∞)/(±∞);

4.3. THE FLOATING-POINT STANDARD 69

• when computing remainder (a, b), where a = ±0 or b = ±∞;

• when computing
√

a with a < 0;

• when converting a floating-point number to an integer or a decimal format

when there is no satisfactory way of representing it in the target format. This

can happen in case of overflow, or for converting infinity or NaN if the target

format does not have representations for such data;

• when performing comparisons of unordered operands using predicates that

are listed as invalid if unordered.

If the exception occurs without a trap, the returned result will be a quiet NaN.

Inexact

If the result of an operation (after rounding) is not exact, or if it overflows without

an overflow trap, then the inexact exception is signaled. The correctly rounded or

overflowed result is returned (to the destination or to the trap handler, depending

on whether an inexact trap in enabled or not).

4.3.7 Rounding

In the IEEE standard, rounding occurs whenever an operation has a result that is

not exact, since (except of binary decimal conversion) each operation is computed

exactly and then rounded. By default, rounding means round toward nearest. The

standard requires that three other rounding modes be provided, namely round to-

ward 0, round toward +∞, and round toward −∞. For the round-to-nearest mode,

two special rules are worth mentioning: the way numbers larger than the largest

finite floating-point number are handled, and the way numbers exactly halfway

between two consecutive floating-point numbers are rounded. More precisely, in

round-to-nearest mode:

• some absolute value larger than or equal to (2 − 2−(e+1)) × 2emax will be

rounded to ∞ (with the appropriate sign).

• other numbers will be rounded to the nearest floating-point number of the

format under consideration. In case of a tie, the floating-point value whose

last significand bit is a zero will be returned. Because of this, that rounding

mode is frequently called round to nearest even.

70 CHAPTER 4. NUMBER SYSTEM

When used with the convert to integer operation, round toward −∞ causes

the convert to become the floor function, while round toward +∞ is ceiling. The

rounding mode affects overflow, because when rounding toward 0 or round toward

−∞ is in effect, an overflow of positive magnitude causes the default result to

be the largest representable number, not +∞. Similarly, overflows of negative

magnitude will produce the largest negative number when rounding toward +∞ or

round toward 0 is in effect.

4.3.8 Flag

The IEEE standard has a number of flags and modes. As discussed above, there

is one status flag for each of the five exceptions: underflow, overflow, division by

zero, invalid operation and inexact. There are four rounding modes: round toward

nearest, round toward +∞, round toward 0, and round toward −∞. It is strongly

recommended that there be an enable mode bit for each of the five exceptions.

4.4 FP Arithmetic

Now that number representation has been discussed; we can focus on arithmetic.

Floating-point arithmetic is considerably more complex than integer arithmetic.

We will limit our discussion to the four most basic floating-point arithmetic oper-

ations: addition/subtraction, multiplication, and division. The objective is not

to provide the most efficient algorithms or give an exhaustive overview of all

floating-point arithmetic, but rather to show the complexity involved in compu-

tations with floating-point numbers. For more detailed description see, e.g., Sites

(2008), Behrooz (2000), Swartzlander (2015).

4.4.1 Addition/Subtraction

In contrast to integer arithmetic, addition, and subtraction are more complicated

than multiplication and division. Assuming that the operands are already in the

IEEE 754 format, performing floating-point addition. Let a = sa, ea, ma and b =

sb, eb, mb represent two floating-point numbers. The change from fixed to floating-

point turns the simple addition into a 10 step process:

1. Convert to internal representation

4.4. FP ARITHMETIC 71

2. Find exponent difference

3. Swap the mantissas

4. Align mantissas

5. Add/subtract mantissas

6. Detect leading one

7. Normalize result

8. Round

9. Adjust exponent

10. Convert to IEEE-754 format

First, the exponents are compared and the difference between them is found. Based

on this the mantissas are swapped so that the first operand is larger one and the

second is the smaller one. The mantissas are then aligned so that they have the

same exponent. The preferred exponent is max(ea, eb) for binary. The operands

are then added or subtracted depending on the Effective addition/subtraction Op-

eration (EOP).

While the mantissas are unsigned, the floating-point numbers are not, thus

an addition of the mantissas must handle an effective subtraction of the unsigned

mantissas as well. As subtraction is included in the internals of floating-point

addition, all floating-point adders also take an operation signal indicating addition

or subtraction that together with the sign bits determines the EOP.

After the addition/subtraction the significand may not fit in the format anymore

as it may be a digit too large, or it may be unnormalized. A Leading One Detector

(LOD) finds the position of first non-zero digit and a shifter normalizes the result to

a format obeying the input format. The exponent is updated with the shift. After

normalization inexact results must be rounded according to the current rounding

mode as explained in Section 4.3.7. As the rounding may overflow the significand

has to be normalized again and the exponent must be updated accordingly. Finally,

the internal format must be converted to an IEEE 754 interchange format if it is

possible. Otherwise, as special value must be chosen.

72 CHAPTER 4. NUMBER SYSTEM

4.4.2 Multiplication

Floating-point multiplication and division are much simpler than addition/sub-

traction. In total it is a 7 step process where step 2 to 4 conceptually differ from

addition:

1. Convert to internal representation

2. Multiply mantissas and add exponents in parallel

3. Detect leading one

4. Normalize result

5. Round

6. Adjust exponent

7. Convert to IEEE-754 format

The multiplier is a normal fixed-point multiplier that emits a result with a width

that is twice the format. The result must be normalized since it is twice as wide

as the IEEE 754 interchange format permits. Binary multiplication only needs to

examine a single digit. The remaining steps are the same as for addition.

Division

Like floating-point subtraction is similar to addition, division is similar to multipli-

cation. Conceptually only the second step is different.

1. Convert to internal representation

2. Divide mantissas and subtract exponents in parallel

3. Detect leading one

4. Normalize result

5. Round

6. Adjust exponent

7. Convert to IEEE-754 format

4.4. FP ARITHMETIC 73

But the algorithms for division of the mantissas is not similar to multiplication

at all. Where a fixed-point multiplier consists of three simple often combinatorial

steps (partial product generation, operand reduction using redundant adders and

a final adder), the fixed-point division is a sequential operation with many possi-

ble implementations. There are three common algorithms which are called SRT,

Newton-Raphson reciprocal approximation and multiplicative normalization (Mon-

sson, 2008).

4.4.3 Limitations of FP

IEEE-754 floating-point standard have many advantages, however, it also have

many limitations especially when one wants to use it on the hardware. Following

are the some limitations of FP:

• One-size-fits-all: In floating-point standard, the word width of each format is

fixed and one needs to use all the bits irrespective of the actual bits required

to store some number. In other words FP format is kind of i.e., “one-size-fits-

all” format. For example, the value of 0 in single precision format is

0 00000000 00000000000000000000000

from the representation, one can immediately notice that, all 32 bits are used

to store 0 which is not required.

• Wastage of bits: As a consequence of one-size-fits-all, FP format waste many

bits to store information. Now, let’s take a look at another example of rep-

resentation value of constant π using double precision FP. The constant π is

approximated to 11-decimal accuracy as 3.1415926535 (Finch, 2003, Chapter

1). In general, a floating-point approximation of real value can be expressed

as

0 10000000000
10010010000111111011010101

00010000010001011101000100

In this representation, we used 64-bits to store the approximated value of π.

Here, we can see that even after using 64-bits we are not getting the exact

74 CHAPTER 4. NUMBER SYSTEM

value of π as it is approximated and wasted many bits. Also, FP wastes many

bits on NaNs.

• Floats prevent the use of parallelism: for faster algorithm, embedded device

like FPGA provides features to parallelism but it is worth to say that FP

format gives different answers for same operation performed in parallel and

serial, i.e. (a + b) + (c + d) (parallel) 6= ((a + b) + c) + d (serial).

• Disobeys algebraic laws like associativity, commutativity or distributivity on

real numbers (Carver, 2012, Chapter 4).

• FP format gives different answers on different hardware: conversion of a

floating-point number to and from arbitrary strings is not guaranteed across

platforms.

• IEEE floats report rounding, overflow, underflow in processor register bits

that no one ever sees. Rounding errors prevent use of parallel methods.

• Too much energy and power needed per calculation.

To overcome the above limitations in this thesis, we are proposing the use of uni-

versal numbers for explicit MPC data storage and point location algorithm. In the

unum arithmetic we will need the background of interval arithmetic. So next, we

will give a short overview of interval arithmetic.

4.5 Interval Arithmetic

Interval arithmetic, interval mathematics, interval analysis, or interval computa-

tion, is a method developed by mathematicians since the 1950s and 1960s, as an

approach to putting bounds on rounding errors and measurement errors in math-

ematical computation and thus developing numerical methods that yield reliable

results. Very simply put, it represents each value as a range of possibilities. For

example, instead of estimating the height of someone using standard arithmetic

as 2.0 meters, using interval arithmetic, we might be certain that the person is

somewhere between 1.97 and 2.03 meters.

This concept is suitable for a variety of purposes. The most common use is to

keep track of and handle rounding errors directly during the calculation and of un-

certainties in the knowledge of the exact values of physical and technical parameters.

4.5. INTERVAL ARITHMETIC 75

The latter often arise from measurement errors and tolerances for components or

due to limits on computational accuracy. Interval arithmetic also helps find reliable

and guaranteed solutions to equations and optimization problems.

Mathematically, instead of working with an uncertain real x, we work with the

two ends of the interval [a, b] that contains x. In interval arithmetic, any variable

x lies between [a, b], or could be one of them. A function F , when applied to x, is

also uncertain. In interval arithmetic F produces an interval [c, d] that is all the

possible values for F (x) for all x ∈ [a, b].

The main focus of interval arithmetic is the simplest way to calculate upper

and lower endpoints for the range of values of a function in one or more variables.

These endpoints are not necessarily the supremum or infimum, since the precise

calculation of those values can be difficult or impossible.

4.5.1 Basic Terms and Concepts

Recall that the closed interval denoted by [a, b] is the set of real numbers given by

[a, b] = {x ∈ R : a ≤ x ≤ b}. (4.18)

In general interval can be closed, half-open, open.

4.5.2 Relation, Width, Absolute Value, Midpoint

• Order relations for intervals: we know that the real numbers are ordered by

the relation <. This relation is said to be transitive: if a < b and b < c, then

a < c for any a, b, and c ∈ R.

• Width: the width of an interval x is defined and denoted by

width(x) = b− a. (4.19)

• The absolute value of x, denoted |x|, is the maximum of the absolute values

of its endpoints:

|x| = max(abs(a)− abs(b)). (4.20)

• The midpoint of x is given by

mid(x) =
(b− a)

2
. (4.21)

76 CHAPTER 4. NUMBER SYSTEM

4.5.3 Operations of Interval Arithmetic

We are about to define the basic arithmetic operations between intervals. The key

point in these definitions is that computing with intervals is computing with sets.

For example, when we add two intervals, the resulting interval is a set containing

the sums of all pairs of numbers, one from each of the two initial sets.

Addition

By definition, the sum of two intervals x = [a, b] and y = [c, d] is give by

x + y = [a + c, b + d]. (4.22)

Subtraction

The difference of two intervals x = [a, b] and y = [c, d] is give by

x− y = [a− d, b− c]. (4.23)

Multiplication

The multiplication of two intervals x = [a, b] and y = [c, d] is give by

x× y = [min(ac, ad, bc, bd), max(ac, ad, bc, bd)]. (4.24)

Division

The division of two intervals x = [a, b] and y = [c, d] is give by

x/y = [a, c]× 1

[b, d]
(4.25)

where 1/[b, d] = [1/d, 1/b] if 0 /∈ [b, d]. For division by an interval including zero

1/[b, 0] = [−∞, 1/b] and 1/[0, d] = [1/d,∞]. For the detailed description about

interval arithmetic see, e.g Moore (1979), Hickey et al. (2001), Moore et al. (2009).

4.6 Summary

This chapter has introduced the basics of number system used in computer arith-

metic. Number system and computer arithmetic are important part of optimization

4.6. SUMMARY 77

algorithm especially when one have limited hardware resources. The choice of num-

ber system has a crucial impact on the hardware resources required to store data

and perform arithmetic. This chapter gives a basic introduction to IEEE stan-

dard floating-point number system with its arithmetic and features. Furthermore,

the short introduction to interval arithmetic given which is the basic for unum

arithmetic. In the next chapter, we discuss about the unum and its arithmetic.

78 CHAPTER 4. NUMBER SYSTEM

Chapter 5

Universal Numbers

If we are willing to reduce the memory footprints of explicit MPC without com-

prising on optimality and performance, we can achieve this goal by using universal

number or unum format. In idea of unum arithmetic was introduced two years

ago by Dr. John Gustafson, by breaking completely from the IEEE float-type for-

mat, resulting in fixed bit size values, fixed execution time, no exception values

or “gradual underflow” issues, no wasted bit patterns, and no redundant represen-

tations (like “negative zero”). In this chapter, we will revisit the idea of unum

arithmetic which Dr. John has published in his book, “The End of Error: Unum

Computing” (Gustafson, 2015).

The universal number, encompasses all standard floating-point formats, as well

as fixed-point and exact integer arithmetic. Unums get more accurate answers

than floating-point arithmetic, yet use fewer bits in many cases, which saves mem-

ory, bandwidth, energy, and power. Unlike floating-point numbers, unums make

no rounding errors, and cannot overflow or underflow. Unums are the superset of

floating-point format which is a superset of integers. Unum arithmetic has more

rigor than interval arithmetic, but uses far fewer bits of storage. A unum com-

puting environment dynamically and automatically adjusts precision and dynamic

range so programmers need not choose which precision to use; therefore it’s easier

and safer to use than floating-point arithmetic. Unlike floating-point, unum arith-

metic guarantees bitwise identical answers across different computers. Unums help

with issues like memory bandwidth, power efficiency, and programmer productivity

which are precious and limiting.

79

80 CHAPTER 5. UNIVERSAL NUMBERS

5.1 Unum Format

Suppose we want to build on the IEEE principles, but be able to vary the precision

and dynamic range to the optimum number of bits, and also record whether the

number is exact or lies within a range, instead of rounding the number. We can do

that by attaching additional bit fields that make the number self-descriptive. Call

this a “universal number”.

Definition 5.1.1. (Universal Number). It is a bit string of variable length that

has six sub-fields: sign bit, exponent, mantissa, uncertainty bit or ubit, exponent

size, and mantissa size.

Fig. 5.1 shows the general representation of the unum format. The left three

fields are like IEEE FP format, but with unums these fields have better rules for

handling special numbers like Not-a-Number (NaN) and infinity.

es bits ms bits
s e m ub es - 1 ms - 1

Figure 5.1: General representation of the universal number format with six sub-

fields.

The description of each field is given below:

1. sign (s): In unum it is the same as the sign bit in floating-point numbers. For

positive numbers, the sign is 0, and for negative numbers, it is 1.

2. exponent (e): In unum exponent is like exponent in the floating-point number

but its bit length is specified by exponent size denoted by es; see below.

3. mantissa (m): Like the exponent, the mantissa in unum is the same as in

floating-point number, but its length depends on the number of bits specified

by mantissa size denoted by ms; see below.

4. ubit (ub): This bit in the unum is used to indicate whether the number is

exact or in an interval. It is 0 if unum is exact and 1 if unum is in the

open interval between two exact unums. The ubit is exactly like the “. . . ”

in an expression like “2/3 = 0.666 . . . ”. It means there are more bits after

5.1. UNUM FORMAT 81

the last bit of the fraction, not all 0 and not all 1, but unspecified. Instead

of rounding, the ubit stores the fact that a result lies between representable

exact values.

The ubit also marks the case of value being between the largest representable

real number and infinity or between the smallest magnitude representable

number and zero. The ubit allows unums to handle cases that float would

overflow to infinity or underflow to zero, instead treating them as precisely

defined ranges that are never confused with infinity or zero. In short, an

unum is honest about what it does and what it does not know about value.

Unums manage uncertainty by making it explicit, and storing it in the number

self-description.

5. exponent size (es): The fields exponent size and mantissa size are self-descriptive

lengths offset by 1. The number of bits in this field depends on “how many

bits we want to allocate to specify es”, i.e., the size of exponent size (ess).

This field allow the change of width with every calculation, much the way the

exponent in a FP changes the binary point location with every calculation.

In exponent sizefield with ess-bits, we can have es that range anywhere from

1-bit to 2ess bits.

6. mantissa size (ms): The number of bits in this field depends on “how many

bits we want to allocate to specify ms” i.e. the size of mantissa size (mss).

With a mss-bit ms field, we can have ms that range anywhere from 1-bit to

2mss bits. The es and ms values can thus be customized based on the needs

of the application and the user, not set by any standard.

5.1.1 Environment

As in floating-point standard, there are different types of precision like half, single,

double and quad, in unum we have environments. The environment is given by the

pair {ess, mss}.

Definition 5.1.2. (Size of exponent size (ess)). The ess is the number of bits

allocated to store the maximum number of bits in the exponent field of an unum.

For example, suppose we have exponent value = 11112; then es = 4, which is

1002, and ess= 3 bits (number of bits needed to express es of 4 bits).

82 CHAPTER 5. UNIVERSAL NUMBERS

Definition 5.1.3. (Size of mantissa size (mss)). The mss is the number of

bits allocated to store the maximum number of bits in the mantissa field of an

unum.

For example, suppose we have mantissa value = 1101010112; then ms = 9,

which is 10012 and mss= 4 bits (number of bits needed to express ms of 9 bits).

The exponent sizes in IEEE FP format are 5 (1012) for half precision, 8 (10002)

for single precision, 11 (10112) for double precision, and 15 (11112) for quad pre-

cision. Hence, four bits suffice to cover all IEEE FP formats. There is always at

least one exponent bit and one mantissa bit. Therefore, we keep an offset of one in

the last two fields of unum, i.e., exponent size and mantissa size. Because of this

offset in original exponent sizes, IEEE exponent sizes can be represented as (1002),

(1112), (10102), and (11102). In the unum, four bits would be enough to specify

any exponent size ranging from 20 bit (fixed-point format) to 24 bits (more than

IEEE FP quad format).

As with the exponent sizes, mantissa sizes in IEEE FP format are 10 (10102),

23 (101112), 52 (1011002), and 112 (11100002). So, seven bits are enough to cover

all IEEE mantissa sizes (again, offset by one). This covers mantissa sizes from 20

bit to 27 bits. The number of bits needed to specify the size of exponent size (zero

to four) and the size of mantissa size (zero to seven) in unum is called ess and

mss respectively, and that pair is called the Environment or env{ess, mss} and

unum with specific Environment is denoted as unum{ess, mss} e.g., unum{3, 2}.
The user is free to define this pair based on the needs (accuracy, memory, etc.) of

an application. The Environment can be as small as {0, 0} or as large as computer

memory and speed permits (Gustafson, 2015, Chapter 4).

5.1.2 Utag

Definition 5.1.4. (Utag). In the unum format, the set of the last three fields,

ubit, exponent size, and mantissa size is called the utag.

The utag is the “tax” we pay for flexibility, compactness, and exactness infor-

mation, just as having exponents embedded in a number is the “tax” that floating-

point numbers pay for describing their individual scale factor. The additional

self-descriptive information is why unums are to a floating-point numbers what

floating-point numbers are to integers (Gustafson, 2015, Chapter 4).

The size of the “tax” is important enough that it deserves a name: utagsize.

5.2. TYPE CONVERSION 83

Definition 5.1.5. (Utagsize). The number of bits in utag is called utagsize.

The number of bits in utagsize is equal to 1 + ess + mss.

5.2 Type Conversion

This section describes the conversion of exact unum to a floating-point number and

inexact unum to floating-point number.

5.2.1 Exact Unum To Floating-Point Number

We need a way to convert the floating-point part of an unum into its mathematical

value. First, we use the self-descriptive bits in the utag to determine the exponent

size and mantissa size. Then we can extract the sign, exponent, and mantissa bits

using bit masks. From those values, we build a function that converts the part left

part (s, e, and m) of unum number into a real number using IEEE binary float

rules. When the ubit is 0, the formula for a unum value is exact and given as

x = (−1)s ×







22−2es−1 ×
(

m
2ms

)

if e = all 0 bits,

∞ if e, m, es, and ms have all bits= 1,

21+e−2es−1 ×
(

1 + m
2ms

)

otherwise.

(5.1)

This expression is the improved version of IEEE FP format which does not waste

the huge number of bits on NaN.

It is easy to convert an exact unum to an IEEE standard FP. To do that, you

find the smallest size IEEE float with fields large enough for the unum exponent and

mantissa, and pad the unum with extra bits to match the worst-case size allotment

in the float. If the exponent is all 1 bit and represents a finite value, you discard all

the mantissa information and replace it with 0 bits, to represent ∞ in the style of

the FP. There are no NaN values to convert, since an unum NaN is not exact; its

ubit is set to 1. In same environments settings e.g., env{2, 2} it is possible to list

all the exact unums see in (Gustafson, 2015, Chapter 4) for more the list of exact

unums.

84 CHAPTER 5. UNIVERSAL NUMBERS

5.2.2 Inexact Unum to Floating-Point Number

A unum that has its ubit set to 1 indicates a range of values strictly between two

exact values, that is, an open bound. The formula for the value should be simple,

but we do need to be careful of the values that express infinity and maximum real

value, and if we go “beyond infinity” by setting the ubit, we get a NaN. Also, if

the number is an inexact zero, then the direction “farther from zero” is determined

by checking the sign bit. The expression for conversion of real number to inexact

unum is given as follows:

x =







(5.1) if ub = 0,

NaN if u = sNaNu or u = qNaNu,

(big,∞) if (5.1) = bigu,

(−∞,−big) if (5.1) = bigu + signmask,

((5.1) for u, (5.1) for (u + ulpu)) if s = 0,

((5.1) for (u + ulpu), (5.1) for u) if s = 1, which covers all other cases.

(5.2)

In the above expression, u is denoted as unum; big denotes the biggest real value

representable by an unum, bigu denotes the unum bit string that represents big

value and signmask is consists of sign bit of unum and other bits are 0. Notation

ulpu is the unum bit string with a 1 bit in the last bit of the mantissa and zero for its

other bits. The detailed information about conversion can be found in (Gustafson,

2015, Chapter 4).

Example 5.2.1. Convert the constant π to an unum. Consider the constant π is

approximated to 11-decimal accuracy as 3.1415926535 (Finch, 2003, Chapter 1)

To get the values of sign, exponent, and mantissa, we convert the real value

in to the double precision FP representation using (4.14). The double precision

representation of π is

0 10000000000
10010010000111111011010101

00010000010001011101000100

In this representation, we used 64-bits to store the approximated value of π. Here,

we can see that even after using 64-bits we are not getting the exact value of π and

5.2. TYPE CONVERSION 85

wasted many bits.

Having the IEEE 64-bit representation of π at hand, one can proceed to convert

it to unum. Assume that we want to have a 4-bit exponent and a 4-bit mantissa for

the value of π; in unum it can be obtained by setting env{2, 2}. Using unum format

the value of constant π can be represented in only 11-bits as given below

0 1 1001 1 00 11

It’s interesting to notice that only 11 bits are used to store the value of π which

saved 53-bits compared to the IEEE double precision format. Also, the ub bit is

1 which indicates that the value is in an interval. An inexact unum is not the

same thing as a rounded floating-point number. In fact, it is contradictory, since

IEEE float return inexact calculations as exact (incorrect) numbers. To obtain

interval values, we used the Unit of the Least precision (ULP) which is equal to

the difference between exact values in bit format that differs by one unit in the

last place. If we insert the values of sub-fields in (5.2), we get the value of π as the

open interval (3.125, 3.25).

Now, one might ask “how to do the addressing of unum sub-fields?”. With

fixed-size floats, you tend to think of loading or storing all their bits at once. With

unums, you have a two-step process like you would have reading character strings

of variable length. Based on the environment settings, the computer loads the bits

of the exponent size and mantissa size fields, which point to where the sign bit,

exponent, and mantissa be to the left of the utag. It then loads the rest of the

unum and points to the next unum. This is why exponent size and mantissa

size are like processor control values; they tell the processor how to interpret bit

strings. A collection of unums are packed together exactly the way the words in

this paragraph are packed together. As long as a set of unums is of substantial

length, there is little waste in using conventional power-of two sizes to move the

unum data in blocks, such as cache lines or pages of memory. Only the last block

is “ragged” in general, that is, only partly full. Blocking the set of unums can also

make it easier to do random access into the set. For more details see (Gustafson,

2015, Chapter 4).

86 CHAPTER 5. UNIVERSAL NUMBERS

5.3 Special Values in Unum Environment

Similar to the special values of IEEE 754 FP numbers, unum also have special

values for each environment. Table 5.1 and Table 5.2 shows the features of unum

and approximate decimal versions of the maxreal and smallsubnormal real values

computed when the environment is set to {3, 2} and {3, 4}, {2, 2}, respectively. For

the detailed meaning of each feature, see (Gustafson, 2015, Chapter 4).

Table 5.1: Features and values of the unum format for env{3, 2}
.

Feature Meaning Value in env{3, 2}

ess Size of size of exponent 3

mss Size of size of mantissa 3

utagsize Number of bits in the utag 6

maxubits Maximum bits in an unum 19

posinfu The unum for +∞ 0 11111111 1111 0 111 11

neginfu The unum for −∞ 1 11111111 1111 0 111 11

qNaNu The unum for quiet NaN 0 11111111 1111 1 111 11

sNaNu The unum for signaling NaN 1 11111111 1111 1 111 11

maxrealu Finite unum closest to +∞ 0 11111111 1110 0 111 11

negbigu The largest magnitude negative unum 1 11111111 1110 0 111 11

smallsubnormalu unum for the smallest real 0 00000000 0001 0 111 11

maxreal The largest representable real ≈ 6.38× 1038

smallsubnormal Smallest representable real > 0 ≈ 7.35× 10−40

5.3. SPECIAL VALUES IN UNUM ENVIRONMENT 87

Table 5.2: Features and values of the unum format for env{3, 4} and env{2, 2}.

Feature Value in env{3, 4} Value in env{2, 2}

ess 3 2

mss 4 2

utagsize 8 3

maxubits 33 14

posinfu 0 11111111 1111111111111111 0 111 1111 0 1111 1111 0 11 11

neginfu 1 11111111 1111111111111111 0 111 1111 1 1111 1111 0 11 11

qNaNu 0 11111111 1111111111111111 1 111 1111 0 1111 1111 1 11 11

sNaNu 1 11111111 1111111111111111 1 111 1111 1 1111 1111 1 11 11

maxrealu 0 11111111 1111111111111110 0 111 1111 0 1111 1110 0 11 11

negbigu 1 11111111 1111111111111110 0 111 1111 1 1111 1110 0 11 11

smallsubnormalu 0 00000000 0000000000000001 0 111 1111 0 0000 0001 0 11 11

maxreal ≈ 6.8× 1038 ≈ 4.8× 102

smallsubnormal > 0 ≈ 1.79× 10−43 ≈ 9.76× 10−4

88 CHAPTER 5. UNIVERSAL NUMBERS

5.4 No Overflow, No Underflow, and No Round-

ing

If a number becomes too large to express in a particular floating-point precision

(overflow), what should we do? The IEEE Standard says that when a calculation

overflows, the value ∞ should be used for further calculations. However, setting

the finite overflow result to exactly∞ is infinitely wrong. Similarly, when a number

becomes too small to express, the standard says to use 0 instead. Both substitutions

are potentially catastrophic things to do to a calculation, depending on how the

results are used. The Standard also says that a flag bit should be set in a processor

register to indicate if an overflow occurred. There is a different flag for underflow,

and even one for “rounded”.

We do not need overflow because instead, we have “almost infinite” values

(maxreal,∞) and (−∞,−maxreal). We do not need underflow because we have

the “almost nothing” values (−smallsubnormal, 0) and (0, smallsubnormal). A

computation need never erroneously tell you, say, that 10−100000 is “equal to zero”

but with a hidden (or intentionally disabled) underflow error. Instead, the result is

marked strictly greater than zero but strictly less than the smallest representable

number. Similarly, if you try to compute something like a billion to the billionth

power, there is no need to incorrectly substitute infinity, and no need to set off an

overflow alarm.

5.5 How Unum Saves Number of Bits?

As described above, using env{4, 7}we can achieve the superset of IEEE FP formats

with the utagsize equal to 1 + 4 + 7 = 12. Also, the minimum number of bits in

an unum is 3 + utagsize and the maximum possible number of bits, i.e., maxubits

with value is 2 + ess + mss + 2ess + 2mss.

Definition 5.5.1. (Maxbits). It is the maximum number of bits an unum can

have.

At this stage, one might wonder: How can the unum approach help to reduce

memory as compared to floating-point, if it adds more bits to the format?.

The main reason is that it frequently allows us to use far fewer bits for the expo-

nent and mantissa than a “one-size-fits-all” format choice. The mantissa size and

5.6. THE VAST RANGE OF UNUMS 89

the exponent size of an unum increases and decreases as needed, and the average

size is so much less than the worst case size of an IEEE float that the savings are

more than enough to pay for the utag. In a representation of π we can save 53-bits

if env is set to 2, 2. In that example, we paid 3-bits for utag but saved 53-bits and

accuracy.

The exponent and mantissa in double precision IEEE FP format are 11 and

52 but if we use env{2, 2}, we can save at least 7 bits in exponent and 48 bits in

mantissa as compared to exponent and mantissa in double FP. Also, we save bits for

more common strings, as for π exponent is only 1-bit where env{2, 2} supports up

to 4, so we saved 3-bits there. In unums the ess and mss is automatically manged

by computer. Automatic range and precision adjustment are inherent in the unum

approach, the same way float arithmetic automatically adjusts the exponent. The

key is the ubit, since it tells us what the level of certainty or uncertainty is in a

value. The exponent size and fraction size change the meaning of an ULP, so the

three fields together provide the computer with what it needs, at last, to automate

the control of accuracy loss. If you add only one of the three fields in the utag, you

will not get a very satisfactory number system.

5.6 The Vast Range of Unums

In unums, a computer can manage its own environment sizes by detecting unsatis-

factory results and recalculating with a bigger utag, the programmer might want

some control over this for improved efficiency. It is usually easy for a programmer

to make a good estimate of the overall accuracy needs of an application, which

still leaves the heavy lifting (dynamically figuring out the precision requirements

of each operation) to the computer.

For example, the env{2, 2} unum environment looks appropriate for seismic

signal processing because of the absence of rounding, overflow, and underflow errors.

It provides for an exponent and mantissa up-to 4 bits long. Therefore, its maximum

dynamic range matches that of a half precision float (16-bit) and its mantissa has

more than five decimals of accuracy, yet it cannot require more than 14 bits of total

storage (and usually takes far less than that). Using an env{2, 2} environment

instead of a env{4, 7} environment reduces the utag length to 3 instead of 12,

a small but welcome savings of storage. It is of central interest to see how the

unums hold up-to the previously introduced IEEE 754 floating-point numbers. To

90 CHAPTER 5. UNIVERSAL NUMBERS

illustrate the behavior of the unums, different features of the unum and floats are

laid out in Table 5.3. It can be seen from the table 5.3 that the unum takes fewer

bits, for example in env{2, 2} it takes 2 fewer bits and in env{4, 5} unum takes 5

bits less than double precision FP. Even-though the maximum number of bits in

env{3, 4} is 33, the average number of bits will be less than 32 as a number of bits is

varying in unums. So, env{3, 4} can be preferred as compared to a single precision

floating-point number. Range of values represented by env{2, 2} and env{3, 4} are

almost equal to half and single precision FP, but env{4, 5} gives a very high range

as compared to double precision FP, that too in less number of bits.

5.7 Three Layers

Every computer has a hidden “scratchpad” for arithmetic. Perhaps the simplest

example is the multiplier. One layer of calculation is where all numbers are stored

in some standard format. There is also an internal layer, a hidden scratchpad

with extra bits, where the computer performs math perfectly, or at least accu-

rately enough to guarantee correct representation in the standard format. The bits

shown stored in scratchpad are never shown to the user; they are part of the hidden

scratchpad. There are similar structures for doing floating-point addition and sub-

traction (where the bits must usually be shifted first because their exponents put

their binary point in different places), divides, and square roots. In unum, there

are three layers, unum layer, math layer, and human layer.

5.7.1 The Unum Layer (u-layer)

The u-layer is the level of computer arithmetic where all the operands are unums

(and data structures made from unums, like ubounds). With only unums one can

not perform arithmetics as it does not create a representation that is closed under

the four basic arithmetic operations.

ubound

Unums give us the vocabulary needed for precise control of sets of real numbers, not

just point values. Now consider the case that we want to multiply unum (0, 1) with

the unum 2. The multiplication should be an unum (0, 2), but there is no such unum.

In unum representation even if ubit is active, it does not create a representation

5
.7

.
T

H
R

E
E

L
A

Y
E

R
S

91

Table 5.3: Unums features for env{2, 2}, {3, 4}, and {4, 5} selected to match IEEE FP formats (half, single and double

precision).

Feature env{2, 2} Half env{3, 4} Single env{4, 5} Double

maxbits 14 16 33 32 59 64

minbits 8 16 11 32 13 64

maxreal 4.8× 102 6.5× 104 6.8× 1038 3.4× 1038 1.0× 109864 1.8× 10308

small 9.7× 10−4 6.1× 10−5 1.7× 10−43 1.2× 10−38 1.0× 10−9873 2.2× 10−308

92 CHAPTER 5. UNIVERSAL NUMBERS

that is closed under the four basic arithmetic operations (+,−,×,÷). We need to

be able to define a range of real numbers where we can represent the endpoints

carefully. The way to do this is the ubound.

Definition 5.7.1. (ubound). Ubound is a single unum or a pair of unums that

represent a mathematical interval of the real line. Closed endpoints are represented

by exact unums, and open endpoints are represented by inexact unums.

The set of ubound is closed under addition, subtraction, multiplication, and

division. Also, square root, powers, logarithm, exponential, and many other ele-

mentary functions needed for technical computing. Ubounds are the superset of

traditional “interval arithmetic” but are much more powerful. For more details

see (Gustafson, 2015, Chapter 4).

Example 5.7.1. Suppose unum u1 represents the exact value 4 and another unum

u2 represents the open interval (5, 5.25). The pair {u1, u2} is a ubound, one that

represents the mathematical interval [4, 5.25}. The left endpoint “(5” in “(5, 5.25)”

is ignored. Any inexact unum that has a range that ends in “5.25)” will do, so

we generally use the one that takes the fewest bits. The ubound is the outermost

endpoints.

With ubounds, we are ready to define the unum equivalent of the layer the user

and programmer see directly when working with real values.

5.7.2 The Math Layer

This layer is similar to the scratchpad on computers. To build a hardware system

that uses unums, there must be a well-defined scratchpad layer. The scratchpad

equivalent of a ubound is the general bound or gbound.

gbound

A gbound is the data structure used for temporary calculations at higher precision

than in the unum environment, i.e., the scratchpad. The way to build a gbound

data structure with integer values is given in (Gustafson, 2015, Chapter 5). The

scratchpad in a unum environment is based on gbounds; it is called the g-layer.

5.8. UNUM ARITHMETIC 93

g-layer

The g-layer is the scratchpad where results are computed such that they are always

correct to the smallest representable uncertainty when they are returned to the u-

layer. The g-layer knows all about the env{es, ms}, so when converting it does the

minimum work needed to get to the right u-layer answer.

5.7.3 The Human Layer (h-layer)

Certainly, there is a scratchpad layer and a layer where numbers are represented

as a bit strings with format rules. The third layer is the human layer or h-layer,

where numbers exist in forms that humans can send to a computer and experience

the results in a form understandable to humans.

5.8 Unum Arithmetic

Universal number arithmetic is a little bit similar to interval arithmetic (Hickey

et al., 2001), but unum has additional complexity due to the open versus closed

endpoints, dynamic exponent and mantissa sizes, and correct handling of math op-

eration (addition, subtraction, multiplication, and division) that exceed the limits

of unums in a particular environment. In the following, we will shortly explain

some of the math operations that will be used in the explicit MPC algorithm.

5.8.1 Addition/Subtraction:

For the addition of two real numbers, x1 and x2 with using unum format the first

task is to obtain their ubound like [a, b] and [c, d] and then the addition of these two

ubounds are straightforward, [a + c, b + d]. But, enough care is needed to add open

and closed intervals. If we want to add the open interval (−∞, 0) to∞, the correct

answer in unum is∞ because the left endpoint “(−∞” indicates some finite value. If

we add∞ to any finite value, it will always results in ∞. In contrast, conventional

interval arithmetic would treat the computation as containing −∞ +∞, which

results in a NaN.

We need two addition tables for ubounds: one for the left endpoints and one

for the right endpoints, where we write “[x1” or “(x1” to indicate a left endpoint

and “x2]” or “x2)” to indicate a right endpoint. The tables tells us what to do

94 CHAPTER 5. UNIVERSAL NUMBERS

in every possible situation. There are thought provoking cases that required for

unums design on a computer and needs to be handle carefully, such as:

• (−∞ + [∞ = [∞ and −∞] +∞) = −∞].Exact) ±∞ always “wins” over an

open (inexact) ±∞.

• “(∞” and “−∞)” aren’t included in the table because they cannot occur.

Inexact ∞ can only be a right endpoint, and inexact −∞ can only be a left

endpoint.

• If [x1 + [x2 exceeds maxreal, the result is “(maxreal”, not “[maxreal”. If

x1] + x2] is bigger than maxreal, the result is “∞)”. Similarly for results that

are less than -maxreal.

The rules for unum addition are laid in tables, covering the real number line and

infinities, where x1 and x2 are exact floats expressible in the u-layer. If the table

entry is simply the result of adding the values, it is shown in black, but exceptions

are shown in RubineRed. Similarly, if the open-closed nature of the endpoint is

simply the OR of the two inexact flags, the parenthesis or bracket is shown in black;

exceptions are shown in RubineRed. The rules for adding the left endpoints in the

g-layer are laid in Table 5.4:

Table 5.4: Rules for adding the left endpoints in the g-layer.

+Left [−∞ (−∞ [x2 (x2 [∞

[−∞ [−∞ [−∞ [−∞ [−∞ (NaN

(−∞ [−∞ (−∞ (−∞ (−∞ [∞
[x1 [−∞ (−∞ [x1 + x2 (x1 + x2 [∞
(x1 [−∞ (−∞ [x1 + x2 (x1 + x2 [∞
[∞ (NaN [∞ [∞ [∞ [∞

Next, the rules for adding the right endpoints in the g-layer are laid in Table 5.5.

Returning to the u-layer is trivial except for the cases involving [x1 + x2 and

x1 +x2]. For those, if x1 +x2 is not an exact unum, the inexact unum that contains

the sum is used instead, which changes the closed endpoint to an open one. This

also takes care of the case where x1 + x2 is less than −maxreal or greater than

5.8. UNUM ARITHMETIC 95

Table 5.5: Rules for adding the right endpoints in the g-layer.

+Right −∞] x2) x2] ∞) ∞]

−∞] −∞] −∞] −∞] −∞] NaN)

x1) −∞] x1 + x2) x1 + x2) ∞) ∞]

x1] −∞] x1 + x2) x1 + x2] ∞) ∞]

∞) −∞] ∞) ∞) ∞) ∞]

∞] NaN) ∞] ∞] ∞] ∞]

maxreal, since the open intervals (−∞,−maxreal) and (maxreal,∞) become the

endpoint.

The ubound subtraction operation is computed by simply adding the first ar-

gument to the negative of the second argument. That is, x1 − x2 = x1 + (−x2) is

computed in the g-layer and converted back to the u-layer.

5.8.2 Multiplication

For real intervals, if both ubounds are closed intervals, multiplication is simple as

described in the Section 4.5.3. But, for unbounded intervals that do not hold. In a

multiplication of conventional interval the case 0×±∞ is undefined which results

in NaN but, in unum we have more information about the endpoints and we get

the following examples:

• The result of ∞ × (a, b) is [−∞,∞] and not NaN, where a and b are the

nonzero endpoints of opposite sign.

• The result of 0× inexact∞ is 0 and inexact 0×∞ is ∞.

• The result of inexact 0 × a is a nonzero value, where a is any finite nonzero

number.

• The result of inexact 0× inexact∞ is the entire positive real number line.

For the multiplication of negative-negative and positive-negative numbers, see (Gustafson,

2015, Chapter 10).

To tackle special cases in multiplication of unbounded intervals we consider

the multiplication table for left and right endpoints defined in (Gustafson, 2015,

Chapter 10). Table 5.6 and Table 5.7 shows the rules for left and right endpoint

96 CHAPTER 5. UNIVERSAL NUMBERS

multiplication with nonnegative inputs. As with the addition tables, we use Ru-

bineRed for cases that take a little thought and need to be handled carefully in the

multiplication logic.

Table 5.6: Rules for multiplying the left endpoints in the g-layer.

×Left [0 (0 [x2 (x2 [∞

[0 [0 [0 [0 [0 (NaN

(0 [0 (0 (0 (0 [∞
[x1 [0 (0 [x1 × x2 (x1 × x2 [∞
(x1 [0 (0 [x1 × x2 (x1 × x2 [∞
[∞ (NaN [∞ [∞ [∞ [∞

Table 5.7: Rules for multiplying the right endpoints in the g-layer.

×Right 0] x2) x2] ∞) ∞]

0] 0] 0] 0] 0] NaN)

x1) 0] x1 × x2) x1 × x2) ∞) ∞]

x1] 0] x1 × x2) x1 × x2] ∞) ∞]

∞) 0] ∞) ∞) ∞) ∞]

∞] NaN) ∞] ∞] ∞] ∞]

If x1 and x2 are both negative, the preceding tables work if we apply them to

−x1 and −x2. If only one of x1 or x2 is negative, then we reverse the sign of the

negative argument and also reverse the roles of left and right.

5.8.3 Compare Operator:

The easiest operations to write for unums are comparisons. They are different from

comparisons of floats, since unums and ubounds can represent ranges of numbers

and thus overlap completely, partially, or not at all.

The comparison x1 ≤ x2 or (a, b) ≤ (c, d) is equivalent to checking b < c.

Ubounds or unums are equal if they represent the same gbound. They must have

the same endpoints and the same open-closed endpoint properties.

5.9. SUMMARY 97

5.9 Summary

This chapter has described a new number system called universal numbers. A brief

description of unum format with its six sub-fields is given at the beginning of a

chapter. Unum is the superset of a floating-point numbers, and one can convert a

floating-point number of any precision to the unum format with the specified unum

environment. Section 5.2 describes conversion functions used to convert floating-

point number to unum and vise-versa. Similar to the floating-point standard, unum

format also has special values which are discussed in Section 5.3. Unum format

takes fewer bits to store the same information as floating-point format and does

not give flag for overflow, underflow, and rounding, see Section 5.4. At the end of

this chapter, unum arithmetic is descried. This chapter is mainly dedicated to the

idea of unum and its arithmetic. In the next chapter the implementation of unum

format is discussed.

98 CHAPTER 5. UNIVERSAL NUMBERS

Chapter 6

Embedded Implementation

The solution of multi-parametric optimization problem enables MPC to be used on

systems which need fast sampling rates since PWA function evaluation is usually

a high speed operation (compared to solving an optimization problem). However,

obtaining the explicit optimal MPC solution amounts to solve (offline) a parametric

optimization problem, which is, in general, a difficult task. Although the problem

is tractable and practically solvable for many interesting control applications, the

offline computational effort grows fast as the problem size increases. This is the

case for long prediction horizon, a large number of constraints and high dimensional

systems. Moreover, as the optimization complexity grows, the explicit solution

complexity also commonly grows in terms of the number of control laws forming

the PWA function. This means the storage space needed for the explicit MPC

implementation increases and the online function evaluation problem becomes more

complex as described in Chapter 3.

There are several techniques to reduce computational complexity of explicit

MPC solutions, some of them are suboptimal, and some are optimal. Another way

of reducing controller complexity is by representing the number of bits required to

store all the data (Ti, vi, Li, and hi) by different number system as discussed in

Chapter 3. We used universal numbers to represent the controller data to reduce

the memory required to store that data. From the Chapter 5, it is well under-

stood that unum can serve as a powerful tool to reduce the memory without losing

closed-loop performance. The goal of this chapter is to show the feasibility of unum

on CPU and embedded platforms like FPGA, PLC, and microcontroller. The rea-

99

100 CHAPTER 6. EMBEDDED IMPLEMENTATION

son for implementing unum on these platforms is that the embedded devices are

most commonly used in the industrial environment, e.g., PLC is the popular and

rugged hardware used in many process plants for automation and control, FPGA

is mainly used in fast dynamic systems such as in automotive applications and mi-

crocontrollers are also used in industrial automation and automobile applications.

6.1 MATLAB Toolbox

As it is a well-known fact that Matlab is very popular and widely used software

both in the academics and industry, so obvious priority was to implement universal

number arithmetics in Matlab. There are several toolboxes available for model

predictive control design and implementation in Matlab which exports hardware-

specific low-level codes and we can use unums on the top of exported codes to

reduce memory footprints. To use the unums in Matlab and export low-level

code directly in the form of unums we have developed1 a Matlab-based unum

toolbox called munum which is open-source and easy to use. This toolbox can be

used for developing unum-based algorithms and generating unum numbers from

floating-point numbers for embedded implementation, e.g., the data of explicit

optimizer in (3.12) (i.e., the floating-point numbers contained in vectors/matrices

Ti, vi, Li, and hi.

6.1.1 Unum Arithmetic in MATLAB

The munum toolbox for Matlab supports unum environments from {0, 0} to {4, 7}
which covers all four IEEE-754 floating-point formats discussed in Chapter 4. In

the following, a concise overview of the toolbox is given.

Real to Floating-point Conversion

To represent any real number in unum, the first step is to convert it to the stan-

dard IEEE floating-point number of appropriate precision. The conversion of a

real number to double precision floating-point number is performed by calling the

function

f = x2f(num).

1Available at https://bitbucket.org/kvasnica/munum

6.1. MATLAB TOOLBOX 101

This will give the values of s, e, and m which can be directly used as an input to

the next step.

Floating-point to unum Conversion

Before we start converting FP to unum, we need to set an environment as per the

required accuracy. It can be set by calling

en = env(ess, mss),

and the maximum bits needed to store FP number is obtained by

mub = maxubits(en).

In munum, unum sub-fields are represented by two data types: boolean for the

sign bit and uncertainty bit, and an unsigned int (UInt) of the appropriate bit

size (depending on the maxubits) for all other sub-fields. Considering the above

data types we can calculate the maximum number of bits needed to express each

sub-field by a function

ufm = fieldmax(en, UInt).

The following function is called to obtain the unum representation of the FP number

ufv = fToU(f, ufm).

This will give the values of s, e, m, ub, es, and ms. If we add the bits used to store

each field, it is 4× UInt + 2-bits. Now, we want to reshape all the fields, so that it

will fit in the maxubits bits. For that, we call

unum = ucall(en, UInt, ufv)

to obtain a formatted unum value. We can see the bit representation of the unum

obtained from the real number by calling

printbits(en, UInt, unum).

The obtained unum can be unpacked to its normal form which was obtained from

f2u by performing

ufv = unpackunum(en, UInt, unum)

102 CHAPTER 6. EMBEDDED IMPLEMENTATION

and this can be converted back to a human-readable or real number by calling the

function

num = u2x(en, UInt, ufv, unum).

In this function, we used a High Precision Floating Point (HPF) arithmetic class (D’Errico,

2012) developed for Matlab. Depending on the ub bit in unum, the function u2x

gives an exact value or an inexact ubound.

Basic Math Operations

Once we convert FP to unum or ubound it can be directly used to perform basic

math operations such as addition, subtraction, multiplication, division, square root,

and power of a number. Fig. 6.1 shows the steps and functions supported by munum

toolbox for general purpose use. Let us consider; we have two ubound numbers

xub and yub then their addition can be performed by calling function

zub = AddUb(xub, yub).

Similar to the addition, subtraction can be carried out using function

zub = SubUb(xub, yub).

For multiplication and division of two ubounds following functions are used

zub = MulUb(xub, yub),

zub = DivUb(xub, yub).

Square root and power of a number can also be performed by calling function

zub = SqrtUb(xub),

zub = PowUb(xub, yub).

Logical Operations

Logical operations are very important in optimization algorithms. Following is the

list of functions available for logical operations using unum or ubound.

Less than

zub = isLessThanUb(xub, yub).

6
.1

.
M

A
T

L
A

B
T

O
O

L
B

O
X

103

FP

Number

FP to unum

Conversion

Unum to FP

Conversion

powsqrtdivmulsubadd le ge leq geq negate eq

Unum to FP

Conversion

Figure 6.1: Basic arithmetic and logical functions available in munum toolbox.

104 CHAPTER 6. EMBEDDED IMPLEMENTATION

Greater than

zub = isGreaterThanUb(xub, yub).

Less than equal to

zub = isLessThanOrEqualToUb(xub, yub).

Greater than equal to

zub = isGreaterThanOrEqualToUb(xub, yub).

Equal to the ubound

zub = isEqualToUb(xub, yub).

Negate ubound

zub = NegateUb(xub).

Similar to the ubound operations unum operations can be performed by calling

functions names with U e.g., adition of two unums can be performed by function

zub = AddU(xu,yu).

It is to be notated that the output of unum math operations are always ubound.

6.1.2 Unum-based EMPC using munum Toolbox

The munum toolbox provides an automatic tool chain for the unun-based explicit

MPC design, given a controller data, i.e., the floating-point numbers contained in

vectors/matrices Ti, vi, Li, and hi. Matlab toolboxes are available that allow de-

signing explicit MPC control laws, see, e.g., Multi-Parametric Toolbox (MPT) (Herceg

et al., 2013a), the Hybrid toolbox (Bemporad, 2004), or the POP toolbox (Oberdieck

et al., 2016). Apart from the basic arithmetic functions in munum, we have devel-

oped point locations algorithms discussed in Section 3.3 which uses functions from

munum. Fig. 6.2 shows the steps involved in the designing of unum-based explicit

MPC.

• MPC problem: At this step, one have to decide control problem and its

components such as a Linear-Time Invariant (LTI) model of the physical

process and the constraints on states and input variables.

6.1. MATLAB TOOLBOX 105

MPC Problem

MPT/POP/

Hybrid Toolbox

Data

Conversion

Unum-based

EMPC

Closed-Loop

Simulation

C/C++

Code Export

Matlab

Figure 6.2: Design flow of unum-based explicit MPC using munum toolbox.

106 CHAPTER 6. EMBEDDED IMPLEMENTATION

• Construct explicit MPC: In this step, explicit MPC problem is constructed

using any of the available toolboxs which will give controller data in the form

of a floating-point numbers. For this step, we need process model (discrete-

time), constraints, reference values, and MPC tuning parameters like Q, R,

and N .

• Data conversion: Once we have floating-point-based controller at hand, we

need to convert data from float to unum using munum function for converting

float vector/matrix to ubounds vector/matrix, i.e. fToUbMV(f) where f is

vector/matrix of FP numbers. In this step it is important to select unum

environment {ess, mss} depending on the accuracy required for control action

and close-loop performance. To fix best pair {ess, mss} one have to perform

some simulations with different values of {ess, mss} so that best can be fixed

for embedded implementation. At the end of this step, controller data is in

the form of ubounds which is suitable for the point location algorithms.

• Unum-based EMPC: As mentioned above munum have sequential search and

binary search tree point location algorithms developed based on unum arith-

metic. The output of this step is optimal control action in the form of ubounds

which can be converted back to floating-point form to apply control input to

actual process or the process model.

• Closed-loop simulation: By using unum-based EMPC algorithm one can per-

form closed-loop simulations and do an analysis of performance. Once the

closed-loop performance is analyzed, we can use unum-based explicit MPC

for the control of actual process.

• Embedded code export: munum toolbox provides functionality to export em-

bedded C/C++ code to deploy on hardware. To export embedded code one

have to use the following function

toUC(function,filename).

Exported code need external library for unum arithmetic in C/C++ which is

discussed in the next section.

6.2. C/C++ TOOLBOX 107

6.2 C/C++ Toolbox

The munum toolbox provides automatic tool chain to export low-level hardware code

(C/C++) for embedded implementation of explicit MPC which can be used for sys-

tems for which memory storage was the bottleneck in floating-point number based

explicit MPC. Similar to the munum toolbox, we developed a C/C++ toolbox for

unum arithmetic called cunum. The basic idea behind developing cunum is to verify

the real-time implementation of explicit MPC on hardware like PLC or microcon-

troller. The cunum has same features as mnum prototype which is implemented using

the GNU Multiple Precision Arithmetic Library (GMP) (Granlund, 2016) for math

operations for unum with environment greater than {4, 5}.

6.2.1 Math and Logical Operations

The cunum toolbox provides the same functionality as munum to perform data con-

versions, addition, subtraction, multiplication, division, square root, the power of

number, greater than, less than, etc. operations on unum and ubound numbers.

With these function, one can develop unum-based algorithms to use wide features

of unum format.

6.2.2 Unum-based EMPC using cunum Toolbox

The cunum toolbox provides the unum arithmetic/logical functions required for on-

line synthesis of explicit MPC algorithm exported from munum. Fig. 6.3 shows the

design flow of unum-based explicit MPC using cunum toolbox. The design steps

are as follows

• MPC problem: In this step MPC problem is designed and constructed using

explicit MPC toolbox.

• Controller data: After exporting the controller data (in floating-point) from

MPC toolbox, data conversion function from munum can be used to generate

controller data in ubound.

• cunum: The unum arithmetic and logical functions are developed in cunum

toolbox which are required in the EMPC algorithm which can be exported

from munum or developed in cunum.

108 CHAPTER 6. EMBEDDED IMPLEMENTATION

MPC

Problem

(munum)

EMPC

Data

Arithmetic

Functions

Logical

Functions

GMP

Library

EMPC

Algorithm

cunum

Figure 6.3: Design flow of unum-based explicit MPC using cunum toolbox.

In addition to the generated code implementing the unum-based EMPC solver, the

tool can also export wrappers for C++ which can be directly used on the top of

available algorithms without making any changes in algorithms. The wrapper is

created with the specific aim to enable one to use the unum-based algorithms in

real-world applications.

The main challenge in storing unums in C/C++ -based embedded platforms

like microcontrollers and PLCs is that they do not provide flexibility to allocate

variable bit memory other than standard/primitive data types like int, unsigned

int, short, etc. and their size varies depending on the compiler used to compile

the code. For example, consider that we want to store a value of the constant π

in unum as shown in Example 5.2.1. It needs total 11-bits to store a value of

π in env{2, 2}. These 11-bits are spread in six sub-fields, two fields (sign, ubit)

needs 1-bit each for which we can use data type bool. But, for other four fields

we need to use the data type of the closest possible number of bits, i.e., to store

2-bit exponent size we need to use 16-bit unsigned int which means the wastage

of 14-bits. To store unums in an exact number of bits, we will need an embedded

device like FPGA which provides flexibility customize architecture, where one can

store data in an arbitrary number of bits and parallelize the operations. In the

next section, implementation of unums on FPGA is discussed.

6.3. FPGA TOOLBOX 109

6.3 FPGA Toolbox

This section deals with the implementation of unum arithmetic and unum-based

explicit MPC on FPGA which is the attractive solution for several real-time em-

bedded systems where control update rate is fast.

6.3.1 Introduction to FPGA Devices

FPGA are chip-sets where connections between multiple logic blocks can be pro-

grammed by the user “on the field” to perform the desired computations. Input is

presented to the FPGA device through input signals. The input signals propagate

through the logic and internal connections of the device, and finally, the result is

present on the outputs of the device. Main features of the FPGA devises are

• The FPGA technology compared to the processor is the inherited suitability

for problems which are of parallel nature.

• The FPGA devices generally outperform a corresponding processor imple-

mentation in terms of speed. This is due to the fact that the actual design is

made using the hardware directly and the overhead which is introduced in a

processor to fetch and decode instructions etc. is avoided.

• Usually, developing and producing Application Specific Integrated Circuits

(ASICs) requires the first phase of circuit synthesis on appropriate Computer

Aided Design (CAD) software, and then a physical printing on silicon wafers

in high-technology factories; the whole process may require an initial invest-

ment in the order of millions of dollars. Moreover, it is not possible to correct

bugs and errors discovered after the design phase. On the contrary, FPGA

devices can be implemented with a very short developing cycle. They can be

reprogrammed as needed, and present almost no starting costs.

Fig. 6.4 shows the basic building blocks of a FPGA device which is a chip com-

posed mainly of arrays of logic blocks and routing channels, with every single logic

block generally constituted of a 4-input LUT, a Flip-Flop (FF), and one output;

finally, a set of input/output blocks complete the schematic. These are the basic

components of every integrated circuit; the only things missing are the intercon-

nections between them. Here comes the key advantage of the FPGA technology:

110 CHAPTER 6. EMBEDDED IMPLEMENTATION

those interconnections can be programmed as required by simply feeding a serial

bit stream to the device after a reset.

Logic BlockSwitch Block

I/O BlockInterconnect

Figure 6.4: FPGA architectures, where arrays of logic blocks are surrounded by a

ring of input/output blocks, connected together via interconnect.

• Configurable Logic Blocks (CLBs): These blocks contain the logic for FPGA.

In large-grain architecture used by all FPGA vendors today, these CLBs con-

tain enough logic to create a small state machine. The block contains RAM

for creating arbitrary combinatorial logic functions, also known as LUTs. It

also contains flip-flops for clocked storage elements, along with multiplexers

6.3. FPGA TOOLBOX 111

in order to route the logic within the block and from external resources. The

multiplexers also allow polarity selection, reset, and clear input selection.

• Configurable I/O blocks: A configurable input/output (I/O) block, as shown

in Fig. 6.4, is used to bring signals onto the chip and send them back off again.

It consists of an input buffer and an output buffer with three-state and open

collector output controls. Typically, there are pull-up resistors on the outputs

and sometimes pull-down resistors that can be used to terminate signals and

buses without requiring discrete resistors external to the chip. The polarity

of the output can usually be programmed for active high or active low output,

and often the slew rate of the output can be programmed for the fast or slow

rise and fall times. There are typical flip-flops on outputs so that clocked

signals can be output directly to the pins without encountering a significant

delay, more easily meeting the setup time requirement for external devices.

Similarly, flip-flops on the inputs reduce delay on a signal before reaching a

flip-flop, thus reducing the hold time requirement of the FPGA.

• Programmable interconnect: Programmable routing connects logic functions.

There are long lines that can be used to connect critical CLBs that are phys-

ically far from each other on the chip without inducing much delay. Theses

long lines can also be used as buses within the chip.

There are also short lines that are used to connect individual CLBs that are

located physically close to each other. Transistors are used to turn on or

off connections between different lines. There are also several programmable

switch blocks in the FPGA to connect these long and short lines in specific,

flexible combinations.

Three-state buffers are used to connect many CLBs to a long line, creating

a bus. Special long lines, called global clock lines, are specially designed

for low impedance and thus fast propagation times. These are connected to

the clock buffers and to each clocked element in each CLB. This is how the

clocks are distributed throughout the FPGA, ensuring minimal skew between

clock signals arriving at different flip-flops within the chip. For the detailed

description of FPGA architectures, see, e.g., Kuon et al. (2008), Farooq et al.

(2012).

112 CHAPTER 6. EMBEDDED IMPLEMENTATION

6.3.2 Hardware Design Flow

Hardware design requires the explicit handling of two concepts: cycle accurate

design and structural design. Cycle-accurate design needs hardware designer to

specify what happens at each clock cycle. Structural design requires hardware

designers to specify exactly which resources to use and how they are connected. To

ease the design flow for FPGA based hardware prototyping, specific CAD tools are

used. These CAD tools typically accept the hardware description language which

is a textual description of the circuit structure. To determine the precise logic

implementation and routing in FPGA, CAD software performs the sophisticated

optimization. The level of optimization depends on the quality of CAD tools used.

FPGA engineering process usually involves the following stages (see Fig. 6.5) (Kilts,

2007):

1. Architecture design: This stage involves analysis of the project requirements,

problem decomposition and functional simulation. The output of this stage is

a document which describes the future device architecture, structural blocks,

their functions and interfaces.

2. HDL design entry: There are different techniques for design entry. One way to

perform FPGA design is to use Hardware Description Language (HDL). The

most common HDLs are VHDL and Verilog. Hardware description languages

are fairly complicated to work with since the designer has to describe how

to connect digital logic to obtain a certain functionality. When writing a

computer program, the programmer describes actual behavior of the program,

rather than which digital logic to use to achieve the desired behavior.

In recent years FPGA technology has evolved very rapidly while the develop-

ment of the design tools has not evolved as much. The consequence is that

it is getting increasingly difficult to utilize the full performance of digital cir-

cuits, one speaks of the design gap. To meet the design gap, new tools which

enable circuit design on a higher level of abstraction (behavioral level) are

emerging. The term for these tools is Electronic Design Automation (EDA).

Typically, these tools use commonly known programming languages such as

C or C++ to perform circuit design. For example, Xilinx Vivado Design

Suite supports high-level synthesis, with a tool chain that converts C code

into programmable logic.

6.3. FPGA TOOLBOX 113

Architecture

Design

Design

Entry

Test Environment

Design

Behavioral

Simulation

Synthesis

Implementation

Device

Programming

Timing

Analysis

Requirements

Figure 6.5: FPGA design flow.

114 CHAPTER 6. EMBEDDED IMPLEMENTATION

3. Test environment design: This stage involves the writing of test conditions

and behavioral models. They are later used to ensure that the HDL descrip-

tion of a device is correct.

4. Behavioral simulation: This is an important stage that checks HDL/C cor-

rectness by comparing outputs of the HDL model and the behavioral model.

5. Synthesis: This stage involves the conversion of an HDL/C description to a so-

called netlist which is a formally written digital circuit schematic. Synthesis

process will check code syntax and analyze the hierarchy of the design which

ensures that the design is optimized for the design architecture, the designer

has selected.

6. Implementation: A synthesizer-generated netlist is mapped onto particular

device’s internal structure. The main phase of implementation stage is, place

and route or layout, which allocates FPGA resources (such as logic cells

and connection wires) and generates a Native Circuit Description (NCD) file

which physically represents the design mapped to the components of FPGA.

7. Device programming: Now the design must be loaded on FPGA. But the

design must be converted to a format so that the FPGA can accept it. The

routed NCD file is then given to the bit-stream generator to generate a bit

stream (a .BIT file) which can be used to configure the target FPGA device.

8. Timing analysis: During the timing analysis special software checks whether

the implemented design satisfies timing constraints (such as clock frequency)

specified by the user.

6.3.3 Tools and Resources

In this work, we are focusing on ZedBoard
TM

which is a low-cost development board

for the Xilinx Zynq R©-7000 All Programmable (AP) System on-Chip (SoC). The

Zynq R©-7000 is a device recently introduced by Xilinx. It has benefit of integrating

Programmable Logic (PL) and a Processing System (PS) with a dual-core ARM

Cortex-A9 Processor running at 667 MHz (Avnet, 2014). Having a powerful FPGA

fabric along with a high performance pre-wired processor cores and a high speed 12

bits Analog to Digital Converter (ADC) makes this device suitable for the control of

electrical systems. The board contains all the necessary interfaces and supporting

6.3. FPGA TOOLBOX 115

functions to enable a wide range of applications as shown in In the following, the

features of ZedBoard and overview of Softwares used for that is presented.

Features of ZedBoard

− Processor

– Zynq R©-7000 AP SoC XC7Z020-CLG484− 1

– 85000 logic cells

– 1.3 million ASIC gates

– 53200 LUTs

– 106400 flip-flops

– 560 kB of BRAM organized to 140 units, each containing 2048 by 18-bit

storage

– 220 DSP slices (Multiplier-Accumulator) organized to 18 × 25

– 220 elementary DSP units.

− Memory

– 512 MB DDR3

– 256 Mb Quad-SPI Flash

− Clocking

– 33.33 MHz clock source for processing system

– 100 MHz oscillator for programmable logic

− On-board USB-JTAG Programming port

− 10/100/1000 Ethernet

− USB OTG 2.0 and USB-UART

− PS & PL I/O expansion

− Multiple displays (1080p HDMI, 8-bit VGA, 128× 32 OLED)

− 12 V DC input @ 3.0 A (Max)

− Cost: 450 EUR

116 CHAPTER 6. EMBEDDED IMPLEMENTATION

Softwares

The FPGA circuit design was performed in low-level C language routines in Xilinx

Vivado HLS (Xilinx) and FPGA IP prototyping toolbox PROTOIP (Suardi et al.,

2015). With these tools, the C/C++ -based algorithms can be prototyped into

high-performance FPGA-based embedded systems with Xilinx Zynq devices.

6.3.4 Unum-based EMPC on FPGA

In this section, we report details on the implementation of the unum-based explicit

MPC algorithm (sequential search and binary search tree) on a FPGA. FPGAs

are the most attractive solution for the implementation of unum arithmetic, as

in unums one have to store data in variable bit size which is difficult on fixed

architecture hardware which already has their own circuitry and instruction set

that the programmer must follow in order to write code for that hardware, e.g.,

microcontrollers, which restricts it to certain tasks. For the FPGA implementation

of EMPC algorithm, we followed the development steps shown in Fig 6.6 munum,

PROTOIP, and Xilinx Vivado HLS tools which are discussed next:

• EMPC design using munum: FPGA design flow starts with a problem state-

ment, process model, and constraints. Considering the problem statement,

explicit MPC problem is constructed in MPT toolbox for appropriate set-

tings. The controller data (vectors/matrices Ti, vi, Li and hi) in the form

of the floating-point number is then converted to unum format. In the end,

EMPC data in unum format is exported in C file to be stored in FPGA

memory.

• Algorithmic description: The first step to build a prototype using PROTOIP

consists of developing point location algorithm in C language code. We have

developed library-free C codes of unum arithmetic and logical operations in-

tended for optimizing hardware resources on FPGA. Developed unum-based

ALU is then tested separately for several math operations by Hardware-In-

the-Loop (HIL) co-simulation. This implementation of unum arithmetic sup-

ports environments from {0, 0} to {4, 5} as it covers up-to double precision

floating-point stranded numbers which are sufficient for many control appli-

cations.

6.3. FPGA TOOLBOX 117

MPC

Problem

MPT/POP/

Hybrid

FP to unum

EMPC

Data

Unum

Library

EMPC

Algorithm

Software-based

Verification

Algorithm

Deployment

Prototype

Testing

munum

Algorithmic Description

HLS and PROTOIP

Figure 6.6: Development flow of unum-based EMPC on FPGA.

118 CHAPTER 6. EMBEDDED IMPLEMENTATION

• Prototyping: In this step, the developed explicit MPC algorithm is first ver-

ified in software (Xilinx Vivado HLS) with the help of PROTOIP toolbox

interfaced with Matlab (see Fig. 6.7). For the algorithm verification in

software, we kept process model in Matlab and at each sample time initial

conditions (current state and reference) were sent to Vivado HLS which com-

putes next optimal control actions and send it back to Matlab to get new

initial conditions. As a result of software verification, we obtained the synthe-

Initial

Conditions

Memory

EMPC

Algorithm

(C Code)

Control

Input

Matlab

Vivado HLS

Matlab

Figure 6.7: Design flow of unum-based EMPC on FPGA.

sis report of memory and resource utilization. After software verification step,

next step is to deploy synthesized code on the FPGA board. FPGA device

is programmed (.BIT file) through JATG cable with appropriate jumper set-

tings. After the device is programmed, prototype testing is carried out by HIL

co-simulation (see Fig. 6.8) where data is recorded in host PC via Ethernet

interface by means of TCP/IP packets. A TCP/IP server bridges the com-

munication between the physical Ethernet interface, the DDR memory that

is used as a shared memory space and the EMPC algorithm. On the other

side, the host PC runs a TCP/IP client accessible via a Matlab function

provided by PROTOIP. For HIL co-simulation the stimulus (model states)

were generated through Matlab and sent stimulus data to the FPGA and

the optimal control input was read from FPGA.

6.4. SUMMARY 119

Ethernet

Matlab

PROTOIP
EMPC

Algorithm

Host PC

Xilinx Zynq-7000 FPGA

ARM

TCP/IP
Server

Shared Memory

Figure 6.8: HIL co-simulation setup built by PROTOIP using the Xilinx Vivado

FPGA tool chain.

6.4 Summary

This chapter contains main contributions of the thesis, i.e., embedded implemen-

tation of unums. This chapter describes toolboxes created for unum and its arith-

metic. The first toolbox is developed is open-source Matlab-based unum toolbox,

i.e., munum. Section 6.1 describes details of toolbox features and implementation

of unum-based explicit MPC in general. Taking into consideration that embedded

devices mainly supports low level C/C++ languages, we developed an open-source

unum toolbox based on C/C++ languages i.e. cunum. Section 6.2 describes fea-

tures of cunum toolbox and implementation details of unum-based explicit MPC

for generic control problems. The last section of this chapter describes FPGA

implementation of unum arithmetics and explicit MPC. A short introduction to

FPGA technology and its design flow is given. Overall this chapter describes the

implementation of unum toolboxes and FPGA implementation. Next chapter is

dedicated to the case study and results.

120 CHAPTER 6. EMBEDDED IMPLEMENTATION

Chapter 7

Case Study and Results

Having introduced the theoretical background of the universal number-based ex-

plicit model predictive control strategy in Chapter 5 and its implementation on

various platforms in Chapter 6, we will now focus on the control application. We

present one case study in which unum-based explicit MPC is employed for con-

strained control. The case study is about anesthesia control problem which is

presented with process model, control objectives, MPC problem, and closed-loop

simulation results. We show the closed-loop simulation results of floating-point

format-based and unum-based explicit MPC implemented on C/C++ application

and FPGA platform. Furthermore, the comparison results of computational com-

plexity, optimality, and run-time are presented.

New surgical procedures, increasing prevalence of day surgery and pressure

to deliver “value for money” all influence the choice of drugs and techniques for

anesthesia. Advanced monitoring of drug effect might help to optimize quality of

drug delivery, possibly reduce costs and improve patient outcomes.

Anesthesia is a balance between the amount of anesthetic drug(s) administered

and the state of arousal of the patient. In conventional practice, anesthesiologists

used to decide initial drug dose by taking into account the patient’s physical char-

acteristics, such as gender, age, weight, and height. During the maintenance phase,

anesthetists use to regulate drug dose according to the patient’s physiologic status

such as blood pressure, heart rate, and breathing. Even though hospitals have

experienced and skilled anesthesiologists, over and under-dosing of the anesthetic

drug can occur. In other words, traditional ways of regulating the drug can violate

121

122 CHAPTER 7. CASE STUDY AND RESULTS

the constraints associated with patient’s safety and health. An automatic control

system which can regulate drug infusion rate based on the anesthetic level can

potentially improve the quality of surgical operations, patient’s safety, and reduce

clinician’s workload. However, to design anesthesia closed loop system, a reliable

mathematical model of a patient to observe the dynamics of the drug in the body

is required. In addition to the patient model, dedicated hardware to run the algo-

rithms, Depth of Anesthesia (DoA) monitor and actuators are the key components

of closed loop control system (Bibian et al., 2003).

In past years, efforts have been made to design and implement anesthesia

closed loop control system considering various electroencephalography (EEG) in-

dices to overcome traditional clinical practices to secure patient safety. At the

beginning of 20th century, classical control schemes designed for this application

are mainly based on fixed gain controllers such as Proportional-Integral (PI) and

Proportional-Integral-Derivative controller (PID) (Ejaz and Yang, 2004) and more

recently in Padula et al. (2017). Knowledge-based control system using fuzzy logic

was implemented in Méndez et al. (2016) considering Bispectral Index (BIS) as

a measure of DoA. These controllers achieve suboptimal performance in case of

Multi-Input Multi-Output (MIMO) system, variable time delay systems, robust-

ness, stability, and constraint handling. Therefore, model-based advanced control

strategies, like General Predictive Control (GPC) (Bamdadian et al., 2008) and

model predictive control (Yelneedi et al., 2009), (Naşcu et al., 2015), (Chang et al.,

2015) which performs well in case of inter-variability patient model, disturbance

rejection and constraints satisfaction are attempted recently and can be the at-

tractive choice for safety-critical applications including anesthesia, diabetes and

artificial pancreas control.

The design of a model predictive controller for regulating anesthesia requires a

reliable mathematical model of the patient to represent anesthesia dynamics and

also, appropriate hardware devices to measure and monitor the depth of anesthesia.

In order to realize a desirable hypnosis control, an effort has been taken to establish

a reliable patient model that relates the drug inputs to the outcomes (Schüttler and

Ihmsen, 2000), (Sawaguchi et al., 2008). Due to significant deviations in physical

conditions, age, weight, metabolism, pre-existing medical conditions, and surgical

procedures, patient dynamics demonstrate non-linearity and large variations in

their responses to drug infusion. One potential remedy is to individualize the

patient model in real-time based on the individual clinical data collected during

7.1. COMPARTMENTAL MODELS 123

a procedure. Good collection of various models used in research can be found

in Furutani et al. (2015).

When modeling biological systems for drug distribution, several methods are

common and all have their significance. The pharmacology of anesthetic drugs

includes linear pharmacokinetic effects as well as non-linear pharmacodynamic ef-

fects. Pharmacokinetics represent the dynamic process of drug distribution in the

body while pharmacodynamics represents the description of drug effect on the body.

Three main forms of models are mostly used for modeling anesthesia patient, i.e.,

empirical, compartmental, physiological models, and all share many characteristics

of the other representations. Empirical models are black box model, which relate

the inputs to outputs by analytical expressions, such as the sums of exponentials.

Compartmental models are formulated on the basis of the minimal number of com-

partments that adequately fits observed data. Physiologically based models are

the most realistic representation of drug kinetics because the parameters relate

directly to physiology, anatomy, and biochemistry. Out of all the modeling op-

tions available, the standard modeling paradigm that has been commonly used is

compartmental models.

7.1 Compartmental Models

Compartmental models are mainly based on the assumption that different parts

of the body can be represented by virtual compartments disregarding the physical

properties of the described tissues. Standard compartmental models often consist

of two interacting parts: a pharmacokinetic compartment model and a pharmaco-

dynamic model.

7.1.1 Pharmacokinetic Modeling

As for the Pharmacokinetic (PK) model, we use four-compartment model including

the Propofol (drug used in anesthesia) effect-site compartment based on the large-

scale multi-center study by Schüttler and Ihmsen in Schüttler and Ihmsen (2000)

which is further extended in Sawaguchi et al. (2008). The model’s parameters were

determined based on patient’s real-time data. This model incorporates the patient’s

age and body weight (BW), so it can take individual differences into account to a

certain extent.

124 CHAPTER 7. CASE STUDY AND RESULTS

Fig. 7.1 shows the three-compartment model with an effect-site compartment.

It consists of central, shallow peripheral (fast), deep peripheral (slow), and virtual

compartment regarded as effect-site. Peripheral compartment comprises muscle,

fat, and other organs and tissues of the body which are metabolically inert as

far as the drug is concerned. Shallow peripheral compartment represents tissues

with a rich blood supply, and deep peripheral compartment represents tissues with

inferior blood supply. Here, xi is the concentration of Propofol in compartment

Shallow

Peripheral

Compartment

Central

Compartment

Deep

Peripheral

Compartment

Effect-site

Compartment

k2x1

k2x2

k3x1

k3x3

k1x1

k4x1 k4x4

u

Elimination

Figure 7.1: Three-compartment pharmacokinetic model with the effect-site com-

partment.

i; compartments 1, 2, 3 and 4 correspond, to the central, shallow peripheral, deep

peripheral and effect-site compartments, respectively. In addition, u is the infusion

rate of Propofol drug, and ki and Vi are the clearance and volume of the compart-

ment, respectively, given as functions of the patient’s age and weight, as given in

Table 7.1. The drug is infused in central compartment and then distributed to the

slow and fast compartment and eliminated through metabolism. The mass balance

in the different compartments are described below:

Central Compartment

The central compartment is the volume in which initial mixing of the drug occurs,

and thus can be thought to include the vascular system (blood volume) and for some

drugs the interstitial fluid as well as highly perfused organs such as heart, brain,

7.1. COMPARTMENTAL MODELS 125

Table 7.1: Pharmacokinetic parameter values given as a function of patient’s

age(years) and BW(Kg)(Schüttler and Ihmsen, 2000).

Parameter Value

k1

0.0595BW0.75 L/min (age ≤ 60)

(0.0595BW0.75 − 0.45age + 2.7) L/min (age > 60)

k2 0.0969BW0.62 L/min

k3 0.0889BW0.55 L/min

k4 0.12 L/min

V1 1.72BW0.71age−0.39 L

V2 3.32BW0.61 L

V3 266 L

V4 0.01V1 L

kidney, and liver. The concentration of drug within the central compartment is

given by:

V1
dx1

dt
= −(k1 + k2 + k3 + k4)x1 + k2x2 + k3x3 + k4x4 + u. (7.1)

Shallow Peripheral Compartment

The shallow or fast peripheral compartment represents a compartment of the body

that absorbs drug rapidly from the central compartment, and thus can be thought

of as comprising tissues of the body that are well-perfused (such as muscles and vital

organs). The concentration of Propofol within the shallow peripheral compartment

is given by:

V2
dx2

dt
= k2x1 − k2x2. (7.2)

Deep Peripheral Compartment

The deep or slow peripheral compartment is used to represent mathematically,

a compartment into which re-distribution occurs more slowly, and thus can be

126 CHAPTER 7. CASE STUDY AND RESULTS

thought of as including tissues with a poor blood supply (such as adipose tissue).

Re-distribution of drug in deep tissue is given by

V3
dx3

dt
= k3x1 − k3x3. (7.3)

Effect-Site Compartment

It is virtually created compartment to measure the effect of the drug on cardiac out-

put and cerebral blood flow. The rate of plasma/effect-site equilibration depends

on factors that determine the rate of drug delivery to the effect-site and pharmaco-

logical properties that determine the rate of drug transfer across the blood–brain

barrier (lipid solubility, the degree of ionization, etc.). The time course of effect-

site equilibration can be mathematically described by a first-order rate constant

typically referred to as the k4. The effect-site compartment accounts for the equi-

libration time between targeted plasma drug concentration and central nervous

system (brain) concentration. The effect-site concentration and targeted plasma

drug concentration are related by a first-order lag given as follows (Sawaguchi et al.,

2008), (Yelneedi et al., 2009).

V4
dx4

dt
= k4x1 − k4x4. (7.4)

The pharmacokinetic model of the patient can be described in state-space form as

ẋ(t) = Ax(t) + Bu(t), (7.5a)

y(t) = Cx(t). (7.5b)

where x(t) ∈ R
nx is the vector of Propofol concentrations at the current time

instant, u(t) ∈ R
nu is the infusion rate of Propofol, y(t) ∈ R

ny is the effect-site

concentration. System matrix A ∈ R
nx×nx , input matrix B ∈ R

nx×nu and output

matrix C ∈ R
ny×nx are the pharmacokinetic parameters given as

A =









−k1+k2+k3+k4

V1

k2

V1

k3

V1

k4

V1

k2

V2

− k2

V2

0 0
k3

V3
0 − k3

V3
0

k4

V4

0 0 − k4

V4









, B =









1
V1

0

0

0









,

C =
[

0 0 0 1
]

.

7.1. COMPARTMENTAL MODELS 127

7.1.2 Pharmacodynamic Modeling

As discussed in above section, the PK model is limited to the kinetics of elimi-

nation and distribution of the drug. To reflect the observed clinical effect of the

drug, another set of mathematical description is required. These are known as

pharmacodynamic models. These are used to describe the relationship between

drug concentration and the observed clinical effect; effect signals may be any num-

ber of patient vital signs, EEG signals, or blood glucose levels, as examples. In

this case, it is frequently said that PD models address “what the drug does to

the body”. These models are typically given by static non-linear functions, which

are used to describe the equilibrium relationship between the drug concentration

(x4), and drug effect E as shown in Fig. 7.2. In this work, we are using BIS as a

measure of DoA. A commonly used pharmacodynamic model structure is given by

the well-known Hill equation:

E(t) = E0 − Emax
y(t)

γ

y(t)
γ

+ cγ
50

, (7.6)

where E0 is the BIS value before starting the Propofol infusion, Emax is the change

of the BIS index corresponding to the infinite Propofol concentration, C50 is the

effect-site concentration corresponding to Emax

2 , and γ is the Hill’s coefficient. In

this paper, we assume Emax = E0. The control objective is to manipulate the

Propofol infusion rate such that the BIS index tracks a prescribed reference. In

the above model, we assumed baseline value equal to maximal output value and

default values of C50 and γ are taken from Sawaguchi et al. (2008).

The pharmacodynamic model typically describes the nonlinear dynamics of BIS,

Mean Atrial Pressure (MAP) and Heart Rate (HR) to the effect-site concentration

y(t). For the control purpose, BIS is taken as key measure of DoA (reference for

controller) whereas MAP and HR are used to observe the corresponding blood

pressure and heart rate during surgery. Hill’s Sigmoid Emax model for BIS index

is given as

BIS(t) = BIS0 − BISmax
y(t)γ

y(t)
γ

+ cγ
50

, (7.7)

where BIS0 is the base value at no-drug which is around 100, BISmax is the maximal-

effect intensity. BIS is an EEG-derived index which indicates the effect of drug on

the body and it is measured on the scale of 0−100, see Fig. 7.3. BIS values near 100

represent an “awake” clinical state while 0 denotes the maximal EEG effect possible

(i.e., an isoelectric EEG) which means the patient is in the dead state. In general

128 CHAPTER 7. CASE STUDY AND RESULTS

Shallow

Peripheral

Compartment

Central

Compartment

Deep

Peripheral

Compartment

Effect-site

Compartment

k2x1

k2x2

k3x1

k3x3

k1x1

k4x1 k4x4

u

PK Model–Linear Elimination

Hill’s

Curve

x4

BIS

PD Model–Nonlinear

Figure 7.2: Three-compartment pharmacokinetic model with the effect-site com-

partment and pharmacodynamic model.

7.2. DRUG DELIVERY IN ANESTHESIA CONTROL 129

surgery practice, the BIS value is maintained in the range of 40 − 60 to ensure

adequate hypnotic effect during balanced general anesthesia while improving the

recovery process. Drug doses below 60 is regarded as under dose where the patient

can respond to surgical stimuli and can feel pain. BIS index values lower than 40

signify a greater effect of the drug on EEG of a patient and drug dose is regarded

as an overdose.

Awake Dead

Under Dose Desired Over Dose

100 90 80 70 60 50 40 30 20 10 0

Figure 7.3: BIS scale to indicate the level of DoA in the patients.

Patient’s Mean Arterial Blood Pressure (MAP) can also be taken as a measure

of anesthesia, Hill’s Sigmoid model for MAP is given as

MAP(t) = MAP0 −MAPmax
y(t)γ

y(t)γ + cγ
50

, (7.8)

where, MAP0 and MAPmax are the baseline value at zero input which is on av-

erage 100 and the maximum value at infinite input respectively. MAP has to be

maintained in the desired limit for heart problem patients.

Third important index is heart rate, which has opposite dynamics than BIS and

MAP. This model exhibits a mild increase in heart rate to increase in the effect-site

concentration. The HR model is described as

HR(t) = HR0 + HRmax
y(t)

γ

y(t)
γ

+ cγ
50

, (7.9)

where HR0 is the output at zero input and HRmax stands for output at maximal

possible input. On an average HR0 is 55.

7.2 Drug Delivery in Anesthesia Control

From the perspective of the control system, we can distinguish drug delivery in

three types as described below

130 CHAPTER 7. CASE STUDY AND RESULTS

7.2.1 Open-Loop

The basic procedure is the open-loop practice in which the anesthetist, according

to the parameters of the patient (age and weight) directly uses predefined infusion

rates of drugs. According to the response observed through his vital signs, the drug

rates can be modified. Here the anesthetist act like the controller.

7.2.2 Target Controlled Infusion (TCI)

In TCI the infusion rate is calculated from models of the pharmacokinetic of the

patient, as shown in Figure 7.4. Thus, the objective in TCI is to achieve a pre-set

Patien

Model

TCI

Algorithm

Syring

Pump
Patient

x4 u BIS

Figure 7.4: Block diagram of the target controlled infusion system.

target plasma concentration x4. According to the model of the patient, the TCI

system (normally implemented in the infusion pump) delivers the adequate drug

doses to achieve the objective. There is a clear weakness in TCI related to the

fact that the real plasma concentration cannot be on-line measured to compute the

infusion rate. That is, TCI is also an open-loop control strategy.

7.2.3 Closed-Loop

The main idea in closed-loop control is to use information about the state of the

patient to adjust the drug dosing automatically . Fig. 7.5 shows a schematic view

of a closed-loop control scheme for drug delivery in anesthesia.

The control plant is the patient, the actuators are syringe pumps, and the sen-

sors are of several kinds, e.g., BIS, ECG, blood oxygenation, or temperature. The

dashed lines and arrows depict indirect actions, while the solid lines and arrows

depict direct actions. As an example, the anesthesiologist can only observe the

7.3. PROBLEM SET-UP 131

Anesthesiologist

Syring

Pump
Patient Sensors

BIS

Monitor
Controller

Error
u

+

BISref

−

Clinical

Signals

Figure 7.5: Schematic view of a closed-loop control scheme for drug delivery in

anesthesia.

tracking error, but cannot exert a direct impact to change it. The anesthesiol-

ogist’s action on the error has to be indirect via changes of the set-points of the

measured effect. The variables and quantities depicted by the arrows can be vector-

valued, means, e.g., several sensors are placed on the patient, so that several effect

measurements are performed.

7.3 Problem Set-up

7.3.1 Control Objective

The objective of MPC controller is to track desired reference taking into account

the physical constraints like drug delivery rate. To achieve said objective, we are

using PK-PD model (described in Section 7.1) of the patient to get the effect of

the drug on the body. Infusion rate is calculated based on the BIS value and

MAP and HR are observed to keep patient at low-risk. The value of γ = 1.87 and

c50 = 3.75 were taken from Sawaguchi et al. (2008) and kept same to obtain the

values of BIS (7.7), MAP (7.8), and HR (7.9). Considering the control objective in

the following, we show the MPC problem set-up.

7.3.2 MPC Problem Set-up

In this section, the unum-based explicit MPC is constructed using MPT and munum.

The control objective is to track the desired BIS reference without violating the

input constraints. The continuous time PK model of a patient having age 25 years

132 CHAPTER 7. CASE STUDY AND RESULTS

and weight 60 kg is discretized with sampling time Ts = 60 s. The discrete time

state space PK model is given by

xk+Ts
= Axk + Buk (7.10a)

yk = Cxk (7.10b)

with

A =









0.0139 0.1325 0.3076 0.0001

0.0295 0.3214 0.2416 0.0003

0.0104 0.0366 0.8741 0.0001

0.0140 0.1342 0.3074 0.0001









,

B =
[

0.4255 0.3175 0.0614 0.4243
]T

,

C =
[

0 0 0 1
]

.

Considering the discrete PK model (7.10), the reference tracking problem is for-

mulated as a constrained optimization problem with constraints on the drug input

rate as given below,

min
U

N−1∑

k=0

(yk − yr)
T Q(yk − yr) + ∆uT

k R∆uk (7.11a)

s.t. xk+Ts
= Axk + Buk, k = 0, . . . , N − 1, (7.11b)

yk = Cxk, k = 0, . . . , N − 1, (7.11c)

∆uk = uk − uk−1, k = 0, . . . , N − 1, (7.11d)

0 ≤ uk ≤ 20, k = 0, . . . , N − 1, (7.11e)

u−1 = u(t− Ts), (7.11f)

x0 = x(t), (7.11g)

where weighting matrices Q and R was set to 1 and 0.001, respectively.

7.4 Simulation Results: C Implementation

In this section, the software-based results of floating-point and unum-based explicit

MPC is presented. The anesthesia control problem for reference tracking was con-

structed in Matlab using multi-parametric toolbox for above settings (Ts, Q, R).

7.4. SIMULATION RESULTS: C IMPLEMENTATION 133

The constructed mp-QP problem was subsequently exported in low-level C lan-

guage routines using munum for several prediction horizons (N = 2, . . . , 15, 20) with

sequential search point location method described in Algorithm 1. The exported

code is then synthesized in C application software for performing simulations.

Fig. 7.6 shows the performance of explicit MPC for prediction horizon, 5. It

shows the responses of effect-site concentration and optimal drug input rate needed

to achieve concentration corresponding to the desired BIS value. Fig. 7.7 depicts

the response of BIS, MAP, and HR during simulation.

Table 7.2 summarizes the numerical analysis of explicit MPC for different pre-

diction horizons (N = 2, 3, 4, 5). It shows the settling-time (τs), mean square error

(MSE) and integral squared control efforts (ISCE,
∑

∆u2). It can be clearly seen

that the performance of controller goes on increasing as horizon increases which

means in ideal case it is better to have controller with long horizon in real-time

applications. Unfortunately, it is difficult to deploy long horizon controller on em-

bedded devices due to the lack of on-chip memory to store controller data. In the

next, we will show that with the unums it can be possible to deploy long horizon

controller on low-end embedded devices to achieve better performance.

Table 7.2: Performance comparison of floating-point based explicit MPC for differ-

ent prediction horizons.

N τs [min] MSE [µg/mL] ISCE [mg/kg/h]

2 37 15.0100 1.5541

3 28 14.7035 1.5199

4 23 14.4796 1.4906

5 18 14.1014 1.4813

7.4.1 Controller Complexity

In this section, we will compare the floating-point and unum-based controller and

show their complexity in terms of memory and execution time required for the set of

prediction horizons. For the comparison purpose, we considered double precision

134 CHAPTER 7. CASE STUDY AND RESULTS

5 10 15 20 25 30 35
0

2

4

E
ff

ec
t-

si
te

C
on

c.

[u
g/

m
L

]

yr y

5 10 15 20 25 30 35
0

5

10

15

20

Time [min]

In
fu

si
on

R
at

e

[m
g/

kg
/h

] Ub/Lb u

Figure 7.6: Response of effect-site concentration and corresponding drug input rate

controlled by explicit MPC.

7.4. SIMULATION RESULTS: C IMPLEMENTATION 135

5 10 15 20 25 30 35
0

20

40

60

80

100

B
IS

In
de

x

[S
co

re
]

BISref BIS

5 10 15 20 25 30 35
0

20

40

60

80

100

M
A

P

[m
m

H
g]

MAP

5 10 15 20 25 30 35
0

20

40

60

80

100

Time [min]

H
R

[b
pm

]

HR

Figure 7.7: Response of measured BIS, MAP, and HR for BIS reference tracking.

136 CHAPTER 7. CASE STUDY AND RESULTS

floating-point format and universal number format with two environments, i.e.,

unum{3, 2} and unum{3, 4}. All the controllers were exported to C language code

using MPT and munum. The memory required to store controller data in the form

of floating-point format was calculated by (3.14) and for unums it is obtained by

calling the function

memory_empc(),

from munum. Table 7.3 shows the number of regions, the total number of FP num-

bers required to store all the regions, total number of bits as per the format used,

total memory required to store all the data and memory savings with unums to

store same data. It can be observed from the table that the number of regions and

the total number of FP numbers grows exponentially as the length of prediction

goes on increasing, as a consequence of that, the number of bits in the floating-point

format increases hugely. On the other hand, with the use of unums the number of

bits increases slowly. Last two columns of the table shows the memory saving as

compared to the FP format and it can be observed that the unum with env{3, 2}
saves 81 − 84% memory and unum with env{3, 4} saves 70 − 78% memory. Inter-

esting to notice is that the byte size of the unum-encoded solution for N = 10

(97.86 kB and 724 regions) is roughly equal to the size of floating-point representa-

tion for N = 6 (96.14 kB and 133 regions). It follows that by using unums, one can

fit more data into the same space and thus can be able to use larger horizons in

MPC. The unum based controller takes on an average 11-bits in env{3, 2} and 18-

bits in env{3, 4} to represent each number. Roughly, we can store up to 24 kB on

low-end PLCs where it is possible to store up to 30 regions with the floating-point

format. But, unum gives freedom to store up to 120 regions which means one can

implement the controller with N ≥ 5.

7.4.2 Execution Time and Optimality

This section presents the compression of execution time taken by both the number

formates when implemented in low-level C language using cunum prototype of the

unum. As computing hardware, a personal computer with an Intel Core i7 CPU

with 2 GHz processor and 8 GB memory was used. As an operating system and

compiler, 64-bit Windows 7 with Cygwin were used. The exported explicit MPC

controllers with different horizons from MPT and munum were executed in C en-

vironment for several initial conditions and references. Table 7.4 summarizes the

7
.4

.
S
IM

U
L

A
T

IO
N

R
E

S
U

L
T

S
:

C
IM

P
L

E
M

E
N

T
A

T
IO

N
137

Table 7.3: Comparison of memory footprints between double precision floating- point and universal number-based explicit

MPC.

N Number of Total Number of Bits Memory [kB] Memory Savings [%]

Regions Numbers FP (64-bits) unum{3, 2} unum{3, 4} FP (64-bits) unum{3, 2} unum{3, 4} unum{3, 2} unum{3, 4}

2 3 272 17472 2874 3934 2.13 0.35 0.48 83.55 77.48

3 9 819 52416 8969 12989 6.39 1.09 1.58 82.88 75.21

4 27 2457 157248 28022 42710 19.19 3.42 5.21 82.18 72.84

5 65 5999 383936 69826 108736 46.86 8.52 13.27 81.81 71.68

6 133 12306 787584 144972 228414 96.14 17.69 27.88 81.59 71.00

7 230 21378 1368192 253257 400997 167.01 30.91 48.95 81.49 70.69

8 359 33362 2135168 196542 629483 260.64 48.40 76.84 81.43 70.52

9 522 48496 3103744 577606 918481 378.87 70.51 112.12 81.39 70.41

10 724 67027 4301248 801691 1276449 525.05 97.86 155.81 81.36 70.32

11 955 88697 5676608 1059128 1687326 692.94 129.29 205.97 81.34 70.27

12 1029 112301 7187264 1341730 2138614 877.35 163.78 261.06 81.33 70.24

13 1501 139321 8916544 1665661 2656034 1088.40 203.33 324.22 81.32 70.21

14 1816 168581 10789184 2015791 3214285 1317.00 246.07 392.37 81.32 70.20

15 2153 199843 12789952 2389026 3808257 1561.30 291.63 464.87 81.31 70.22

20 4176 388213 24845632 4642363 7400568 3032.90 566.69 903.39 81.31 70.22

138 CHAPTER 7. CASE STUDY AND RESULTS

average execution time in ms for double precision floating-point and unum format.

It is interesting to notice that the time taken by FP controller remains almost same

for all the prediction horizons whereas for unum controller it goes on an increase

and this is because of the unum arithmetic. Table 7.5 enlists the optimal values

(up to 4 decimal of accuracy) obtained by floating-point format and unum-based

explicit MPC controller for different prediction horizons. It can be seen from the

table that the values obtained using unum are 100% optimal as compared to double

precision FP. Also, to get the same accuracy as double FP unum needs only 33-bits,

i.e., {3, 4} which almost half of the 64-bits which means using unum we can get

the same accuracy with fewer bits.

7.5 HIL Co-Simulation Results: FPGA Implemen-

tation

This section deals with the hardware implementation results of floating-point and

unum-based explicit MPC for anesthesia control problem (7.11). For hardware

implementation we use the sequential search algorithm and controller data were

exported in the C code from MPT (FP data) and munum toolbox (unum data) from

inside the Matlab. To synthesis unum-based controller we used unum arithmetic

library developed for hardware implementation as discussed in Section 6.3.

7.5.1 Floating-point Explicit MPC

The design flow for implementing double precision FP explicit MPC on FPGA is

similar to that of unum-based EMPC implementation. For implementation, we kept

control problem same as in (7.11) with same settings for Q and R. The exported

C code from MPT were deployed on FPGA using Vivado HLS and PROTOIP

toolbox. For floating-point arithmetic, Vivado supports standard math library

(math.h) which is optimized for hardware. The EMPC codes were synthesized

using synthesis tool and verified in software. Then the controller was employed in

HIL co-simulation to track the output of anesthesia patient model running inside

Matlab.

7.5. HIL CO-SIMULATION RESULTS: FPGA IMPLEMENTATION 139

Table 7.4: Comparison of execution-time taken by floating-point (64-bit) and uni-

versal number-based-explicit MPC.

Execution Time [ms]

N FP (64-bit) unum{3, 2} unum{3, 4}

2 1.03 8.10 10.40

3 0.95 23.4 11.40

4 1.09 28.00 13.60

5 1.02 15.50 16.90

6 0.89 19.60 18.20

7 0.81 21.00 26.80

8 0.94 25.30 27.10

9 1.03 34.00 38.00

10 1.10 47.10 51.30

11 2.77 63.40 67.89

12 2.08 70.10 68.50

13 2.17 94.60 88.90

14 1.78 92.60 93.50

15 1.53 99.20 104.80

20 1.80 100.00 110.45

140 CHAPTER 7. CASE STUDY AND RESULTS

Table 7.5: Comparison of optimal values obtained by floating-point (64-bit) and

universal number-based explicit MPC.

Optimal Values [mg/kg/h]

N FP (64-bit) unum{3, 2} unum{3, 4}

2 8.5616 (8,9) (8.5615,8.5617)

3 8.5608 (8,9) (8.5605,8.5609)

4 8.5607 (8,9) (8.5605,8.5612)

5 8.5606 (8,9) (8.5606,8.5616)

7.5.2 Unum-based Explicit MPC

The unum EMPC is implemented on FPGA using env {3, 2} which saves almost 14

bits for each number as compared to env {3, 4}. The exported data from munum in

the form of env {3, 2} is then stored on FPGA memory using unum datatype which

actually stores unum sub-fields in required bits, and it varies as per the individual

number. As we set env {3, 2} for each number, maximum number of bits allowed

for number storage is limited to 19. The unum explicit MPC algorithm along

with the unum data was synthesized in Vivado HLS tools from Matlab using

PROTOIP toolbox. Then the synthesized algorithm was deployed on FPGA (Zed

board) using JTAG cable. Next, the standalone unum-based EMPC algorithm were

used in closed-loop HIL co-simulation for reference tracking problem of anesthesia

control.

Now, we will show the comparison of memory and resource utilization for both

implementations for same settings of Q and R.

7.5.3 Memory Comparison

For memory comparison, several explicit controllers were stored on FPGA memory

with different values of prediction horizons (2, 3, . . . , 8). Table 7.6 shows the number

of block RAMs used for different prediction horizons. On the FPGA data is stored

in Block RAM (BRAM) which is a function of the configuration parameters for:

7.5. HIL CO-SIMULATION RESULTS: FPGA IMPLEMENTATION 141

memory address range, number of byte-write enables, the data width, and the

targeted architecture. A ZedBoard comprised of total 280 blocks of BRAM where

each block is of 18kbits. The controller data is stored in arrays which are then

mapped by FPGA to store it on BRAMs. Fig. 7.8 shows the bar chart of BRAM

Table 7.6: Comparison of memory taken by floating-point (64-bit) and universal

number based-explicit MPC.

Block RAM Utilization [#]

N FP (64-bit) unum{3, 2}

2 13 5

3 27 12

4 39 17

5 79 40

6 151 76

7 163 91

8 262 120

usage for FP and unum controller. It can be seen that the data stored in double

precision FP form needs more number of BRAMs, i.e., memory as compared to

unum data for each value of prediction horizon. It is interesting to observe that the

actual utilization of memory on FPGA is much more than that of the theoretical

memory shown in table 7.3. This is due to the fact that memory shown in the

Table 7.6 is total memory used for configuration parameters listed above.

7.5.4 On-chip Memory and Cost Relationship

As process technologies continue to shrink and memory size and design complex-

ity grow, it has become increasingly difficult to achieve high manufacturing yield.

Embedded memories are the densest components within a system-on-chip (SoC),

accounting for more than 50% of the chip area. Implemented using aggressive de-

142 CHAPTER 7. CASE STUDY AND RESULTS

2 3 4 5 6 7 8
0

50

100

150

200

250

300

Prediction Horizon

N
um

b
er

of
B

A
R

M
_

18
K

B
lo

ck
s BRAMs for FP

BRAMs for unum

Figure 7.8: Comparison of BRAM utilization for floating-point and unum-based

explicit MPC with different prediction horizons.

7.5. HIL CO-SIMULATION RESULTS: FPGA IMPLEMENTATION 143

sign rules, embedded memories tend to be more prone to manufacturing defects

and field reliability problems than any other core on the chip. Therefore, the over-

all yield of SoC depends heavily on the memory yield, and securing high memory

yield is critical to achieving lower silicon cost.

Today’s demanding applications require SoCs that are bigger and faster, more

area, timing, and power sensitive than ever before, resulting in a shift from the logic-

dominant chips of the past to memory-dominant ones. Fig. 7.9 shows embedded

memory projections from Semico Research Corporation. In 2008, embedded memo-

ries accounted for more than half of the die area in a typical SoC. It predicted that

the amount of space they occupy on the die would continue to increase, reaching

up to 70% by the end of 2017. This growing percentage is mainly to ever increased

demand of performance and higher memory bandwidth requirement to minimize

latency (Kaushik and Zorian, 2012). The unum is one of the solutions to reduce

memory, bandwidth, and energy. If we design small memory chips, we can save lots

of money on this. In general cost of FPGA and microprocessors mainly depends

1999 2000 2005 2008 2011 2014 2017
0

20

40

60

80

100

Years

P
er

ce
nt

A
re

a
[%

]

% area memory
% area reused logic
% area new logic

Figure 7.9: Prediction of embedded memories on the die area of a typical SoC

devices.

on silicon chip area/size used in that device. The number of chips that can be

144 CHAPTER 7. CASE STUDY AND RESULTS

produced on that wafer depends on the die size: The smaller the die, the more

of them can fit onto the wafer. Fig. 7.10 shows the effect of die size on die yield

process. On a silicon wafer if we fit many small dies the yield increases, and if die

size is large, it decreases.

Figure 7.10: Picture of silicon wafer showing working (good) and non-working (bad)

die. (Source: www.neogaf.com)

7.5.5 Resource Utilization

The design was synthesized and placed and routed using Xilinx Vivado tools tar-

geting a ZedBoard. Table 7.7 summarize the resource utilization of floating-point

and unum-based explicit MPC. The resources utilized for all controllers (with a

set of different prediction horizons) are constant as it mainly used for arithmetic

units and independent on controller data. Available resources in ZedBoard are,

Digital Signal Processor (DSP): 220, Flip-Flop (FF): 106400 and Look-Up Table

(LUT):53200. The percentages laid in the table are based on total available re-

sources. It can be seen from the table that floating-point arithmetic takes less

resources as compared to unum arithmetic. This is due to the unums require more

logic than FP for a hardware implementation, but transistors have become so in-

expensive that we welcome anything that gives them useful new things to do. One

has to make a trade-off between memory and resources. Fig. 7.11 depicts the trade-

off parameters of floating-point and unum-based explicit MPC implementation on

FPGA. It’s simple either go for less resources which saves less money or go for less

memory which will save more money.

7.5. HIL CO-SIMULATION RESULTS: FPGA IMPLEMENTATION 145

Table 7.7: Comparison of resources utilized for floating-point and unum-based

explicit MPC implementation of ZedBard.

Resource Utilization [%]

DSP FF LUT

FP 7 3 10

Unum 13 67 96

BARMs Resources
0

50

100

150

Parameter

U
ti

liz
at

io
n

[%
]

FP
Unum

Figure 7.11: Trade-off parameters of explicit MPC implementation of FPGA. (Re-

sources is sum of DSP, FF, and LUT.)

146 CHAPTER 7. CASE STUDY AND RESULTS

7.6 Summary

In this chapter we have shown memory-efficient implementation of unum-based

explicit MPC with anesthesia control problem which was formulated as a MPC

problem and explicit MPC problem was constructed in MPT. Consequently, a

unum-based explicit MPC is exported in low level C language and simulated in

C application for several level of controller complexity. For the C implementa-

tion we analyzed memory, run-time and optimality and compared the results with

floating-point-based explicit MPC. Then we employed unum-based explicit MPC

implemented on FPGA same control problem with different complicity. HIL co-

simulation results for floating-point and unum-based explicit are shown. Detailed

analysis of BRAM and resource utilization is carried to show tread-off between

memory and resource utilization. In next chapter we discuss future research direc-

tions and open questions.

Chapter 8

Conclusions and Future

Research Directions

8.1 Conclusions

This thesis has proposed a new memory reduction technique for the implementation

of explicit model predictive control feedback law on an embedded platform with the

objective of increasing the application domain of explicit MPC. The technique is

based on representing the controller data by universal number format which takes

fewer bits as compared to the “one-size fits all” IEEE-754 floating-point standard.

Unum encompasses all standard floating-point formats and gets more accurate an-

swers than floating-point arithmetic with less number of bits, which saves memory

and bandwidth. Unlike floating-point numbers, unums make no rounding errors

and cannot overflow or underflow. To show the applicability of unum arithmetic in

optimization and control field, we have developed two toolboxes, first is munum for

Matlab and another cunum for algorithms running in C/C++ . With the help of

available software tools for explicit MPC, we developed an automatic tool chain to

export low-memory unum-based explicit controller in C code. Further, the unum

arithmetic and explicit MPC is developed and implemented on FPGA targeting

the ZedBoard Zynq-7000 ARM/FPGA SoC Development Board - Xilinx. The fea-

sibility of unums in C application and on FPGA is demonstrated with two case

studies. The closed-loop hardware-in-the-loop co-simulation results of unum-based

147

148 CHAPTER 8. CONCLUSIONS AND FUTURE RESEARCH DIRECTIONS

explicit MPC are presented for different prediction horizons. The resulting memory

footprints and resource usage are compared with those of the floating-point (double

precision)-based explicit MPC approach, and it is observed that the unum-based

explicit MPC can reduce memory footprints by 40− 50% on FPGA and by 80% in

software. Furthermore, the execution time of floating-point and unum controller

were compared in C application. With the use of the appropriate environment

in unum, it is possible to use longer prediction horizons and large system, while

achieving lossless closed-loop performance and a significant reduction in memory

footprints.

8.2 Future Research Directions

The memory reduction technique presented in this thesis is based on the variable

bit size universal number format which is an attractive alternative to one size fits

all format, i.e., IEEE floating-point to deal with memory demands in explicit MPC.

The work presented here is mainly focused on two things, developing software tools

to export controller data in unums and demonstrate the applicability of unums on

reconfigurable devices like FPGAs. But, there is definitely more to do on the side

of reducing memory using unums. In the following we will list some of the possible

future research directions and open problems:

• Continue the studies on large real-time systems with the purpose of verifying

the results obtained in this thesis.

• In this thesis, we are mainly focusing on unum implementation on FPGA

device, a detailed study on exploring the features of unums on other embedded

devices will require.

• The issue with the PLCs and microcontrollers is that there is no flexibility

of storing data in variable bits and unum stores data in variable bits. So,

to take the advantages of unums one research on new number format which

should include nice features (no overflow, no underflow, no rounding, high

range, etc.) of unums but store number in a fixed number of bits as in IEEE

standard. By doing so, one can target low-cost, low-end embedded hardware.

• In FPGA implementation we are storing controller data in BRAMs which is

comprised of fixed size blocks. One can achieve even more memory reduction

8.2. FUTURE RESEARCH DIRECTIONS 149

by optimally storing the data on each block, so that every BRAM block get

fully utilized.

• One can reduce resource utilization by optimizing unum arithmetic codes and

parallelism them.

• On the theoretical side, research is required to prove the stability designed

controller.

• Unums can be used in other methods of optimization which demands memory

storage or more accuracy.

• The comparison of unums with fixed-point format will be needed.

• In the end, the open question is “How many number of bits do we need to

get satisfactory closed-loop performance?”.

150 CHAPTER 8. CONCLUSIONS AND FUTURE RESEARCH DIRECTIONS

Appendix A

Author’s Publications

Following is the list of publications which I have co-authored during my PhD study.

The list is structured based on the categorization of Slovak Accreditation Commit-

tee.

• Accreditation Category A, AFC- IFAC World Congress Proceedings

1. Ingole D., Kvasnica M., De Silva H., Gustafson J., “Reducing Memory

Footprints in Explicit Model Predictive Control using Universal Num-

bers”, In Preprints of the 20th IFAC World Congress, IFAC, Toulouse,

France, vol. 20, pp. 12100–12105, 2017.

• Accreditation Category B, AFC- Conference Proceedings

2. Dani S., Sonawane D., Ingole D., and Patil S., “Performance Evalua-

tion of PID, LQR and MPC for DC Motor Speed Control”, In Proceed-

ings of International Conference for Convergence in Technology (I2CT),

IEEE, Pune, India, pp. 1–7, 2017.

3. Ingole D. and Kvasnica M., “FPGA Implementation of Explicit Model

Predictive Control for Closed Loop Control of Depth of Anesthesia”, In

Preprints of the 5th Conference on Nonlinear Model Predictive Control,

IFAC, Seville, Spain, pp. 484–489, 2015.

4. Kvasnica M., Holaza J., Takács B., and Ingole D., “Design and Verifi-

cation of Low-Complexity Explicit MPC Controllers in MPT3. In Pro-

151

152 APPENDIX A. AUTHOR’S PUBLICATIONS

ceedings of the 14th European Control Conference (ECC 2015), IEEE,

Linz, Austria, pp. 2600-2605, 2015.

• Accreditation Category B, AFD- Conference Proceedings

5. Ingole D., Drgoňa J., Kalúz, M., Klaučo, M., Bakošová, M., Kvasnica

M., “Model Predictive Control of a Combined Electrolyzer-Fuel Cell

Educational Pilot Plant”, In Proceedings of the 21th International Con-

ference on Process Control, IEEE, Štrbské Pleso, Slovakia, pp. 147-154,

2017.

6. Ingole D., Drgoňa J., and Kvasnica M., “Offset-Free Hybrid Model

Predictive Control of Bispectral Index in Anesthesia”, In Proceedings

of the 21th International Conference on Process Control, IEEE, Štrbské

Pleso, Slovakia, pp. 422-427, 2017.

7. Sharma A., Drgoňa J., Ingole D., Holaza J., Valo R., Koniar S., Kvas-

nica M., “Teaching Classical and Advanced Control of Binary Distilla-

tion Column”, In Preprints of the 11th IFAC Symposium on Advances

in Control Education, IFAC, Bratislava, Slovakia, vol. 11, pp. 348–353,

2016.

8. Ingole D., Holaza J., Takács B., and Kvasnica M., “FPGA-Based Ex-

plicit Model Predictive Control for Closed-Loop Control of Intravenous

Anesthesia”, In Proceedings of the 20th International Conference on Pro-

cess Control, IEEE, Štrbské Pleso, Slovakia, pp. 42-47, 2015.

9. Kvasnica M., Takàcs B., Holaza J., and Ingole D.,“Reachability Analy-

sis and Control Synthesis for Uncertain Linear Systems in MPT”, In

Proceedings of the 8th Symposium on Robust Control Design, IFAC,

Bratislava, Slovak Republic, no. 8, pp. 302–307, 2015.

• Accreditation Category B, AFG- Abstract in Conference Proceedings

10. Ingole D., Drgoňa J., Kalúz, M., Klaučo, M., Bakošová, M., Kvasnica

M., “Explicit Model Predictive Control of a Fuel Cell”, In The European

Conference on Computational Optimization, Leuven, Belgium, vol. 4,

2016.

• Miscellaneous

153

11. Kvasnica M., Holaza J., Takács B., Ingole D., “Design and Verifica-

tion of Low-Complexity Explicit MPC Controllers in MPT3 (Extended

version)”, 2015.

12. Sonawane D., Ingole D., and Naik V., “FPGA implementation of linear

model predictive controller for real-time position control of DC motor”,

International Journal of Circuits and Architecture Design, Inderscience,

vol. 1, issue 4, pp. 281-294, 2015.

154 APPENDIX A. AUTHOR’S PUBLICATIONS

Appendix B

Curriculum Vitae

Deepak Ingole

Date of Birth: September 22, 1988

Citizenship: Indian

Email: deepak.ingole@stuba.sk

Homepage: http://www.kirp.chtf.stuba.sk/∼ingole

Education

Ph.D., Process Control September 2017 (expected)

• Marie Curie Early Stage Researcher at Slovak University of Technology in

Bratislava, Slovakia

– Project: Training in Embedded Predictive Control and Optimization

(TEMPO) a Marie Curie Initial Training Network, October 2014 –

September 2017

– Major: Embedded implementation of explicit MPC

– Minor: Optimization, control system, embedded systems, and universal

numbers

Master of Technology, Instrumentation and Control June 2012

155

156 APPENDIX B. CURRICULUM VITAE

• College of Engineering Pune, India

– Major: Implementation of active set method for closed-loop control of

intravenous anesthesia

Bachelor of Engineering, Instrumentation and Control August 2010

• University of Pune, India

– Major: Design of PLC-based MU-G10 starter test bench

Research Experience

Researcher October 2014 to present

• Slovak University of Technology in Bratislava, Slovakia

– Working on predictive control and embedded optimization

Visiting Researcher March 2017 to May 2017

• Imperial College London, United Kingdom

– FPGA Implementation of unum-based explicit MPC

Visiting Researcher December 2016 to March 2017

• University of Oxford, United Kingdom

– Implementation of unums in C/C++ for general purpose optimization

solver

Project Engineer August 2012 to June 2014

• Virtual Labs Project, College of Engineering Pune, India

– Developed mathematical model of industry grade pilot plants and their

control using predictive controller

157

Research Interests

• Predictive control, embedded optimization, embedded systems, process con-

trol, and anesthesia control.

Awards and Funding

• Xilinx University Program Donation: softwares and development board 2016

• University rector’s scholarship for Support of Young Researchers 2015

• Best paper award at Third International Conference on Control, Communi-

cation and Power Engineering, Springer, Bangalore, India 2012

Computer Skills

• FPGA Tools: Xilinx ISE and Vivado, System Generator, Quartus Prime,

ModelSim

• Programming Languages: VHDL/Verilog, C, C++ , MATLAB/Simulink, Ju-

lia, Python, HTML

• Toolboxes: YALMIP, MPT, PROTOIP, ACADO Toolkit

• Writing and Drawing: LATEX, TikZ

• Version Control Tools: GitHub, Bitbucket, RhodeCode

• Project Management Tool: Trello

Trainings and Workshops

• Professional courses on Business Management in Action, ABB University,

Baden, Switzerland 2016

• Presentation Skills Workshop, NTNU, Trondheim, Norway 2016

• TEMPO Professional Development, Entrepreneurship, and Complementary

Skills Workshop, Imperial College London, UK 2016

158 CHAPTER 8. BIBLIOGRAPHY

• TEMPO Spring School on Theory and Numerics for Nonlinear MPC, Univer-

sity of Freiburg, Germany 2015

• TEMPO Summer School on Numerical Optimal Control and Embedded Op-

timization, University of Freiburg, Germany 2015

• Automotive Embedded Control Workshop, Renault, Paris, France 2015

• Certificate Course on Embedded System Design, COEP, India 2011

• Industrial Training on Automation, COEP, India 2008

Bibliography

Alamir, M., Murilo, A., Amari, R., Tona, P., Fürhapter, R., and Ortner, P. (2010).

On the use of parameterized nmpc in real-time automotive control. In Automotive

model predictive control, pages 139–149. Springer.

Almurib, H. A., Askari, M., and Moghavvemi, M. (2010). Hard constraints explicit

model predictive control of an inverted pendulum. In Energy, Power and Control

(EPC-IQ), 2010 1st International Conference on, pages 28–32. IEEE.

Ameen, N. A., Galal, B., Kennel, R., and Kanchan, R. (2012). The explicit solution

of model-based predictive control by considering the nonlinearities in drive ap-

plications. In Power Electronics and Motion Control Conference (EPE/PEMC),

2012 15th International, pages DS2a–1. IEEE.

ANSI/IEEE Std 1985 (1985). IEEE Standard for Binary Floating Point Arithmetic.

IEEE.

Avnet, I. (2014). ZynqTMEvaluation and Development Hardware User’s Guide, 2.2

edition.

Bamdadian, A., Towhidkhah, F., and Moradi, M. H. (2008). Generalized predic-

tive control of depth of anesthesia by using a pharmocokinetic-pharmacodynamic

model of the patient. In Bioinformatics and Biomedical Engineering, 2008.

ICBBE 2008. The 2nd International Conference on, pages 1276–1279. IEEE.

Bank, B., Guddat, J., Klatte, D., Kummer, B., and Tammer, K. (1982). Non-linear

parametric optimization. Akademie-Verlag, Berlin.

Baotić, M. (2002). An efficient algorithm for multiparametric quadratic program-

ming. Technical report, ETH, Zurich.

159

160 BIBLIOGRAPHY

Bayat, F., Johansen, T. A., and Jalali, A. A. (2011). Combining truncated binary

search tree and direct search for flexible piecewise function evaluation for explicit

mpc in embedded microcontrollers. IFAC Proceedings Volumes, 44(1):1332–1337.

Beccuti, A., Papafotiou, G., Frasca, R., and Morari, M. (2007). Explicit hybrid

model predictive control of the dc-dcboost converter. In Power Electronics Spe-

cialists Conference, 2007. PESC 2007. IEEE, pages 2503–2509. IEEE.

Beccuti, A. G., Mariéthoz, S., Cliquennois, S., Wang, S., and Morari, M.

(2009). Explicit model predictive control of dc–dc switched-mode power supplies

with extended kalman filtering. IEEE Transactions on Industrial Electronics,

56(6):1864–1874.

Behrooz, P. (2000). Computer arithmetic: Algorithms and hardware designs. Ox-

ford University Press, 19:512583–512585.

Bemporad, A. (2004). Hybrid Toolbox - User’s Guide.

Bemporad, A. (2006). Model predictive control design: New trends and tools. In

Decision and Control, 2006 45th IEEE Conference on, pages 6678–6683. IEEE.

Bemporad, A., Borrelli, F., Morari, M., et al. (2002). Model predictive control

based on linear programming˜ the explicit solution. IEEE Transactions on Au-

tomatic Control, 47(12):1974–1985.

Bemporad, A. and Filippi, C. (2003). Suboptimal explicit receding horizon control

via approximate multiparametric quadratic programming. Journal of optimiza-

tion theory and applications, 117(1):9–38.

Bemporad, A., Morari, M., Dua, V., and Pistikopoulos, E. N. (2000). The explicit

solution of model predictive control via multiparametric quadratic programming.

In American Control Conference, 2000. Proceedings of the 2000, volume 2, pages

872–876. IEEE.

Bibian, S., Ries, C. R., Huzmezan, M., and Dumont, G. A. (2003). Clinical anes-

thesia and control engineering: Terminology, concepts and issues. In European

Control Conference, pages 2465–2474.

Borrelli, F., Baotić, M., Pekar, J., and Stewart, G. (2009). On the complexity of

explicit mpc laws. In Control Conference (ECC), 2009 European, pages 2408–

2413. IEEE.

BIBLIOGRAPHY 161

Borrelli, F., Bemporad, A., and Morari, M. (2015). Predictive control for linear and

hybrid systems, 2015. preparation, available online at http://www. mpc. berkeley.

edu/mpc-course-material.

Camacho, E. F. and Alba, C. B. (2013). Model predictive control. Springer Science

& Business Media.

Carver, J. C. (2012). Software engineering for computational science and engineer-

ing. Computing in Science & Engineering, 14(2):8–11.

Chang, J. J., Syafiie, S., Kamil, R., and Lim, T. A. (2015). Automation of anaes-

thesia: a review on multivariable control. Journal of clinical monitoring and

computing, 29(2):231–239.

Christofides, P. D., Scattolini, R., de la Pena, D. M., and Liu, J. (2013). Distributed

model predictive control: A tutorial review and future research directions. Com-

puters & Chemical Engineering, 51:21–41.

Csekő, L. H., Kvasnica, M., and Lantos, B. (2015). Explicit mpc-based rbf neu-

ral network controller design with discrete-time actual kalman filter for semiac-

tive suspension. IEEE Transactions on Control Systems Technology, 23(5):1736–

1753.

Cychowski, M. T. and O’Mahony, T. (2005). Efficient off-line solutions to robust

model predictive control using orthogonal partitioning. IFAC Proceedings Vol-

umes, 38(1):129–134.

de la Peña, D. M., Ramirez, D., Camacho, E., and Alamo, T. (2005). Application

of an explicit min-max mpc to a scaled laboratory process. Control Engineering

Practice, 13(12):1463–1471.

de Oliveira, N. and Biegler, L. T. (1994). Constraint handing and stability proper-

ties of model-predictive control. AIChE journal, 40(7):1138–1155.

D’Errico, J. (2012). High precision floating point arithmetic - a big decimal class.

MATLAB central file exchange.

Dirscherl, C., Hackl, C., and Schechner, K. (2015). Explicit model predictive control

with disturbance observer for grid-connected voltage source power converters. In

Industrial Technology (ICIT), 2015 IEEE International Conference on, pages

999–1006. IEEE.

162 BIBLIOGRAPHY

Drgoňa, J., Klaučo, M., Janeček, F., and Kvasnica, M. (2017). Optimal control of

a laboratory binary distillation column via regionless explicit mpc. Computers

& Chemical Engineering, 96:139–148.

Drgona, J., Kvasnica, M., Klauco, M., and Fikar, M. (2013). Explicit stochastic

mpc approach to building temperature control. In Decision and Control (CDC),

2013 IEEE 52nd Annual Conference on, pages 6440–6445. IEEE.

Dua, V., Bozinis, N. A., and Pistikopoulos, E. N. (2002). A multiparametric

programming approach for mixed-integer quadratic engineering problems. Com-

puters & Chemical Engineering, 26(4):715–733.

Ejaz, K. and Yang, J.-S. (2004). Controlling depth of anesthesia using pid tuning:

a comparative model-based study. In Control Applications, 2004. Proceedings of

the 2004 IEEE International Conference on, volume 1, pages 580–585. IEEE.

El Hadef, J., Olaru, S., Rodriguez-Ayerbe, P., Colin, G., Chamaillard, Y., and

Talon, V. (2013). Explicit nonlinear model predictive control of the air path of a

turbocharged spark-ignited engine. In Control Applications (CCA), 2013 IEEE

International Conference on, pages 71–77. IEEE.

Farooq, U., Marrakchi, Z., and Mehrez, H. (2012). Fpga architectures: An overview.

In Tree-based Heterogeneous FPGA Architectures, pages 7–48. Springer New

York.

Feller, C. and Johansen, T. A. (2013). Explicit mpc of higher-order linear pro-

cesses via combinatorial multi-parametric quadratic programming. In Control

Conference (ECC), 2013 European, pages 536–541. IEEE.

Feller, C., Johansen, T. A., and Olaru, S. (2013). An improved algorithm for combi-

natorial multi-parametric quadratic programming. Automatica, 49(5):1370–1376.

Finch, S. (2003). Mathematical constants. Cambridge University Press.

Findeisen, R. and Allgöwer, F. (2002). An introduction to nonlinear model pre-

dictive control. In 21st Benelux Meeting on Systems and Control, volume 11,

pages 119–141. Technische Universiteit Eindhoven Veldhoven Eindhoven, The

Netherlands.

BIBLIOGRAPHY 163

Fletcher, R. (2013). Practical Methods of Optimization. John Wiley & Sons, 2nd

edition.

Forbes, M. G., Patwardhan, R. S., Hamadah, H., and Gopaluni, R. B. (2015).

Model predictive control in industry: Challenges and opportunities. IFAC-

PapersOnLine, 48(8):531–538.

Furutani, E., Sakai, C., Takeda, T., and Shirakami, G. (2015). Comparison of

pharmacokinetic models for hypnosis control based on effect-site propofol con-

centration to maintain appropriate hypnosis. Automat Control Physiol State

Func, 2(104):2.

Gerkšič, S. and de Tommasi, G. (2013). Vertical stabilization of iter plasma using

explicit model predictive control. Fusion Engineering and Design, 88(6):1082–

1086.

Geyer, T., Torrisi, F. D., and Morari, M. (2008). Optimal complexity reduction of

polyhedral piecewise affine systems. Automatica, 44(7):1728–1740.

Grancharova, A., Johansen, T. A., and Kocijan, J. (2003). Explicit model predictive

control of gas-liquid separation plant. In European Control Conference (ECC),

2003, pages 2475–2480. IEEE.

Grancharova, A., Johansen, T. A., and Kocijan, J. (2004). Explicit model predictive

control of gas–liquid separation plant via orthogonal search tree partitioning.

Computers & chemical engineering, 28(12):2481–2491.

Granlund, T. (2016). GNU MP: The GNU Multiple Precision Arithmetic Library,

6.1.2 edition. http://gmplib.org/.

Gupta, A., Bhartiya, S., and Nataraj, P. (2011). A novel approach to multipara-

metric quadratic programming. Automatica, 47(9):2112–2117.

Gustafson, J. (2015). The End of Error: Unum Computing. CRC Press.

Herceg, M., Kvasnica, M., Jones, C., and Morari, M. (2013a). Multi-parametric

toolbox 3.0. In Proceedings of the European control conference, number EPFL-

CONF-186265.

Herceg, M., Kvasnica, M., Jones, C. N., and Morari, M. (2013b). Multi-parametric

toolbox 3.0. In Control Conference (ECC), 2013 European, pages 502–510. IEEE.

164 BIBLIOGRAPHY

Hickey, T., Ju, Q., and Van Emden, M. H. (2001). Interval arithmetic: From

principles to implementation. Journal of the ACM (JACM), 48(5):1038–1068.

Honek, M., Kvasnica, M., Szűcs, A., Šimončič, P., Fikar, M., et al. (2015). A low-

complexity explicit mpc controller for afr control. Control Engineering Practice,

42:118–127.

Hovland, S., Gravdahl, J. T., and Willcox, K. E. (2008). Explicit model predictive

control for large-scale systems via model reduction. Journal of guidance, control,

and dynamics, 31(4):918–926.

Hredzak, B., Agelidis, V. G., and Demetriades, G. (2015). Application of explicit

model predictive control to a hybrid battery-ultracapacitor power source. Journal

of Power Sources, 277:84–94.

Hrovat, D., Di Cairano, S., Tseng, H. E., and Kolmanovsky, I. V. (2012). The

development of model predictive control in automotive industry: A survey. In

Control Applications (CCA), 2012 IEEE International Conference on, pages 295–

302. IEEE.

IEEE Std 2008 (2008). Ieee standard for floating-point arithmetic. IEEE Std

754-2008, pages 1–70.

Jiang, H., Lin, J., Song, Y., You, S., and Zong, Y. (2016). Explicit model predictive

control applications in power systems: an agc study for an isolated industrial

system. IET Generation, Transmission & Distribution, 10(4):964–971.

Johansen, T. A. (2014). Toward dependable embedded model predictive control.

IEEE Systems Journal.

Johansen, T. A. and Grancharova, A. (2003). Approximate explicit constrained

linear model predictive control via orthogonal search tree. IEEE Transactions

on Automatic Control, 48(5):810–815.

Jones, C. and Morari, M. (2009). Approximate explicit mpc using bilevel optimiza-

tion. In Control Conference (ECC), 2009 European, pages 2396–2401. IEEE.

Jones, C. N. and Kerrigan, E. (2015). Predictive control for embedded systems.

Optimal Control Applications and Methods, 36(5):583–584.

BIBLIOGRAPHY 165

Kahan, W. (1996). Ieee standard 754 for binary floating-point arithmetic. Lecture

Notes on the Status of IEEE, 754(94720-1776):11.

Karush, W. (1939). Minima of functions of several variables with inequalities as

side conditions. Master’s thesis, University of Chicago, Chicago, Illinois.

Kaushik, S. and Zorian, Y. (2012). Embedded memory test and repair optimizes

soc yields. Synopsys, Mountain View, CA, USA, Technical Report.

Kilts, S. (2007). Advanced FPGA design: architecture, implementation, and opti-

mization. John Wiley & Sons.

Kirubakaran, V., Radhakrishnan, T., and Sivakumaran, N. (2016). Fuzzy aggrega-

tion based multiple models explicit multi parametric mpc design for a quadruple

tank process. IFAC-PapersOnLine, 49(1):555–560.

Kirubakaran, V., Radkakrishnan, T., and Sivakumaran, N. (2013). Blood glucose

concentration regulation in type 1 diabetics using multi model multi parametric

model predictive control: An empirical approach. IFAC Proceedings Volumes,

46(31):291–296.

Klaučo, M., Kalúz, M., and Kvasnica, M. (2017). Real-time implementation of an

explicit mpc-based reference governor for control of a magnetic levitation system.

Control Engineering Practice, 60:99–105.

Knuth, D. (1985). Dynamic Huffman Coding. J. Algorithms, 6(2):163–180.

Koehler, S. and Borrelli, F. (2013). Building temperature distributed control via

explicit mpc and “trim and respond” methods. In Control Conference (ECC),

2013 European, pages 4334–4339. IEEE.

Krogstad, T., Gravdahl, J., and Tondel, P. (2005). Explicit model predictive control

of a satellite with magnetic torquers. In Intelligent Control, 2005. Proceedings of

the 2005 IEEE International Symposium on, Mediterrean Conference on Control

and Automation, pages 491–496. IEEE.

Kuon, I., Tessier, R., and Rose, J. (2008). Fpga architecture: Survey and challenges.

Foundations and Trends in Electronic Design Automation, 2(2):135–253.

Kvasnica, M. and Fikar, M. (2012). Clipping-based complexity reduction in explicit

MPC. IEEE Transactions on Automatic Control, 57(7):1878–1883.

166 BIBLIOGRAPHY

Kvasnica, M., Grieder, P., Baotić, M., and Morari, M. (2004). Multi-parametric

toolbox (mpt). In International Workshop on Hybrid Systems: Computation and

Control, pages 448–462. Springer.

Kvasnica, M., Hledík, J., and Fikar, M. (2012). Reducing the memory footprint

of explicit mpc solutions by partial selection. In Decision and Control (CDC),

2012 IEEE 51st Annual Conference on, pages 4537–4542. IEEE.

Kvasnica, M., Hledík, J., Rauová, I., and Fikar, M. (2013). Complexity reduction

of explicit model predictive control via separation. Automatica, 49(6):1776–1781.

Kvasnica, M., Holaza, J., Takács, B., and Ingole, D. (2015). Design and verification

of low-complexity explicit MPC controllers in MPT3. In Control Conference

(ECC), 2015 European, pages 2595–2600. IEEE.

Kvasnica, M., Rauová, I., and Fikar, M. (2011). Simplification of explicit mpc

feedback laws via separation functions. IFAC Proceedings Volumes, 44(1):5383–

5388.

Kwon, W. H. and Han, S. H. (2006). Receding horizon control: model predictive

control for state models. Springer Science & Business Media.

Ławryńczuk, M. (2009). Explicit nonlinear predictive control of a distillation col-

umn based on neural models. Chemical engineering & technology, 32(10):1578–

1587.

Lazar, M. (2006). Model predictive control of hybrid systems: Stability and ro-

bustness.

Lee, C. F. and Line, C. M. C. (2008). Explicit nonlinear mpc of an automotive

electromechanical brake. IFAC Proceedings Volumes, 41(2):10758–10763.

Lee, J. H. (2011). Model predictive control: Review of the three decades of develop-

ment. International Journal of Control, Automation and Systems, 9(3):415–424.

Liu, C., Chen, W.-H., and Andrews, J. (2011). Piecewise constant model pre-

dictive control for autonomous helicopters. Robotics and Autonomous Systems,

59(7):571–579.

BIBLIOGRAPHY 167

Liu, C., Chen, W.-H., and Andrews, J. (2012). Tracking control of small-scale

helicopters using explicit nonlinear mpc augmented with disturbance observers.

Control Engineering Practice, 20(3):258–268.

Liu, C., Lu, H., and Chen, W.-H. (2015). An explicit mpc for quadrotor trajectory

tracking. In Control Conference (CCC), 2015 34th Chinese, pages 4055–4060.

IEEE.

Maasoumy, M., Razmara, M., Shahbakhti, M., and Vincentelli, A. S. (2014). Han-

dling model uncertainty in model predictive control for energy efficient buildings.

Energy and Buildings, 77:377–392.

Maciejowski, J. M. (2002). Predictive control: with constraints. Pearson education.

Maeder, U., Borrelli, F., and Morari, M. (2009). Linear offset-free model predictive

control. Automatica, 45(10):2214–2222.

Mariethoz, S., Domahidi, A., and Morari, M. (2009). Sensorless explicit model pre-

dictive control of permanent magnet synchronous motors. In Electric Machines

and Drives Conference, 2009. IEMDC’09. IEEE International, pages 1250–1257.

IEEE.

Mariethoz, S., Domahidi, A., and Morari, M. (2012). High-bandwidth explicit

model predictive control of electrical drives. IEEE Transactions on Industry

Applications, 48(6):1980–1992.

Mayne, D. Q. (2014). Model predictive control: Recent developments and future

promise. Automatica, 50(12):2967–2986.

Mayne, D. Q., Rawlings, J. B., Rao, C. V., and Scokaert, P. O. (2000). Constrained

model predictive control: Stability and optimality. Automatica, 36(6):789–814.

Méndez, J. A., Marrero, A., Reboso, J. A., and León, A. (2016). Adaptive fuzzy

predictive controller for anesthesia delivery. Control Engineering Practice, 46:1–

9.

Mohammadkhani, M. A., Bayat, F., and Jalali, A. A. (2014). Design of explicit

model predictive control for constrained linear systems with disturbances. Inter-

national Journal of Control, Automation and Systems, 12(2):294–301.

168 BIBLIOGRAPHY

Mönnigmann, M. and Kastsian, M. (2011). Fast explicit mpc with multiway trees.

IFAC Proceedings Volumes, 44(1):1356–1361.

Monsson, P. K. (2008). Combined binary and decimal floating-point unit. Master’s

thesis, Technical University of Denmark, DTU, DK-2800 Kgs. Lyngby, Denmark.

Montague, R. G., Bingham, C., and Atallah, K. (2013). Magnetic gear pole-slip

prevention using explicit model predictive control. IEEE/ASME Transactions

on Mechatronics, 18(5):1535–1543.

Moore, R. E. (1979). Methods and applications of interval analysis. SIAM.

Moore, R. E., Kearfott, R. B., and Cloud, M. J. (2009). Introduction to interval

analysis. SIAM.

Muller, J., Brisebarre, N., De Dinechin, F., Jeannerod, C., Lefevre, V., Melquiond,

G., Revol, N., Stehlé, D., and Torres, S. (2009). Handbook of floating-point

arithmetic. Springer Science & Business Media.

Muske, K. R. and Rawlings, J. B. (1993). Model predictive control with linear

models. AIChE Journal, 39(2):262–287.

Naşcu, I., Diangelakis, N. A., Oberdieck, R., Papathanasiou, M. M., and Pis-

tikopoulos, E. N. (2016). Explicit mpc in real-world applications: the paroc

framework. In American Control Conference (ACC), 2016, pages 913–918. IEEE.

Naşcu, I., Krieger, A., Ionescu, C. M., and Pistikopoulos, E. N. (2015). Advanced

model-based control studies for the induction and maintenance of intravenous

anaesthesia. IEEE Transactions on biomedical engineering, 62(3):832–841.

Naus, G., Ploeg, J., Van de Molengraft, M., Heemels, W., and Steinbuch, M. (2010).

Design and implementation of parameterized adaptive cruise control: An explicit

model predictive control approach. Control Engineering Practice, 18(8):882–892.

Nielsen, I. and Axehill, D. (2016). Reduced memory footprint in multiparamet-

ric quadratic programming by exploiting low rank structure. In Decision and

Control (CDC), 2016 IEEE 55th Conference on, pages 3654–3661. IEEE.

Nocedal, J. and Wright, S. (2006). Numerical Optimization. Springer-Verlag, USA,

2nd edition.

BIBLIOGRAPHY 169

Oberdieck, R., Diangelakis, N. A., Papathanasiou, M., Nascu, I., and Pistikopou-

los, E. (2016). Pop–parametric optimization toolbox. Industrial & Engineering

Chemistry Research, 55(33):8979–8991.

Oberdieck, R., Diangelakis, N. A., and Pistikopoulos, E. N. (2017). Explicit model

predictive control: a connected-graph approach. Automatica, 76:103–112.

Oldewurtel, F., Gondhalekar, R., Jones, C. N., and Morari, M. (2009). Blocking

parameterizations for improving the computational tractability of affine distur-

bance feedback mpc problems. In Decision and Control, 2009 held jointly with

the 2009 28th Chinese Control Conference. CDC/CCC 2009. Proceedings of the

48th IEEE Conference on, pages 7381–7386. IEEE.

Oliveri, A., Naus, G. J., Storace, M., and Heemels, W. (2011). Low-complexity

approximations of pwa functions: A case study on adaptive cruise control. In

Circuit Theory and Design (ECCTD), 2011 20th European Conference on, pages

669–672. IEEE.

Oravec, J., Blažek, S., and Kvasnica, M. (2013). Simplification of explicit mpc

solutions via inner and outer approximations. In Process Control (PC), 2013

International Conference on, pages 389–394. IEEE.

Overton, M. L. (2001). Numerical computing with IEEE floating point arithmetic.

SIAM.

Padgett, W. T. and Anderson, D. V. (2009). Fixed-point signal processing. Syn-

thesis Lectures on Signal Processing, 4(1):1–133.

Padula, F., Ionescu, C., Latronico, N., Paltenghi, M., Visioli, A., and Vivacqua,

G. (2017). Optimized pid control of depth of hypnosis in anesthesia. Computer

Methods and Programs in Biomedicine, 144:21–35.

Pannocchia, G. and Rawlings, J. B. (2003). Disturbance models for offset-free

model-predictive control. AIChE journal, 49(2):426–437.

Parhami, B. (1999). Computer arithmetic, volume 20. Oxford university press.

Parisio, A., Fabietti, L., Molinari, M., Varagnolo, D., and Johansson, K. H. (2014).

Control of hvac systems via scenario-based explicit mpc. In Decision and Control

(CDC), 2014 IEEE 53rd Annual Conference on, pages 5201–5207. IEEE.

170 BIBLIOGRAPHY

Pistikopoulos, E. (2009). Perspectives in multiparametric programming and explicit

model predictive control. AIChE journal, 55(8):1918–1925.

Pistikopoulos, E., Galindo, A., Dua, V., Kikkinides, E. S., Papageorgiou, L.,

Jorisch, W., Benz, K.-W., Neumann, W., Köhler, M., Fritzsche, W., et al.

(2007a). Multi-Parametric Programming: Theory, Algorithms and Applications,

volume 1. Weinheim: WileyVCH.

Pistikopoulos, E. N., Dominguez, L., Panos, C., Kouramas, K., and Chinchuluun, A.

(2012). Theoretical and algorithmic advances in multi-parametric programming

and control. Computational Management Science, pages 1–21.

Pistikopoulos, E. N., Galindo, A., Dua, V., Kikkinides, E. S., Papageorgiou, L.,

Jorisch, W., Benz, K.-W., Neumann, W., Köhler, M., Fritzsche, W., et al.

(2007b). Multi-Parametric Model-Based Control: Theory and Applications, vol-

ume 2. Weinheim: WileyVCH.

Pu, Y. and Yu-hong, W. (2015). Explicit model predictive control of cstr system

based on pwa model. In Control Conference (CCC), 2015 34th Chinese, pages

2304–2308. IEEE.

Puig, V., Rosich, A., Ocampo-Martínez, C., and Sarrate, R. (2007). Fault-tolerant

explicit mpc of pem fuel cells. In Decision and Control, 2007 46th IEEE Con-

ference on, pages 2657–2662. IEEE.

Qin, S. J. and Badgwell, T. A. (2000). An overview of nonlinear model predictive

control applications. Nonlinear model predictive control, pages 369–392.

Qin, S. J. and Badgwell, T. A. (2003). A survey of industrial model predictive

control technology. Control engineering practice, 11(7):733–764.

Rawlings, J. B. (2000). Tutorial overview of model predictive control. IEEE Control

Systems, 20(3):38–52.

Rossiter, J. A. (2003). Model-based predictive control: a practical approach. CRC

press.

Rossiter, J. A. and Grieder, P. (2005). Using interpolation to improve efficiency of

multiparametric predictive control. Automatica, 41(4):637–643.

BIBLIOGRAPHY 171

Sahu, C., Radhakrishnan, T., and Sivakumaran, N. (2015). Real time closed loop

data based estimation and explicit model based control of an air conditioning

system implemented in hardware in loop scheme. In Robotics, Automation, Con-

trol and Embedded Systems (RACE), 2015 International Conference on, pages

1–7. IEEE.

Sanchez-Cossio, J., Ortega-Alvarez, J. D., and Ocampo-Martinez, C. (2015). Tem-

perature regulation of a pilot-scale batch reaction system via explicit model pre-

dictive control. In Automatic Control (CCAC), 2015 IEEE 2nd Colombian Con-

ference on, pages 1–6. IEEE.

Sawaguchi, Y., Furutani, E., Shirakami, G., Araki, M., and Fukuda, A. (2008).

A model-predictive hypnosis control system under total intravenous anesthesia.

Biomedical Engineering, IEEE Transactions on, 55(3):874–887.

Schüttler, J. and Ihmsen, H. (2000). Population pharmacokinetics of propofol: a

multicenter study. Anesthesiology, 92(3):727–738.

Scibilia, F., Olaru, S., and Hovd, M. (2009). Approximate explicit linear mpc

via delaunay tessellation. In Control Conference (ECC), 2009 European, pages

2833–2838. IEEE.

Seron, M. M., Goodwin, G. C., and De Doná, J. A. (2002). Finitely parameterised

implementation of receding horizon control for constrained linear systems. In

American Control Conference, 2002. Proceedings of the 2002, volume 6, pages

4481–4486. IEEE.

Shen, Y., Xie, L., and Li, X. (2013). Explicit hybrid model predictive control of

the forward dc-dc converter. In Control and Decision Conference (CCDC), 2013

25th Chinese, pages 638–642. IEEE.

Sites, M. (2008). Ieee standard for floating-point arithmetic.

Snyman, J. (2005). Practical mathematical optimization: an introduction to basic

optimization theory and classical and new gradient-based algorithms, volume 97.

Springer Science & Business Media.

Spjøtvold, J., Kerrigan, E. C., Jones, C. N., TøNdel, P., and Johansen, T. A.

(2006). On the facet-to-facet property of solutions to convex parametric quadratic

programs. Automatica, 42(12):2209–2214.

172 BIBLIOGRAPHY

Stephens, M. A., Manzie, C., and Good, M. C. (2011). Explicit model predictive

control for reference tracking on an industrial machine tool. IFAC Proceedings

Volumes, 44(1):14513–14518.

Suardi, A., Kerrigan, E. C., and Constantinides, G. A. (2015). Fast fpga prototyp-

ing toolbox for embedded optimization. In European Control Conference (ECC),

pages 2589–2594.

Suardi, A., Longo, S., Kerrigan, E., and Constantinides, G. (2014). Robust ex-

plicit mpc design under finite precision arithmetic. IFAC Proceedings Volumes,

47(3):2939–2944.

Suardi, A., Longo, S., Kerrigan, E. C., and Constantinides, G. (2016). Explicit

MPC: Hard constraint satisfaction under low precision arithmetic. Control En-

gineering Practice, 47:60–69.

Swartzlander, E. E. (2015). Computer arithmetic. In Computer Arithmetic: Vol-

ume I, pages 1–398. World Scientific.

Szücs, A., Kvasnica, M., and Fikar, M. (2011). A memory-efficient representation of

explicit MPC solutions. In 2011 50th IEEE Conference on Decision and Control

and European Control Conference, pages 1916–1921. IEEE.

Takács, B., Števek, J., Valo, R., and Kvasnica, M. (2016a). Python code generation

for explicit mpc in mpt. In Control Conference (ECC), 2016 European, pages

1328–1333. IEEE.

Takács, G., Batista, G., Gulan, M., and Rohal’-Ilkiv, B. (2016b). Embedded ex-

plicit model predictive vibration control. Mechatronics, 36:54–62.

Tøndel, P. and Johansen, T. A. (2002). Complexity reduction in explicit linear

model predictive control. IFAC Proceedings Volumes, 35(1):189–194.

TøNdel, P., Johansen, T. A., and Bemporad, A. (2003). An algorithm for multi-

parametric quadratic programming and explicit mpc solutions. Automatica,

39(3):489–497.

Ulbig, A., Olaru, S., and Dumur, D. (2008). Explicit model predictive control for

a magnetic levitation system. In Control and Automation, 2008 16th Mediter-

ranean Conference on, pages 1544–1549. IEEE.

BIBLIOGRAPHY 173

UNE, L. and Pannek, J. (2011). Nonlinear Model Predictive Control: Theory and

Algorithms, Communications and Control Engineering. Springer,.

Wang, L. (2009). Model predictive control system design and implementation using

MATLAB R©. Springer Science & Business Media.

Wang, Y. and Boyd, S. (2010). Fast model predictive control using online opti-

mization. IEEE Transactions on Control Systems Technology, 18(2):267–278.

Wen, C., Ma, X., and Ydstie, B. E. (2009). Analytical expression of explicit mpc

solution via lattice piecewise-affine function. Automatica, 45(4):910–917.

Xilinx. Xilinx. Available at http://www.xilinx.com.

Yelneedi, S., Samavedham, L., and Rangaiah, G. (2009). Advanced control strate-

gies for the regulation of hypnosis with propofol. Industrial & Engineering Chem-

istry Research, 48(8):3880–3897.

Yu-Geng, X., De-Wei, L., and Shu, L. (2013). Model predictive control—status

and challenges. Acta Automatica Sinica, 39(3):222–236.

Zanini, F., Atienza, D., Benini, L., and De Micheli, G. (2009). Multicore thermal

management with model predictive control. In Circuit Theory and Design, 2009.

ECCTD 2009. European Conference on, pages 711–714. IEEE.

Zhang, J., Cheng, X., and Zhu, J. (2016). Control of a laboratory 3-dof helicopter:

Explicit model predictive approach. International Journal of Control, Automa-

tion, and Systems, 14(2):389.

Zhao, D., Liu, C., Stobart, R., Deng, J., Winward, E., and Dong, G. (2014). An ex-

plicit model predictive control framework for turbocharged diesel engines. IEEE

Transactions on Industrial Electronics, 61(7):3540–3552.

Zong, Y., Böning, G. M., Santos, R. M., You, S., Hu, J., and Han, X. (2017). Chal-

lenges of implementing economic model predictive control strategy for buildings

interacting with smart energy systems. Applied Thermal Engineering, 114:1476–

1486.

