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and support during my studies. I thank my fellow colleagues, co-authors and friends,
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Abstract

This thesis deals with applications of model predictive control (MPC) on the building cli-

mate control problems. Many studies have proved that building sector can significantly

benefit from replacing the current practice rule-based controllers (RBC) for more advanced

control strategies like MPC. Despite this intensive research, the application of the MPC in

practice is still in its early stages. This is mainly because the MPC requires an accurate

controller model of the building envelope and its heating, ventilation and air conditioning

(HVAC) systems. However, the necessary level of the model complexity to obtain a good

MPC performance remains a priori unknown, and no systematic method is available. This

thesis introduces such systematical investigation of the required controller model complex-

ity necessary to obtain the optimal control performance for a given building. Moreover,

the optimization-based control algorithms, like MPC, impose increased hardware and soft-

ware requirements, together with more complicated tuning and error handling capabilities

required from the commissioning staff. This problem is tackled in this thesis, by two ways.

First, it is shown how the explicit solutions can be synthesized even for the MPC formula-

tions taking into account uncertainties in the weather predictions. The main bottleneck of

this approach, however, are its limitations only to the problems of modest complexity. This

drawback is further eliminated by introducing a versatile framework for synthesis of simple,

yet well-performing control strategies that mimic the behaviour of optimization-based con-

trollers, also for the large scale multiple-input-multiple-output (MIMO) control problems

which are common in the building sector. The idea is based on devising simplified control

laws learned from MPC by exploiting the powers of multivariate regression algorithms and

dimensionality reduction techniques. The main advantage of the proposed methods stems

from their easy implementation even on low-level hardware without the need for advanced

software libraries.





Abstrakt

Táto práca sa zaoberá aplikáciami predit́ıvneho riadenia (MPC) na problematiku riadenia

tepelnej pohody v budovách. Mnohé štúdie ukázali, že nahradenie aktuálne použ́ıvaných

regulátorov založených na pravidlách (RBC) pokročilými metódami riadenia môže výrazne

prispiet’ k energetickým úsporám a zvýšenému komfortu obyvatel’ov. Aj napriek tomuto

intenźıvnemu výskumu aplikácia MPCv praxi je ešte stále v počiatočnom štádiu. A to

hlavne z toho dôvodu, pretože MPC vyžaduje presný matematický model budovy a jej

vykurovaćıch, chladiacih a klimatizačných (HVAC) systémov. Potrebná úroveň zložitosti

modelu na dosiahnutie dobrého výkonu MPC však zostáva a priori neznáma a na toto urče-

nie nie je k dispoźıcii žiadna systematická metóda. Táto práca predstavuje systematickú

štúdiu zložitosti predikčného modelu potrebného na dosiahnutie optimálneho správania sa

regulátora pre konkrétnu budovu. Druhou prekážkou aplikácie algoritmov predikt́ıvneho

riadenia sú zvýšené požiadavky na hardvér a softvér a to hlavne z dôvodu nutnosti riešenia

optimalizačných problémov v reálnom čase. Pokročilé algoritmy riadenia navyše vyžadujú

špeciálne vyškolených pracovńıkov schopných ladit’ a odstraňovat’ poruchy pri zavádzańı

tejto technológie do praxe. Tento problém je riešený v tejto práci dvomi spôsobmi. V prvom

pŕıpade skúmame možno zostrojit’ takzvané explicitné riešenia aj pre formulácie MPC ktoré

zohl’adňujú neistoty predpoved́ı počasia. Takéto riešenia sú najprv predpoč́ıtané v režime

off-line a v on-line režime potom umožňujú jednoduchú a výpočtovo efekt́ıvnu implementá-

ciu predit́ıvneho riadenia aj na zariadeniach s obmedzeným výpočtovým výkonom. Hlavnou

prekážkou tohto pŕıstupu sú však striktné obmedzenia na zložitost’ riešeného problému, vy-

jadrené počtom parametrov. Táto nevýhoda je v druhom pŕıstupe prekonaná zostrojeńım

regulátorov ktoré napodobňujú správanie predikt́ıvneho regulátora cez využitie algoritmov

strojového učenia. Konkrétne ide o využitie algoritmov mnohorozmerovej regresie a tech-

ńık redukcie zložitosti. Takéto regulátory sú navyše zostrojitel’né aj pre zložité problémy s

viacerými vstupmi a výstupmi (MIMO) a s vel’kým množstvom parametrov, ktoré sú bežné

pri riadeńı budov. Hlavná výhoda navrhovaných metód spoč́ıva v ich l’ahkej implementácii

aj na lacných zariadeniach bez potreby pokročilých softvérových knižńıc.





Notation

Mathematical Symbols

xk state variable at k-th time step

uk input variable at k-th time step

dk disturbance variable at k-th time step

yk output variable at k-th time step

ω random variable

ξ vector of parameters in control context / features in machine learning context

N
b
a set of integers {a, a+ 1, . . . , b}

N
n column vector of integer values of length n

R
n column vector of real values of length n

R
n×m matrix of real values of n-rows and m-columns

Abbreviations

Optimization

LP linear programming

QP quadratic programming

MIP mixed integer programming

MILP mixed integer linear programming

MIQP mixed integer quadratic programming

mpP multi parametric programming

mpLP multi parametric linear programming

mpQP multi parametric quadratic programming

mpMILP multi parametric mixed integer linear programming



Functions

PWA piecewise affine function

PWQ piecewise quadratic function

PWC piecewise constant function

Systems

ODE ordinary differential equation

I/O input - output

SISO single input - single output system

SIMO single input - multiple output system

MISO multiple input - single output system

MIMO multiple input - multiple output system

LTI linear time-invariant

SSM state space model

MOR model order reduction

ROM reduced order model

HSV hankel singular values

Controllers

RBC rule based controller

PID proporcional integral derivative

LQR linear quadratic regulator

LQE linear quadratic estimator

LQG linear quadratic gaussian

MPC model predictive control

RHC receding horizon control

OSF-MPC off-set free model predictive control

S-MPC standard model predictive control

MPHC model predictive heuristic control

MAC model algorithmic control

DMC dynamic matrix control

QDMC quadratic dynamic matrix control

IDCOM identification and command

IDCOM-M identification and command - multiple input/output

HIECON hierarchical constraint control

SMCA setpoint multivariable control architecture

SMOC shell multivariable optimizing controller

PCT predictive control technology

RMPCT robust model predictive control technology

CEMPC certainty equivalence model predictive control
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Building modeling and control

HVAC heating ventilation air conditioning

BAS building automation system

BACS building automation and control system

ISE indoor temperature simulink engineering

BES building energy simulation

IDEAS Integrated District Energy Assessment by Simulation

ACH maximum volume air change per hour

U-value overall heat transfer coefficient
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Chapter 1

Introduction

The beginning is the most important part of the work.

Plato, The Republic

1.1 Building Control Overview and Challenges

The total energy consumed in heating, cooling, ventilation and air-condition (HVAC) sys-

tems in commercial and residential buildings nowadays account for 40 % of global energy

consumption (Parry et al. 2007). In Europe, this figure is reported to be as high as 76 %.

Any reduction of energy demand thus has a huge effect, which goes hand-to-hand with

reduction of greenhouse gases and overall level of pollution.

Two major ways can be followed to lower the energy consumption of HVAC systems for

buildings (McQuiston et al. 2005). One option is to focus on a better physical construction,

for instance by using better insulations, or by devising an energy-friendly structure of the

building. An obvious downside of these approaches is that they require significant resources

and are mainly applicable only to newly-constructed buildings.

The second principal way is to improve the efficacy of HVAC control systems (Levermore

2000). Various control methods are nowadays available to achieve this goal. They range

from use of the classical PID and state-feedback controllers (Canbay et al. 2004), through

methods based on artificial intelligence concepts such as fuzzy systems (Hamdi and Lachiver

1998), neural networks (Kusiak and Xu 2012), machine learning (Liu and Henze 2007),

multi-agent control systems (Dounis and Caraiscos 2009), up to the application of the

optimal control algorithms (Ma et al. 2009, Široký et al. 2011). The advantage of the latter

class is that the various performance criteria can be rigorously stated as an optimization

problem, leading to a best possible performance. Numerous studies reported that advanced

optimization-based HVAC control could significantly reduce the energy consumption and

mitigate emissions of greenhouse gases, see e.g. Castilla et al. (2014), Gyalistras et al. (2010),
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Roth et al. (2002). However, currently, the majority of the building control strategies still

adopts only simple rule-based logic with limited energy savings capabilities (Aghemo et al.

2013, Mechri et al. 2010).

One of the control methods exploiting the full potential of the building’s HVAC systems

is model predictive control (MPC) (Maciejowski 2002). The high performance of MPC is

achieved by accounting for minimization of consumed energy and maintaining high com-

fort standards while taking into account technological restrictions, weather forecasts and

building dynamics. In MPC, control inputs that minimize a certain objective function

(which accounts for consumption of energy and maximization of thermal comfort) subject

to the constraints are computed by solving a corresponding optimization problem at each

sampling instant. In recent years, many energy efficient MPC approaches have been re-

ported for control of the HVAC systems (Ma et al. 2012a, Oldewurtel et al. 2010; 2012,

Van Schijndel et al. 2008, Váňa et al. 2014, Široký et al. 2011).

Despite this intensive research efforts, the transfer of this technology to the commercial

sector is still in its early stages, mainly because of the following four reasons as pointed

out by Cigler et al. (2013). First, the accurate yet simple building model is required.

However, to obtain such well-performing model with a minimum of effort is difficult and

time-consuming task (Li and Wen 2014). Second, the design and tuning of MPC controllers

are challenging, because the commission engineers are usually not trained to set up such

complex control systems based on numerical optimization. Moreover, contrary to the in-

dustrial applications of MPC, buildings are not operated with on-site engineers monitoring

and supervising the functioning of the employed control system. For these reasons, there is

a significant requirement in this field for a simple implementation of the control algorithms

without the loss of their high energy efficient performance (Domahidi et al. 2014). Third,

there is also an strong need for data availability and processing power as the computa-

tion of MPC control actions for complex systems can be easily based on hundreds or even

thousands of parameters. These variables are provided either by direct real-time measure-

ments from the network of sensors, by external services like weather forecasts, or by state

estimators. All of this makes the implementation of MPC even more challenging. And

fourth, the on-line solution of the corresponding optimization problem and the extensive

data processing impose considerable challenges on hardware and software infrastructure,

which is not a standard in today’s buildings.

Although some approaches for a fast and simple on-line implementation of MPC for build-

ing control applications have been suggested previously (Ma et al. 2011; 2012b), the task

remains very challenging, especially when using existing control hardware, such as pro-

grammable logic controllers (PLC). There are two main difficulties. First, such a simple

hardware provides only limited computational capabilities with a limited amount of mem-

ory storage (typically in the range of kilobytes). Secondly, most PLCs do not allow the

control algorithm to be implemented in high-level languages. As a result, implementation

of the complex, optimization-based control algorithms on a simple hardware is cumber-

some (Huyck et al. 2012).

Here the ambition of this thesis is to tackle the last three challenges from the list of

issues by constructing a simple yet well-performing control policy which offers a smooth
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implementation suitable for a low-level hardware. One option for achieving this goal so is

to calculate the explicit representation of the MPC feedback law (Bemporad et al. 2002,

Borrelli 2003). For a rich class of MPC problems, the explicit solution takes a form of

a piecewise affine (PWA) function defined over a polyhedral domain of the parametric

space. Obtaining the optimal control input then reduces to a mere function evaluation.

Such a task can be easily performed even by a simple hardware (Kvasnica et al. 2010b).

The fundamental limitation of explicit MPC solution, however, is that the complexity

of the computed PWA control law grows exponentially with the dimensionality of the

parametric space imposed by prediction horizon and number of variables. Therefore it

can be applied only on the hardware with storage capacity large enough to accommodate

the PWA function. However, this is usually not a realistic assumption, since the size

of explicit MPC solutions can easily exceed several megabytes even for the systems with

low complexity, making it infeasible for complex building control problems with several

thousand parameters.

The alternative way to tackle this problem is to employ the approximations of the MPC

solution. The central idea here is not new. In fact, a variety of approximate explicit MPC

solutions has been proposed in the literature (Alessio and Bemporad 2009). In general,

there are two groups of approaches. First, the geometric methods which are based on

efficient polyhedral partitioning of the state space (Bemporad and Filippi 2001, Grieder

and Morari 2003, Pannocchia et al. 2007). And the second group are the data driven

function approximation methods. The earliest work in this area was based on neural net-

works Parisini and Zoppoli (1995), while more recent works based on e.g. PWA (Bemporad

et al. 2010), polynomial (Kvasnica et al. 2010a), and nonlinear (Domahidi et al. 2011) func-

tion approximations, or wavelet interpolations (Summers et al. 2009) have been reported

as well.

One of the first attempts for the approximation of MPC laws in the building control context

was introduced by Coffey (2013). This method is based on linear interpolations of MPC

solutions generated for a grid of selected parameters. However, the complexity of such

grid approach is increasing exponentially with the number of parameters, which strongly

limits its applicability to large scale problems. Other researchers (Domahidi et al. 2014,

Le et al. 2014, May-Ostendorp et al. 2011) used classification algorithms for extracting

the simple decision rules from MPC employing logical control actions. An approach based

on piecewise linear mixing architecture approximating the continuous control laws was

proposed in Baldi et al. (2015). However, all the approaches listed above were developed

and tested only on problems with modest complexity, usually with single (continuous or

binary) control variable, and with only dozens of parameters.

1.2 Goals and Contributions of the Thesis

The academic goals of the thesis were summarized as follows:

• Comprehensive research in the field of building automation, and relevance evaluation

of the integration of the MPC strategies in modern intelligent buildings.
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• Development of efficient MPC strategies, tier algorithmic formulations, analysis and

simulation studies on various building control problems.

• Experimental validation of developed algorithms on laboratory devices, or real world

buildings with an integrated building automation system.

The first two goals were further elaborated in this thesis. The contribution is hence twofold.

The first contribution is the investigation of the influence of the controller model accuracy

on the performance evaluation of the building climate controllers. The results presented in

this thesis are the first to systematically assess the performance of MPC using controller

models of different orders without relying on system identification but using linearization

and model order reduction techniques instead. This means that each reduced order model

is the best possible linear representation of the building with that given number of states

as each remaining state is optimally chosen by the model order reduction technique. This

study shows that the minimum number of states of the controller model necessary to

obtain the optimal control performance is higher than typical orders used in black- and

grey-box methods. The most significant results of the author related to the evaluation of

the integration of the MPC strategies in modern buildings are:

• Picard, D., Drgoňa, J., Helsen, L., Kvasnica, M.: Impact of the Controller Model

Complexity on MPC Performance Evaluation for Buildings. Energy and Buildings,

2017. (after 1st review, IF: 2.973)

• Picard, D., Drgoňa, J., Helsen, L., Kvasnica, M.: Impact of the controller model

complexity on MPC performance evaluation for building climate control. In The Eu-

ropean Conference on Computational Optimization, Leuven, Belgium, vol. 4, 2016.

The second contribution of this thesis is the development of various advanced MPC strate-

gies for buildings control applications. The problem of the uncertainty in weather predic-

tion was tackled by means of stochastic control. This thesis further introduces a compact

methodology for the construction of the simple suboptimal MPC-like control strategies for

building control applications by using advanced machine learning algorithms. The focus

is given on a creation of the systematic and universal framework applicable to a variety

of large-scale building control problems while providing valuable insights into the selection

of relevant features and appropriate type of the approximation model. In particular, the

added value of this thesis lies in devising computationally tractable MPC approximations

for complex building control problems for multiple-input-multiple-output (MIMO) systems

with hundreds or even thousand of parameters. The most significant results of the author

related to the development of efficient MPC strategies suitable for building control appli-

cations are:

• Drgoňa, J., Picard, D., Helsen, L., Kvasnica, M.: Approximate Model Predictive

Control for Complex Building Control Problems via Machine Learning, Applied En-

ergy, 2017. (Submitted, IF: 5.746)
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• Drgoňa, J., Klaučo, M., Kvasnica, M.: MPC-Based Reference Governors for Ther-

mostatically Controlled Residential Buildings. In IEEE Conference on Decision and

Control (CDC), Osaka, Japan, vol. 54, pp. 1334-1339, 2015.

• Klaučo, M., Drgoňa, J., Kvasnica, M., Di Cairano, S.: Building Temperature

Control by Simple MPC-like Feedback Laws Learned from Closed-Loop Data. In

Preprints of the 19th IFAC World Congress Cape Town, South Africa, pp. 581-586,

2014.

• Drgoňa, J., Kvasnica, M., Klaučo, M., Fikar, M.: Explicit Stochastic MPC Ap-

proach to Building Temperature Control. In IEEE Conference on Decision and Con-

trol (CDC), Florence, Italy, pp. 6440-6445, 2013.

• Drgoňa, J., Kvasnica, M.: Comparison of MPC Strategies for Building Control. In

Proceedings of the 19th International Conference on Process Control, Slovak Univer-

sity of Technology in Bratislava, Štrbské Pleso, Slovakia, pp. 401-406, 2013.

The author has also participated in research covering other areas of the control design,

however, that results are not elaborated in this thesis. Specifically, advances in the area of

explicit MPC has been made by exploring the applicability of the region-less explicit MPC

strategy. Results were published in:

• Drgoňa, J., Klaučo, M., Janeček, F., Kvasnica, M.: Optimal control of a labora-

tory binary distillation column via regionless explicit MPC. Computers & Chemical

Engineering, ISSN: 0098-1354, vol. 96, pg. 139–148, 2017. (IF: 2.581)

• Drgoňa, J., Janeček, F., Klaučo, M., Kvasnica, M.: Regionless Explicit MPC of a

Distillation Column. In IEEE 2016 European Control Conference (ECC), Aalborg,

Denmark, pp. 1568-1573, 2016.

Furthermore, the author made contributions in the various process control applications,

namely control of the laboratory devices like distillation column, continuous stirred-tank

reactor and fuel cell plant. The results of this research were or will be published in:

• Holaza, J., Klaučo, M., Drgoňa, J., Oravec, J., Kvasnica, M. and Fikar M.: MPC-

Based Reference Governor Control of a Continuous Stirred-Tank Reactor. Computers

& Chemical Engineering, 2017. (after 1st review, IF: 2.581)

• Drgoňa, J., Takáč, Z., Horňák, M., Valo, R., Kvasnica, M.: Fuzzy Control of a Lab-

oratory Binary Distillation Column, Accepted to the 21st International Conference

on Process Control, Slovakia, 2017.

• Ingole, D., Drgoňa, J., Kalúz, M., Klaučo, M., Bakošová, M., Kvasnica, M.: Model

Predictive Control of a Combined Electrolyzer-Fuel Cell Educational Pilot Plant,

Accepted to the 21st International Conference on Process Control, Slovakia, 2017.

• Ingole, D., Drgoňa, J., Kalúz, M., Klaučo, M., Bakošová, M., Kvasnica, M.: Ex-

plicit Model Predictive Control of a Fuel Cell. In The European Conference on

Computational Optimization, Leuven, Belgium, vol. 4, 2016.
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• Sharma, A., Drgoňa, J., Ingole, D., Holaza, J., Valo, R., Koniar, S., Kvasnica M.:

Teaching Classical and Advanced Control of Binary Distillation Column. In 11th

IFAC Symposium on Advances in Control Education, Bratislava, Slovakia, vol. 11,

pp. 348-353, 2016.

• Drgoňa, J., Klaučo, M., Valo, R., Bendžala, J., Fikar, M.: Model Identification

and Predictive Control of a Laboratory Binary Distillation Column. In Proceedings

of the 20th International Conference on Process Control, Slovak Chemical Library,

Štrbské Pleso, Slovakia, 2015.

Full publication list of the author can be found in Appendix A.

1.3 Outline of the Thesis

This thesis is structured into two parts. The first part provides the theoretical backgrounds

of the thesis and the second part introduces the theoretical contributions and investigates

the simulation case studies. The theoretical part starts with the necessary mathematical

background introducing the fundamental concepts of sets, functions, optimization, proba-

bility and statistic in Chapter 2. The introduction to the history and features of the model

predictive control is given in Chapter 3. The second part of the thesis presents the various

MPC strategies and their evaluation on simulation case studies. Chapter 4 describes the

building modeling as a crucial part of the successful application of the MPC and introduces

two particular models which are used in the simulation case studies for both, as controller

models and emulating the building’s behaviour. Chapter 5 discusses the building control

nuances and defines the control objectives. Further, different types of the building climate

controllers (BCC) are introduced in Chapter 5. Namely, a traditional rule-based-controller

(RBC), a proportional-integral-derivative controller (PID), a deterministic MPC in stan-

dard form (S-MPC) and with an off-set free approach (OSF-MPC), stochastic formulation

of the MPC problem and finally the approximate MPC controllers synthesized via machine

learning algorithms. Chapter 6 introduces the application of proposed advanced MPC

strategies formulated in the previous Chapter. The performance of the explicit stochastic

MPC is studied in Section 6.1. The regression trees based approximations of the MPC

are studied in Section 6.2.2. Section 6.3 investigates the impact of the controller model

complexity on MPC performance evaluation for buildings and serves as the starting point

for the next case study dealing with the approximate MPC for complex building control

problems by using deep time delay neural networks, which is given in Section 6.4. Finally,

Chapter 7 concludes the thesis and addresses the future research topics emanating from

the studies presented in this thesis.
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Chapter 2

Mathematical Background

Mathematics are well and good but nature keeps dragging us around by the nose.

Albert Einstein

2.1 Terminology and Definitions on Sets and Functions

This section provides basic terminology and definitions necessary for understanding follow-

ing Sections 2.2, 2.3 and Chapter 3. Proofs for this section can be found in references

e.g. Berger (1987), Grunbaum (2000), Schneider and Eberly (2003), Webster (1995), Weis-

stein (2014).

2.1.1 Sets

Definition 2.1.1 (ǫ-ball) Or open n-dimensional ǫ-ball ∈ R
n around a given central point

xc is a set defined as

Bǫ(xc) = {X ∈ R
n : ‖x− xc‖} (2.1)

where the radius ǫ > 0 and ‖ • ‖ stands for any vector norm. �

Definition 2.1.2 (Neighborhood) The neighborhood of a set S ⊆ R
n is a set N (S)

and S ⊆ N (S) ⊆ R
n such that for each s ∈ S there exists n-dimensional ǫ-ball with

Bǫ(s) ⊆ N (S). �

Definition 2.1.3 (Closed Set) A set S ⊆ R
n is closed if every point x which is not a

member of S has a neighborhood disjoint from S, or shortly

∀x /∈ S ∃ǫ > 0 : Bǫ(x) ∩ S = ∅ (2.2)

�
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Definition 2.1.4 (Bounded Set) A subset S of a metric space (M,µ) is bounded if it is

contained in a ball Br(•) of finite radius r, i.e. if there ∃x ∈M and r > 0 such that ∀s ∈ S,
we have µ(x, s) < r, or shortly S ⊆ Br(s) �

Figure 2.1: Bounded set (left) contained in a ball Br(x) and unbounded set (right) uncon-
tained in its entirety inside a ball Br(x) .

Definition 2.1.5 (Compact Set) A set S is compact if it is closed and bounded. �

Definition 2.1.6 (Null Set) Let X be a measurable space, let µ be a measure on X, and

let N be a measurable set in X. If µ is a positive measure, then N is null (zero measure)

if its measure µ(N) is zero. If µ is not a positive measure, then N is µ − null if N is

|µ| − null, where |µ| is the total variation of µ. Equivalently if every measurable subset

A ⊆ N satisfies µ(A) = 0. For signed measures, this is stronger than simply saying that

µ(N) = 0. For positive measures, this is equivalent to the definition given above. �

The empty set is always a null set, it is unique set having no elements, its size or cardinality

is zero. For empty set we use common notations including ∅, and ∅. Graphical comparisson

of feasible (non-empty) and infeasible (empty) sets is shown in Fig. 2.2.

Definition 2.1.7 (Convex Set) A set S ⊆ R
n is convex if for any two points x1, x2 ∈ S

and parameter λ, with 0 ≤ λ ≤ 1 following must hold

λx1 + (1− λ)x2 ∈ S (2.3)

In other words the line segment connecting any pair of points x1, x2 from S must lie entirely

within S. �

Definition 2.1.8 (Convex hull) A convex hull of a finite set of points V = (v1, . . . , vM ),

where vi ∈ R
n, ∀i ∈ N

M
1 , is the smallest convex set containing V defined as

conv(V) = {∑i λivi : λ ≥ 0,
∑

i λi = 1}. (2.4)

�
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(a) Non-empty set X. (b) Empty set ∅.

Figure 2.2: Non-empty and Empty set, constructed by intersection of 5 hyperplanes, rep-
resented by lines and their corresponding direction vectors.

Definition 2.1.9 (Set Collection) A set S ⊆ R
n is called a set collection if it is a

collection of finite number of n-dimensional sets Si, i.e.

S = {Si}NS

i=1 (2.5)

where dim(Si) = n and Si ⊆ R
n, for i ∈ N

NS

1 with NS <∞. A set collection of sometimes

also referred to as family of sets. �

Definition 2.1.10 (Set Partition) A collection of sets {Si}NS

i=1 is a partition of a set S
if S = ∪NS

i=1Si and Si ∩ Sj for all i 6= j, where i, j ∈ N
NS

1 �

2.1.2 Functions

Definition 2.1.11 (Affine Function) Let f : S 7→ R be real-valued function with S ∈
R

n, than function f acting on a vector x is affine, if it is of the form

f(x) = Fx+ g (2.6)

Where multiplication of vector x by matrix F ∈ R
n represents a linear map, and addition

of vector g ∈ R represents translation. Alternatively (Schneider and Eberly 2003) function

f is called affine function or affine map, if and only if for every family {(xi, λi)}i∈I of

weighted points in S, such that
∑

i∈I λi = 1 we have

f

(
∑

i∈I

λixi

)

=
∑

i∈I

λif(xi) (2.7)
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In other words, f preserves center of mass. �

An affine transformation or affine map (from the Latin, affinis, ”connected with”) between

two vector spaces is the composition of two functions a linear transformation or linear map,

followed by a translation as shown in Definition 2.1.11. From geometrical point of view,

these are precisely the functions that map straight lines to straight lines (Gallini 2014).

Due to these properties affine functions play a vital role in mathematical optimization.

Definition 2.1.12 (Piecewise Affine Function) Let fPWA : S 7→ R be real-valued func-

tion with S ∈ R
n than function fPWA is a piecewise affine (PWA), if {Si}NS

i=1 is a set

partition of S, with total number of partitions NS and

fPWA(x) = Fix+ gi, ∀x ∈ Si (2.8)

Where Fi ∈ R
n, gi ∈ R. �

Definition 2.1.13 (Piecewise Quadratic Function) Let fPWQ : S 7→ R be real-valued

function with S ∈ R
n than the function fPWQ is piecewise quadratic (PWQ), if {Si}NS

i=1 is

a set partition of S, with total number of partitions NS and

fPWQ(x) = xTEix+ Fix+ gi, ∀x ∈ Si (2.9)

Where Ei ∈ R
n×n, Fi ∈ R

n, gi ∈ R. �

Definition 2.1.14 (Convex Function) Let f : S 7→ R be real-valued function, where

S ∈ R
n is nonempty convex set. Than the function f is convex on set S if for any two

optimization variables x1, x2 ∈ S, with parameter 0 ≤ λ ≤ 1 following is true

f(λx1 + (1 − λ)x2) ≤ λf(x1) + (1− λ)f(x2), (2.10)

�

One special types of convex functions are called norms, which are assigning positive values

representing lenghts to all non-zero vectors. Therefore tey are very useful for representation

of distances between objects in vector spaces.

Definition 2.1.15 (Vector p-Norm) The general notion of vector p-norm for vector x ∈
R

n or shortly ‖x‖p is defined as

‖x‖p =

(
∑

i

|x|p
)1/p

(2.11)

and holds following properties

• ‖x‖p > 0,

• ‖x‖p = 0⇔ x = 0,
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• ‖cx‖p = |c|‖x‖p, ∀c ∈ R,

• ‖x1 + x2‖p = ‖x1‖p + ‖x2‖p.

�

Particular types of vector p-norms can be defined as follows.

Definition 2.1.16 (Vector 1-Norm) Also called Manhattan norm. Computed as a sum

of absolute values of vector’s elements.

‖x‖1 =

n∑

i

|xi|. (2.12)

�

Definition 2.1.17 (Vector 2-Norm) Also called Euclidean norm, representing shortest

distance in euclidean space.

‖x‖2 =

√
√
√
√

n∑

i

x2
i (2.13)

�

Definition 2.1.18 (Vector ∞-Norm) Computed as maximum absolute value of vector’s

elements.

‖x‖∞ = max
1≤i≤n

|xi| (2.14)

�

(a) 1-Norm of unit circle. (b) 2-Norm of unit circle. (c) ∞-Norm of unit circle.

Figure 2.3: Illustrations of unit circles in different norms.

2.1.3 Polytopes

Are special types of sets, acting as the backbone of mathematical optimization, in this

section will be provided some basic definitions on polytopes.

Page 13



2.2. MATHEMATICAL OPTIMIZATION

Definition 2.1.19 (Hyperplane) Hyperplane P ∈ R
n is a set in a form

P = {x ∈ R
n : aT

i x = bi}, (2.15)

Where ai ∈ R
n, bi ∈ R, ∀i ∈ N

m
1 . �

Definition 2.1.20 (Half-space) Half-space P ∈ R
n is a set in a form

P = {x ∈ R
n : aT

i x ≤ bi}, (2.16)

Where ai ∈ R
n, bi ∈ R, ∀i ∈ N

m
1 . �

Definition 2.1.21 (Polyhedron) Polyhedron P ∈ R
n is the intersection of finite number

of half-spaces, and can be compactly defined as follows

P = {x ∈ R
n : Ax ≤ b}, (2.17)

where matrixes A ∈ R
m×n, b ∈ R

m are representing collection of intersecting affine half-

spaces. Polyhedron also holds properties of a convex and closed set. �

Definition 2.1.22 (Polytope) Set P ∈ R
n is called a polytope if it is a bounded polyhe-

dron. �

Definition 2.1.23 (Polytope Representation) in general there are two types of poly-

tope representations, defined as

• V-polytope P ⊂ R
n is a convex hull of finite point set V = {v1, . . . , vM}, for vi ∈ R

n,

∀i ∈ N
M
1 , representing vertices of the polytope

P = {x : x =
∑M

i λivi, 0 ≤ λi ≤ 1,
∑M

i λi = 1}, (2.18)

• H-polytope is a bounded intersection of finite number half-spaces

P = {x ∈ R
n : Ax ≤ b}, (2.19)

where A ∈ R
m×n, b ∈ R

m.

�

2.2 Mathematical Optimization

A mathematical optimization is an important tool in making decisions, and in analyzing

physical systems applied in wide variety of scientific fields of study. Namely economics,

operations research, electrical, chemical, mechanical and finally control engineering as the

primary concern of this thesis. More comprehensive insight into the rich topic of math-

ematical optimization the reader can find in references such as Boyd and Vandenberghe

(2004).
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2.2.1 Taxonomy of Optimization

To provide a taxonomy of optimization is a tough task because of dense multiple connections

between its subfields. One such comprehensive perspective focused mainly on the subfields

of deterministic optimization problems with a single objective function can be found online

in NEOS (2014) and is shown in Fig. 2.4.

 Optimization

Uncertainty

Continuous Discrete

Deterministic

Stochastic

programming

 Multiobjective

Robust

optimization

Unconstrained Constrained

Integer

programming

Combinatorical

optimization

Nonlinear

programming

Network

optimization

Global

optimization

Nondifferentiable

optimization

Nonlinear

Equations

Nonlinear

Least Squares

Bound

constrained

Linearly

constrained

Mathematical programs 

with equilibrium constraint

Semiinfinite

programming
Semidefinite

programming

Mixed Integer

programming
Derivative free

optimization
Linear

programming

Quadratic

programming

Second-order cone

programming

Quadratically 

constrained QP

Complementarity

problems

Figure 2.4: Classification of Optimization problems (NEOS 2014).

A wide collection of available optimization software and solvers organized by problem type

can also be found on NEOS Server web-pages (NEOS-software 2014, NEOS-solvers 2014),

together with valuable information about the group of algorithms, listed alphabetically or

by problem type (NEOS-algorithms 2014).

2.2.2 Constrained Optimization

Constrained optimization is the process of optimizing an objective function w.r.t. some

variables in the presence of constraints on those variables. Constrained optimization

problems can be furthered classified according to the nature of the constraints (e.g., lin-

ear, nonlinear, convex) and the smoothness of the functions (e.g., differentiable or non-

differentiable) NEOS (2014). For further reading see, e.g., references in Bertsekas (1996).

Standard Optimization Problem

In mathematical optimization terminology, a standard optimization problem is a funda-

mental notion representing the problem of finding the best solution among the group of all
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possible and feasible solutions. The standard form of continuous constrained optimization

problem is defined as follows (Boyd and Vandenberghe 2004).

J∗ = min
x
f0(x) (2.20a)

s.t. gi(x) ≤ 0, i ∈ N
m
1 (2.20b)

s.t. hj(x) = 0, j ∈ N
p
1 (2.20c)

Objective function also called cost function (2.20a), representing the first part of the

problem (2.20). It is a real valued function with its domain f0 : Rn 7→ R, which to each

optimized variable x = (x1, x2, . . . , xn)T assigns concrete real value f0(x) and which overall

value has to be minimized during optimization. Maximization problem can be treated by

the negation of the objective function.

Variables or the unknowns x are the components of the system which are being optimized

and for which we want to find corresponding values. They can represent a broad range of

quantities of the optimization problem, e.g.the amount of consumed resources or the time

spent on each activity, whereas in data fitting, the variables would be the parameters of

the model.

Constraints are representing an admissible set of values for optimized variables x, for

which is given optimization problem feasible. In general, there are two types of constraints,

inequality constraints defined as (2.20b), and equality constraints defined as (2.20c), merged

by a notion of constraints set S. More clarified classification of constraints for practical

needs can be found in the documentation for MATLAB OptimizationToolboxT M (Math-

works 2014), listed with increasing complexity and required computing power from top to

bottom:

• Bound Constraints, representing lower and upper bounds on individual components:

x ≤ U and x ≥ L.

• Linear Equality and Inequality Constraints, where gi(x) and hi(x) has a linear form.

• Nonlinear Equality and Inequality Constraints, where gi(x) and hi(x) has a non-linear

form (e.g. integer constraints).

In most of the optimization problems the constraints satisfaction is mandatory, this kind

of constraints which must be held during whole optimization procedure are also called

hard constraints. However in some optimization problems can appear constraints which

are preferred but not required to be satisfied, this kind of non-mandatory constraints are

known as soft constraints, which are unique in having some additional slack variables that

are penalized in the objective function.
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Feasible region also called feasible set, search space, or solution space is the set of all

possible values of the optimization variables x of a problem (2.20) that satisfy the problem’s

constraints. It can be perceived as an initial set of all candidate solutions to the problem

before the set of candidates has been reduced by the optimization procedure. A candidate

solution, therefore, must be unconditionally a member of the feasible set for a given problem.

Definition 2.2.1 (Feasible Set) of problem (2.20) is defined as:

X = {x ∈ R
n : gi(x) ≤ 0, i ∈ N

m
1 , hj(x) = 0, j ∈ N

p
1} (2.21)

A point x is said to be feasible for problem (2.20) if it belongs to the feasible set X. �

In general, a feasible set can be considered to be bounded in the sense of Definition 2.1.4

if it is in a certain sense of a finite size, or it can be regarded as unbounded if it contains

points which values goes to infinity at least in one direction, as shown in Fig. 2.1. The

problem with unbounded feasibility sets are that there may or may not be an optimum,

with dependence on the objective function specifications. Thus a unique solution to the

problem may not exist.

Difficulties also appear in the case, if there are no intersection of the problem’s constraints,

therefore there are no points that satisfy all the constraints simultaneously. Thus the

feasible region is considered to be the null set in the sense of Def. 2.1.6, i.e. the case when

the problem has no solution and is said to be infeasible.

Process of finding such a point in the feasible region is called constraint satisfaction and it

is a crucial condition for finding the solution of constrained optimization problems.

Solution of an optimization problem is computed optimal value of the objective function,

usually denoted by J∗ or Jopt. As a solution is often considered also a minimizer (a vector

which achieves that value), usually denoted as x∗ or xopt, if exists.

When the objective function is not provided, the problem (2.20) is being called a feasibility

problem. Meant that we are just interested in determining the problem’s feasibility, or in

other words to find a feasible point. By convention, the cost function f0(x) is set to a

constant c ∈ R, to reflect the fact that we are indifferent to the choice of a point x as long

as it is feasible.

Definition 2.2.2 (Optimal set of solutions) of problem (2.20) is defined as the set of

feasible points for which the objective function achieves the optimal value:

X∗ = {x ∈ R
n : f0(x) = J∗, gi(x) ≤ 0, i ∈ N

m
1 , hj(x) = 0, j ∈ N

p
1} (2.22)

A standard notation for the optimal set is via the argmin notation:

X∗ = arg minx∈X
f0(x) (2.23)

A point x is said to be optimal if it belongs to the optimal set. If the problem is infeasible,
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the optimal set is considered empty by convention. Thus existence of optimal points is not

necessary. �

In mathematical optimization from a theoretical point of view, of view the notion of the

optimal solution is crucial. However, for practical reasons, there has been established a

weaker notion of suboptimal solution of the problem, representing points which are very

close to the optimum. This is because most of the practical algorithms are iterative and

are only able to compute suboptimal solutions, and never reach true optimality.

Definition 2.2.3 (Suboptimality) more specifically the ǫ-suboptimal set is defined as

Xǫ = {x ∈ R
n : f0(x) = J∗ + ǫ, gi(x) ≤ 0, i ∈ N

m
1 , hj(x) = 0, j ∈ N

p
1} (2.24)

Where any point x in the ǫ-suboptimal set is termed ǫ-suboptimal and denoted xǫ. �

Constrained Optimization Problems Classes: Based on types of constraints S and

objective function f0(x), constrained optimization covers a large number of subfields for

which specialized algorithms are available, we will name some of the most important classes.

• Bound Constrained Optimization, where the constraints are only in the form of lower

and upper bounds on the variables.

• Linear Programming, the objective function as well as all the constraints are linear

functions.

• Quadratic Programming, the objective function is quadratic and the constraints are

linear functions.

• Semidefinite Programming, the objective function is linear and the feasible set is the

intersection of the cone of positive semidefinite matrices with an affine space.

• Nonlinear Programming, the objective function or at least some of the constraints

are nonlinear functions.

In following sections, we will investigate differences between convex and non-convex opti-

mization problems and their properties.

2.2.3 Convex Optimization

The optimization problem in a standard form (2.20) is called a convex optimization problem

if:

• the objective function f0(x) is convex in the sense of Definition 2.1.14

• the constraint set S is convex in the sense of Definition 2.1.7

Convex problems are very popular and preferred in comparison with non-convex problems,

due to their several advantages:
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• Any local optimum is naturally also a global optimum, what guarantees that the

global minimum of objective function will also be found.

• If there can not be found any global optimum, the problem can be labelled as infea-

sible.

• Convex problems are in contrast with non-convex problems easily solved, with a wide

variety of suitable solvers.

However, the practical problems often exhibit non-convex properties. Hence convex prob-

lems are not always suitable framework for solutions to real-world problems, what is the

main drawback of them. But where they can be applied, they used to be extremely efficient.

In the following text, we will introduce two basic types of convex optimization problems

with linear constraints, namely linear programming (LP) and quadratic programming (QP).

Linear Programming

problem is a convex optimization problem, which has a linear objective function (2.25a)

with continuous real variables x subject to linear constraints (2.25b), (2.25c), and can be

in general formulated as follows.

J∗ = min
x

cTx (2.25a)

s.t. Ax ≤ b (2.25b)

s.t. Aeqx = beq, (2.25c)

where x ∈ R
n, A ∈ R

m×n, b ∈ R
m, Aeq ∈ R

p×n and beq ∈ R
p. Hence the feasible region

(see Def. 2.2.1) of such a problem is a convex polyhedron (see Def. 2.1.21), i.e. a region

in multidimensional space, whose boundaries are formed by hyperplanes (see Def. 2.1.19)

and whose corners are vertices.

Solution Properties: LP can be geometrically interpreted as searching for an optimum

x∗ of a linear objective function over a given polyhedral region P . This procedure can

result in several different scenarios.

1. Feasible problem, with value of the objective function −∞ < J∗ < ∞, and two

possible results:

(a) Unique optimizer x∗, representing a single point.

(b) Multiple optimizers X∗, representing a set of points x∗ ∈ R
m.

2. Infeasible problem, with value of the objective function J∗ = ±∞, due to two reasons:

(a) Polyhedral region P is an empty set, and J∗ =∞.

(b) Polyhedral region P is unbounded set in direction of minimization of the objec-

tive function, and J∗ = −∞.
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Graphical demonstrations of different optimization results of LP problem on two-dimensional

space are shown in Fig. 2.5. Where Fig. 2.5(a) represents a unique solution x∗, which lies in

a vertex of the region P . And situation Fig. 2.5(b), when the objective function is parallel

to one of the constraints with resulting multiple solutions X∗ of equal quality, which lies

on the edge of the region P .

(a) Unique optimizer x∗, lying in the vertex
of polyhedron P.

(b) Multiple optimizers X∗, lying on the
edge of polyhedron P.

Figure 2.5: Different types of feasible solutions of LP. Where P represents constraints set,
objective function is represented by dashed blue lines with its direction vector,
and optimizers are depicted as a red dot for x∗, or red line for X∗ respectively.

The strength of LP problems lies in their relative simplicity with a comparison to other

classes of optimization problems, what allows the existence of a wide variety of solvers,

allowing solving LP problems efficiently even for a large number of variables.

Quadratic Programming

problem is a convex optimization problem, which has a quadratic objective function (2.26a)

with continuous real variables x subject to linear constraints (2.26b), (2.26c), and can be

in general formulated as follows.

J∗ = min
x

1
2x

THx+ qTx+ c (2.26a)

s.t.Ax ≤ b (2.26b)

s.t.Aeqx = beq, (2.26c)

where x ∈ R
n, H ∈ R

n×n, q ∈ R
n, c ∈ R, A ∈ R

m×n, b ∈ R
m, Aeq ∈ R

p×n and beq ∈ R
p.

The difficulty of solving the QP problem depends largely on the nature of the matrix H .

If matrix H = HT ≻ 0 is positive semidefinite on the feasible set, the resulting problem

is convex QP and can be solved in polynomial time. On the other hand if matrix H is

indefinite the resulting problem is non-convex QP, which means that the objective function

may have more than one local minimizer, and the problem is NP-hard.
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Solution Properties: QP can be geometrically interpreted as searching for a optimum

x∗ of a quadratic objective function over a given polyhedral region P . This procedure can

result in two scenarios.

1. Feasible problem, with the value of the objective function −∞ < J∗ <∞, and unique

optimizer x∗.

2. Infeasible problem, with the value of the objective function J∗ =∞, caused by empty

polyhedron P .

In contrast with solutions of LP problems, the solution of QP problem if it is feasible,

always results in unique optimizer x∗, due to the quadratic shape of the objective function,

as demonstrated in Fig 2.6.

(a) Unique optimizer x∗, lying inside a polyhe-
dron P.

(b) Unique optimizer x∗, lying on the edge of
polyhedron P.

Figure 2.6: Uniqueness of feasible solutions of QP problems. Where P represents con-
straints set, objective function with its gradient is depicted by blue ellipses and
optimizer x∗ is given as a red dot.

There have been done in-depth research about solutions and properties of QP problems;

some can be found e.g. in Abrams and Ben Israel (1969), Beale and Benveniste (1978),

Best and Kale (2000), De Angelis et al. (1997).

2.2.4 Non-convex Optimization

Non-convex optimization problems are simply all problems which are not convex, i.e. either

the objective function or constraints of such problems are not convex. Because there does

not exist unique approach for optimization algorithm selection, the structure of general

non-convex problem must be examined first. And subsequently, an appropriate method

for a particular problem class can be selected. For our purposes, the important class of

constrained nonlinear programming is called mixed integer programming (MIP), containing

both, continuous and discrete variables. Deeper view inside a class of MIP problems can

be found e.g. in Nemhauser and Wolsey. (1988), Schrijver. (1984), Wolsey (1998).
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Mixed Integer Linear Programming

(MILP) is an non-convex optimization problem which has a linear objective function (2.27a)

with continuous real variables x and integer variables δ subject to linear constraints (2.27b),

(2.27c), and can be in general formulated as follows.

J∗ = min
x,δ

cTx+ dT δ (2.27a)

s.t. Ax+ Eδ ≤ b (2.27b)

s.t. Aeqx+ Eeqδ = beq, (2.27c)

Where x ∈ R
n, δ ∈ N

q, cT ∈ R
n, dT ∈ R

q, A ∈ R
m×n, E ∈ R

m×q b ∈ R
m, Aeq ∈ R

p×n,

Eeq ∈ R
p×q, and beq ∈ R

p. The convexity of MILP problem is lost due to presence of integer

variables δ, which is the only difference in MILP’s structure comparing the problem with

the classical LP problem.

Solution Properties: MILP can be geometrically interpreted as searching for an opti-

mum x∗ of a linear objective function over a given polyhedral region P , where the optimal

solution can be found only if some given variables holds integer values. This can be done by

solving so-called relaxed LP problems (Agmon 1954) with fixed combination of integer vari-

ables representing classical LP problem. To enhance the efficiency of such relaxed problems

several techniques are being used, one such method is called cutting plane method (Avriel

2003, Boyd and Vandenberghe 2004). This method is based on the iterative refinement of

a feasible set or objective function utilizing linear inequalities, termed cuts. Cutting plane

method, together with whole MILP optimization procedure is demonstrated in Fig. 2.7.

Mixed Integer Quadratic Programming

(MIQP) is an non-convex optimization problem which has a quadratic objective func-

tion (2.28a) with continuous real variables x and integer variables δ subject to linear

constraints (2.28b), (2.28c), and can be in general formulated as follows.

J∗ = min
x,δ

xTH1x+ xTH2δ + δTH3δ + cTx+ dT δ (2.28a)

s.t. Ax+ Eδ ≤ b (2.28b)

s.t. Aeqx+ Eeqδ = beq, (2.28c)

Where x ∈ R
n, δ ∈ N

q, H1 ∈ R
n×n, H2 ∈ R

n×q, H3 ∈ R
q×q, cT ∈ R

n, dT ∈ R
q, A ∈ R

m×n,

E ∈ R
m×q, b ∈ R

m, Aeq ∈ R
p×n, Eeq ∈ R

p×q, and beq ∈ R
p. Similarly as with MILP and

LP problems relation it is also with the MIQP and QP problems, where only difference in

problems structure lies in presence of integer-valued variables δ.
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Figure 2.7: LP relaxation and cutting plane method for the solution of MILP problem.
Where P represents constraints set, the objective function is represented by
dashed blue line with its direction vector, additional cutting plane reshaping
constraints set is represented by dashed green line. The only possible integer-
valued solutions are depicted as a blue dots, and finally, optimizers are depicted
as red dots, where x∗

LP −relax stands for the solution of relaxed LP problem and
x∗

MIP stands for the actual optimal solution of MILP problem.

Solution and computational aspects of MIP problems

From a structural point of view, the differences of MILP and MIQP problems against

their convex counterparts (LP, QP) are often minuscule and sometimes hidden in restric-

tion of some variables to be integer-valued. However, their actual difference manifests in

the solution of such problems and comparison of their computational requirements. In

straightforward fashion, to obtain a solution of MIP problems is to enumerate all possible

combinations of the binary variables δ, and for each combination of the fixed binaries as

static parameters, compute the optimal solution for real variables x contained in the prob-

lem as standard LP or QP problem respectively. The main drawback of MIP problems

lies in their exponentially growing complexity depending on the number of included binary

variables δ. Therefore several techniques have been developed for the reduction of neces-

sary enumerated combinations of binary variables. Namely widely used Branch and Boud

and Branch and Cut methods (Adjiman et al. 1996, Belotti et al. 2013, Linderoth and

Ralphs 2005, Richards and How 2005). Moreover some tricks and hacks can be used, e.g.

for the reduction of the number of binary variables, decreasing the computational burden

and improving the performance of MIP problems in general. Commonly used state of the

art solvers such as CPLEX (ILOG, Inc. 2003) or Gurobi (Gurobi Optimization 2012), have

become extremely efficient in solving MIP problems. For more about available MIP solvers

visit NEOS-software (2014), or NEOS-solvers (2014).
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2.2.5 Multi Parametric Programming

A parametric programming can be classified as a subfield of operations research, which is a

discipline that deals with the application of advanced analytical methods to obtain optimal

or near-optimal solutions to complex decision-making problems (INFORMS.org 2014). In

operations research, there exist several approaches to parameter variations and dealing

with the uncertainties in optimization problems, for all we will name three of them.

First called sensitivity analysis, which studies the change of the solution as the response

of the model to small perturbations of its parameters (Saltelli et al. 2008). Second is

called interval analysis where interval-ranged input data model the uncertainties in the

problem. Finally, a parametric programming is a method for obtaining and analysis of

the optimal solution of an optimization problem with giving a full range of parameter

values, representing feasible initial conditions of the problem. Parametric programming

systematically subdivides the space of parameters into individual regions, which depict

the feasibility and corresponding performance as a function of uncertain parameters, and

subsequently provide the decision maker with a complete map of various outcomes (Borrelli

et al. 2014).

Parametric problems are usually being divided into subcategories, based on number of

varied parameters in the problem:

• Parametric programming with single parameter.

• Multi parametric programming with multiple parameters.

Or based on a type of the optimization problem:

• Multiparametric convex programming

– Multiparametric linear programming (mpLP)

– Multiparametric quadratic programming (mpQP)

• Multiparametric non-convex programming

– Multiparametric mixed integer linear programming (mpMILP)

The main reason why we are dealing with multiparametric programming is to characterize

and compute the state feedback solution of optimal control problems, as will be shown

later in Section 3.2.3. Further, in this section, we will define multiparametric versions of

standard, LP, QP, MILP and MIQP problems.

Standard Multiparametric Program

A standard multiparametric program (mpP) can be defined in general as

J∗(ξ) = min
U

J(U, ξ) (2.29a)

s.t. GU ≤ w + Eξ, (2.29b)
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where U ∈ R
s represents vector of optimization variables, ξ ∈ R

n stands for vector of

parameters, J∗(ξ) represents optimal value of the objective function J(U, ξ), and U∗(ξ)

is an optimizer. With G ∈ R
r×s, w ∈ R

r and E ∈ R
r×n, where r represents number of

inequalities.

Multiparametric Linear Programming

A multiparametric linear programming (mpLP) problem is defined as

J∗(ξ) = min
U

cTU + dT ξ (2.30a)

s.t. GU ≤ w + Eξ, (2.30b)

where U ∈ R
s, ξ ∈ R

n, c ∈ R
s, d ∈ R

n, G ∈ R
r×s, w ∈ R

r and E ∈ R
r×n.

Multiparametric Quadratic Programming

A multiparametic quadratic programming (mpQP) problem is defined as

min
U

1
2U

THU + ξTQU + ξTRξ + dT ξ (2.31a)

s.t. GU ≤ w + Eξ, , (2.31b)

where U ∈ R
s, ξ ∈ R

n, G ∈ R
r×s, w ∈ R

r, E ∈ R
r×n, Q ∈ R

n×s, R ∈ R
n×n, d ∈ R

n, and

H ∈ R
s×s, where matrix H = HT ≻ 0 is positive semidefinite.

Multiparametric Mixed Integer Linear Programming

A multiparametric mixed-integer linear programming (mpMILP) problem is defined as

J∗(ξ) = min
U,δ

bTU + cT δ + dT ξ (2.32a)

s.t. GU + Sδ ≤ w + Eξ, (2.32b)

where U ∈ R
s, δ ∈ N

q, ξ ∈ R
n, b ∈ R

s, c ∈ R
q, d ∈ R

n, G ∈ R
r×s, S ∈ R

r×q, w ∈ R
r and

E ∈ R
r×n.

Solution Properties of Multiparametric Problems

The main goals of parametric programming can be described as to find and analyze the

following.

• Feasibility set X , or domain of the parameters ξ, as a set of parameters for which

a particular problem has an optimal solution, usually in a form of the polytopic

partition as in Def. 2.1.10.
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• Optimal solution or optimizer U∗(ξ), usually in the form of PWA functions defined

over polytopic partition of X . Representing a sets of parameters ξ, for which the

optimal solution remains the same, respectively retains the same characteristics.

• Feasibility function J∗(ξ) as an optimal value of the objective function J(U, ξ) for the

feasibility set X , usually in two forms: PWA functions as in Def. 2.1.12 for mpLP or

PWQ functions as in Def. 2.1.13 for mpQP problems.

Theorem 2.2.4 (Properties of Multiparametric Problems) a

Consider a mpLP (2.30), mpQP (2.31), and mpMILP (2.32) problems then:

• The feasibility set X of parameters ξ is convex for mpLP and mpQP, or possibly

non-convex for mpMILP, and partitioned int o R ∈ N+ polyhedral regions

Pr = {ξ ∈ R
n : Hrξ ≤ Kr}, r ∈ N

R
1 (2.33)

where Hr ∈ R
n and Kr ∈ R

• Optimal solution U∗(ξ) : X 7→ R
n is a continuous PWA function

U∗(ξ) = Frξ + gr, if ξ ∈ Pr (2.34)

where Fr ∈ R
r×n, and gr ∈ R

r

• Feasibility function J∗(ξ) : X 7→ R is for

– mpLP: continuous, convex, and piecewise affine (PWA), in form

J∗(ξ) = Rrξ + Cr, if ξ ∈ Pr (2.35)

– mpQP: continuous, convex, and piecewise quadratic (PWQ), in form

J∗(ξ) = ξTQrξ +Rrξ + Cr, if ξ ∈ Pr (2.36)

– mpMILP: possibly discontinuous, non-convex, and piecewise affine (PWA), in

form

J∗(ξ) = Rrξ + Cr, if ξ ∈ Pr (2.37)

where Qr ∈ R
n×n, Rr ∈ R

n, and Cr ∈ R

�
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2.3 Probability Theory and Statistics

2.3.1 Classification and Differences

Probability Theory is a branch of mathematics dealing with probability, uncertainty

and analysis of random phenomena in general. The principal objects here are the random

variable, stochastic process and random event. These are non-deterministic mathematical

abstractions which are in contrast with standard deterministic notions of such objects.

Probability theory is essential for quantitative analysis of large data sets, which can occur

in many practical or theoretical fields of study. Probability also lies down the mathematical

foundations for statistics, allowing modeling randomness and uncertainty of empirical data

sets. Moreover, by using probability theory we are also able to estimate the stochastic

behaviour of the large complex systems. This ability to comprehend and deal with such

complexity goes far beyond the limit of classical deterministic approaches for the description

of dynamical systems.

Mathematical Statistics is a branch of mathematics dealing with the analysis, col-

lection, interpretation, presentation and organization of data. Practical applications of

statistics count for modeling, planning and analysis of inaccurate or empirical observations.

The difference between statistics and probability theory may not seem obvious due to the

tight boundary between these fields. Some fundamental differences are very briefly captured

in Fig. 2.8. The probability theory is used for the description of formation, generation or

evolution of stochastic data, where statistics, on the other hand, is used for analysis of

these random-fashioned data and modeling of the processes behaviour by whose were these

data generated.

Process
(data generation)

Data
(observed, empiric) 

Mathematical Statistics

Probability Theory

Figure 2.8: Relation between probability theory and mathematical statistics.

Statistical methods can be basicly divided into two groups, Exploratory and Confirma-

tory (Gelman 2004, Hoaglin et al. 1983, Tukey 1977).

• Confirmatory data analysis or inferential statistics, which draws conclusions from

data or where the hypothesis is formulated and subsequently confirmed or disproved

by confirmatory data analysis techniques (e.g. regression analysis, confidence inter-

vals, etc.). The confirmatory analysis uses the traditional statistical tools of inference,
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2.3. PROBABILITY THEORY AND STATISTICS

significance, and confidence. It is comparable to a court trial, or the process of eval-

uating evidence.

• Exploratory data analysis also called descriptive statistics, on the other hand,

describes data, i.e. summarizes the data and their characteristic properties, or uses

data sets to generate the hypotheses. The well known techniques are e.g. clus-

ter analysis, factor analysis, principal component analysis, etc.. If a model fits the

data, exploratory analysis finds patterns that represent deviations from the model,

it isolates patterns and features of the data and reveals them forcefully for analysis.

Exploratory data analysis is sometimes compared to detective work or the process of

gathering evidence.

2.3.2 Terminology and Definitions

Probability is a value representing certainty of a particular event E. It is computed as

the cardinality of true or occurring events m = |E|, divided by a number of all possible

events n = |Ω|, where Ω is also called a sample space. Subsets of set Ω are called random

events F and are set of outcomes to which a probability is assigned.

This intuitive definition of probability is called classical or Laplace definition. The simplest

examples of a random event are a flip of coin or dice roll. Then the likelihood of a particular

result of a coin flip is 50% because flipping a coin leads to sample space composed of only

two possible outcomes that are equally likely. Similarly, the probability of a dice roll result

is one occurring event to six possible events of sample space.

More formalized way to define probability is by using Kolomogorov’s axiomatic formulation,

where sets are interpreted as events and probability itself as a measure on a class of sets.

Definition 2.3.1 (Axiomatic Probability) Kolomogorov proposed three axioms (Kol-

mogorov 1933).

1. Non-negativity of an event probability, represented by a real number:

Pr(E) ∈ R, Pr(E) ≥ 0, ∀E ∈ F (2.38)

2. Unit Measure says that probability of the certain elementary event is equal to 1,

there are no elementary events outside the sample space.

Pr(Ω) = 1. (2.39)

3. σ-additivity Probability of union of disjoint (mutually exclusive) events E is equal

to the countable sequence of their particular probabilities.

Pr(∪∞
i=1Ei) =

∞∑

i=1

Pr(Ei). (2.40)

�
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In particular, Pr(E) is always finite, in contrast with more general measure theory. Note

that, if you cannot precisely define the whole sample space Ω, then the probability of any

subset cannot be defined either.

Probability space (Ω,F ,Pr), also called measure space, or probability triple, are notions

representing summarisation of above-given Axioms 2.3.1, in the form of a structured set

that models a real-world process consisting of randomly occurring states. It is constructed

by three parts:

• Sample Space Ω, as set of all possible outcomes, with aggregated probability (2.39).

• Set of events or event space F , where each event is a set containing zero or more

outcomes.

• Probability measure Pr of event E is a real-valued function assigning probabilities

to the events, defined on a set of events in probability space, that satisfies measure

properties such as countable additivity (2.40), and has a form:

Pr(E) =
m

n
=
|E|
|Ω| (2.41)

A measure on a set in mathematical analysis is a systematic way to assign a number

to each suitable subset of that set, intuitively interpreted as its size. The difference

between a probability measure and general notion of measure is that a probability

measure must assign value 1 to the entire probability space.

Randomness is a broad concept in common language, philosophy and science, usually

understood as a lack of pattern or predictability in events. In a sequence of some particu-

lar data types, it suggests a non-order or non-coherence, such that there is no intelligible

pattern or combination. Even though a random events are unpredictable as individualities,

the cardinalities of different outcomes over a large number of events are usually predictable.

Therefore randomness here implies a measure of uncertainty of events and refers to situa-

tions where the certainty of the outcome is at issue.

In mathematics, there are several formal definitions of randomness. In statistics, a random

variable also called stochastic variable is an assignment of a numerical value to each possible

outcome of an event space, used for identification and the calculation of probabilities of the

events. The axiomatic measure-theoretic definition, where continuous random variables are

defined in terms of sets of numbers, along with functions that map such sets to probabilities

can be found in Fristedt and Gray (1996), Kallenberg (1986; 2001), Papoulis and Pillai

(2001). Here comes the notion of a random element, what is a generalization of the concept

of a random variable to more complex spaces than the simple real line, defined as follows.

Definition 2.3.2 (Random Element) Let (Ω,F ,Pr) be a probability space and (E, E)

a measurable space. Than (E, E)-valued random variable or random element X : Ω → E

is a (F , E)-measurable function from the set of possible outcomes Ω to some set E. The

latter means that, for every subset B ∈ E, its preimage X−1(B) ∈ F where X−1(B) = {ω :
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X(ω) ∈ B}. This definition enables us to measure any subset B ∈ E in the target space by

looking at its preimage, which by assumption is measurable. �

When E is a topological space, then the usual choice for the σ-algebra E is the Borel

σ-algebra B(E), which is the σ-algebra generated by the collection of all open sets in E.

In that casem the (E, E)-valued random variable is called the E-valued random variable.

Further, when space E is the real line R, then such real-valued random variable is called

just the random variable.

Definition 2.3.3 (Random Variable) For real observation space, real-valued random

variable is the function X : Ω→ R if it is measurable, what means that for each set B ∈ R

holds:

{ω : ω ∈ Ω, X(ω) ∈ B} ∈ F (2.42)

Equivalently X is a random variable if and only if for each real number r holds:

{ω : ω ∈ Ω, X(ω) ≤ r} ∈ F ∀r ∈ R (2.43)

�

A multivariate random variable or random vector is a list of mathematical variables each

of whose value is unknown or has random properties, either because there is inprecise

knowledge of its value or because the value has not yet occurred. Normally elements of a

random vector are real-valued numbers. Random vectors are often used as the underlying

realizations of various types of related random variables, e.g. a random matrix, random

tree, random sequence, random process, etc.

Definition 2.3.4 (Random Vector) is a column vector X = (ω1, ..., ωn)T with scalar-

valued random variables as its components on the probability space (Ω,F ,Pr). �

A random process also called a stochastic process is a collection of random variables de-

scribing a process whose outcomes do not follow deterministic rules but representing the

evolution of random values over time, described by probability distributions. The behaviour

of a stochastic process is characterized by some indeterminacy: even if the initial conditions

are known, there are several (often infinitely many) directions in which the process may

evolve. What is in contrast with a deterministic process which can only evolve in one way.

Thus the stochastic process is usually understood as the probabilistic counterpart to the

deterministic process (Papoulis and Pillai 2001).

Definition 2.3.5 (Stochastic Process) Assume to have a probability space (Ω,F ,Pr)

and a measurable space (S,Σ) , an S-valued stochastic process is a collection of S-valued

random variables on sample space Ω, indexed by a totally ordered set T represeting time.

Than a stochastic process X is a collection {Xt : t ∈ T } where each Xt is an S-valued

random variable from (Ω,F ,Pr). The space S is called the state space of the process. �

In case that T = Z or T = N + {0}, we are speaking about stochastic process in discrete

time. For continuous stochastic process holds that T is an interval in R.
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Typical examples of processes modeled by stochastic framework include the stock market,

exchange rate fluctuations, weather phenomena evolutions, signals such as speech, audio

and video, medical data such as a patient’s EKG, EEG, blood pressure or temperature,

and random movement such as Brownian motion.

Stochastic Simulation is a simulation that operates with random variables that can

change with a certain probability. Stochastic here also means that values of particular

parameters are variable or random. During stochastic simulation, a projection of stochastic

model is created based on a set of random values of model’s parameters. Outputs are

recorded, and the process is repeated with a new set of random values, until a reasonable

amount of data is gathered (w.r.t. a particular case). In the end, the distribution of the

outputs shows the most probable estimates as well as boundaries of expectations (Dlouhy

et al. 2005).

We can roughly classify stochastic simulation approaches into following types:

• Discrete-event simulation.

• Continuous-event simulation.

• Hybrid simulation representing combined simulation of discrete and continuous events.

• Monte Carlo simulation, which is commonly used estimation procedure, based on

averaging independently taken samples from the distribution (Dlouhy et al. 2005).

• Random number generators are devices capable of producing a sequence of numbers

which can not be ”easily” identified with deterministic properties (Knuth 1998).

Frameworks for handling models of stochastic processes are stochastic calculus of variations

allowing the computation of derivatives of random variables, and stochastic calculus which

allows the consistent theory of integration to be defined for integrals of stochastic processes.

Probability distribution is a probability measure, which assigns a probability to each

measurable subset of sample space Ω of a random experiment or some statistical data-set.

There are several types of probability distribution each specific for particular data sets:

• Categorical distribution, when sample space is encoded by non-numerical random

variables.

• Probability mass function, when sample space is encoded by discrete random vari-

ables.

• Probability density function, when sample space is encoded by continuous random

variables.

It can be either univariate (probability fo single random variable) or multivariate (probabil-

ity of random vector). Outcomes of more complex systems, involving stochastic processes

defined in continuous time, may demand the use of more general probability measures. In
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practice there are many commonly used and known distributions e.g. normal, log-normal,

pareto, etc..

Normal distribution or Gaussian distribution is one of most important and commonly used

type of univariate continuous probability distribution. It is also a subclass of elliptical

distributions. The domain of the function lies between any two real limits or real numbers,

as the curve approaches zero on either side. In reality, there are not many variables driven

by normal distributions. However, they are still crucial in statistics due to the central limit

theorem, which says that under certain conditions normal distributions well approximates

a huge set of other probability distributions classes (continuous or discrete) (Casella 2001,

Lyon 2014).

Definition 2.3.6 (Normal Distribution)

f(ω, µ, σ) =
1

σ
√

2π
e−

(ω−µ)2

2σ2 (2.44)

The parameter µ represents the mean and also its median and mode. The parameter σ

stands for standard deviation, its variance is therefore σ2. Thus when a random variable

ω is distributed normally with mean µ and variance σ2, we write ω ∼ N (µ, σ2). �

Definition 2.3.7 (Standard Normal Distribution)

f(ω) =
1√
2π

e− ω2

2 (2.45)

Also called the unit normal distribution is usually denoted by N (0, 1), if µ = 0 and σ = 1,

and a random variable ω with that distribution is a standard normal deviate. �

2.4 Summary

The aim of this chapter was to present the necessary mathematical background for under-

standing the following content of this thesis. First, the basic notions on sets and functions

are defined, second, the fundamentals of mathematical optimization are introduced, to-

gether with the basics of probability and statistics. The described optimization problem

classes, particularly linear, quadratic or mixed-integer programming are directly linked to

the optimal control problems such as model predictive control, which is a subject of the

study in Chapter 3. The probability theory is used for handling the uncertainties in the

weather predictions used in the stochastic formulations of the MPC problem, as shown in

Section 5.3.
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Chapter 3

Model Predictive Control

Predictive control is a discovery, not an invention, ...

IFAC Congress Munich, 1987

Model predictive control (MPC) belongs to a class of computer control algorithms, more

specifically to the optimal control methods which are using mathematical model of the

process to predict the future response of process on a sequence of control variable manipu-

lations. Once the predictions are made, the control algorithmwith usage of the optimization

techniques computes appropriate control actions to provide desired output behavior of the

process in optimal fashion.

Colloquially we can describe this method as a ”look ahead” strategy, when the controller

is able to foresee a future behavior of the process with usage of given knowledge about

that particular process and consequently evaluate the optimal control strategy to achieve

the best possible outcome, which are satysfying long term goals and criteria. This strategy

stands in contrast with classical control theory techniques e.g. PID controllers, which are

able to achieve only short term goals set in actual time, resulting in more costly and ofthen

unsatisfactory long term performance. This phenomenon can be described as ”winning the

battle but losing the war” (Anderson et al. 2014).

3.1 Classification of MPC in Control Theory

Control theory can be in general described as a study of systems behavior and control,

with practical emphasis on principles, design and construction of control systems. As the

main objective of control theory is to affect the behavior of controlled system called plant,

to achieve desired outputs properties, called reference while meeting given restrictions and

real world limitations, in control theory terminology called constraints. To achieve this goal

a controller must be designed with following capabilities executed in subsequent steps:
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1. monitoring of the plants output

2. output-reference comparisson, or control error evaluation

3. evaluation of appropriate conrol actions

The above mentioned steps with evaluation of conrol actions based on control error are

describing general notion of closed-loop, also called feedback controller. By measuring the

difference between a actual and desired output values, feedback controller can provide a

corrective action by applying this difference also called control error as feedback to the

input of the system. The second paradigm in control theory is called open-loop controller,

or a non-feedback controller, which computes its conrol actions as inputs into a system

by using only the current state measurements and model of the system. More general

definitions of feedback and conrol can be found in Astrom and Murray (2012) and are

stated as follows.

Feedback is defined as the interaction of two (or more) dynamical systems that are con-

nected together such that each system influences the other and their dynamics are thus

strongly coupled. We say that a system is closed loop if the systems are interconnected in

a cycle and open loop when there is no interconnection.

Control is defined as the use of algorithms and feedback in engineered systems. The

basic feedback loop of measurement, computation and actuation is the central concept in

control. The key issues in designing control logic are ensuring that the dynamics of the

closed loop system are stable (bounded disturbances give bounded errors) and that they

have the desired behavior (good disturbance rejection, fast responsiveness to changes in

operating point, etc).

3.1.1 Classical vs Modern Control Theory

From historical point of view a control theory can be divided into two subfields, older

methods are called classical, and younger are called modern control theory methods. The

principal differences of these subfields lies in approach to dynamical systems representation

and maniplation. Before going deeper let’s shortly recall and sumarize basic characteris-

tics and properties of dynamical systems captured in Fig. 3.1, which are necessary for

understanting the differences between classical and modern control theory methods.

Classical Control Methods

General characteristic of classical control methods, is usage of techniques for changing the

domains of dynamical systems described by ordinary differential equations (ODE) to avoid

the complexities of time-domain ODE solutions. The mentioned techniques are integral

transforms, changing time-domain ODE’s into a regular algebraic polynomial in the trans-

form domain, allowing easy manipulation. Namely the most used transforms here are the

Fourier transform with frequency domain representation, more general Laplace transform

with complex frequency domain representation also called s-domain, and its discrete-time

equivalent called Z transform. The transformed polynomials are further formed into so
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Figure 3.1: Classification of basic characteristics and properties of dynamical systems.

called transfer function, which is nothing less than matematical representation of input-

output (I/O) system model, representing relation between an input signal and the output

signal of the system. Main drawback of classical methods are, that they can be used only

for control of single-input single-output (SISO) sysyems, with requirement on model of the

sysyem to be linear time-invariant (LTI). Classical control methods are not able to incorpo-

rate constraints naturraly arising from industrial control problems, and has optimization

lacking overall performance. Most common example of classical control methods is propor-

cional integral derivative (PID) controler, which accounts for more than 90% of the control

and automation applications today, mainly thanks to its simple implementation with rel-

ative efficiency. Even though, that classical control methods are widely used in practice,

and are still popular among old-fashioned control engineers, they are providing satisfactory

results only in control of simple processes, but unsatisfactory results in control of more

complex systems, which are forming majority of todays industrial control problems.

Modern Control Methods

Instead of changing domains to avoid the complexities of ODE solutions, modern control

is using methods for conversion of high-order differential equations into a system of first-

order time domain equations called state equations, which are easy to handle using well

known linear algebra techniques. This model representation od dynamial systems is being

called state-space repsesentation, where the inputs, outputs, and internal states of the

system are described by vectors called input u, output y and state x variables respectively.

Main advantage of state-space representation is perservation of the time domain character,

where the response of a dynamical system is a function of various inputs, previous system

states, and time, shortly y = f(x, u, t). Moreover a straightforward representation and

handling of multiple-input multiple-output MIMO systems is allowed using state-space

model representations.

Structure and Comparisson of Control Theory Methods

The overall comparisson of basic characteristics and properties of above metioned methods

can be sumarised in compact table form Tab. 3.1, with highlighted differences. Moreover
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Control Theory Methods Classical Modern

Domain Frequency, S-domain Time
Model repsesentation Transfer function State-space
Continuity Continuous Continuous, Discrete, Hybrid
Linearity Linear Linear, Non-Linear
Time variance Time-invariant (TI) Time-variant (TV)
Dimensions SISO MIMO
Determinism Deterministic Deterministic, Stochastic
Optimization NO YES
Constraints NO YES
Implementation Cheap, Easy Expensive, Complex

Table 3.1: Basic characteristics and properties comparation of classical and modern control
theory methods. Where, the red color indicates the drawback, while green color
stands for advantage of the methods.

the structured classification of control theory methods is captured in Fig. 3.2. Note that

structure presented here is not rigid, but contains a rich overlaps between particular con-

trol methods forming a dense network, where each node represents a method with specific

properties and characteristic approaches to control problems. Further we will not inves-

tigate the comprehensive structure and describe all methods mentioned in Fig. 3.2 as it

is not covered by topic of this thesis. In the following sections we will rather focus on a

group of particular control methods called optimal control and more specificly on Model

Predictive Control, which undergo rapid development in last few decades mainly due to

rise of modern computer technology capacities.

3.1.2 Optimal Control

Optimal control is solving a problem of finding such control law for given system, that

certain optimality criteria are being fulfilled. Optimal control problem can be formulated

as general optimization problem defined in Section 2.2.2, consist of cost function mapping

system states and control actions, states and inputs constraints, and system dynamics

usually represented as a collection of differential equations with initial condition. Solution

to optimal control problem can be than perceived as evaluation of such control actions

paths, which are minimizing given objective function. More about optimal control theory

methods can be foung e.g. in Skogestad and Postlethwaite (2007), Tsai and Gu (2014),

Zhou and Doyle (1997), Zhou et al. (1995).

Based on different formulations of objective function, constraints or systmes model type,

the optimal control theory medhods are branching into the following most significant rep-

resentatives:

• Linear quadratic regulator - LQR

This method asuumes the controlled system to be in linear time-invariant form with

quadratic objective function and missig constraints. Solution is being obtained by
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Figure 3.2: Classical vs modern control theory methods taxonomy. Where the full lines rep-
resents direct structural relations, dotted lines are depicting supporting mathe-
matical theories, and dashed lines are outlining the evolution of separate control
theory methods merging together creating a new control theory paradigms.

two Riccati equations, in form of an optimal linear state feedback controller in form

u = −Kx.

• Linear quadratic estimator - LQE

In control theory literature also refered as a Kalman optimal state estimator, or

shortly a Kalman filter to honor the main contributing author of the concept. Kalman

filter is processing measurements from the system, affected by disturbances during

given time period and produces estimations of unmeasured and unknown system

variables. The estimation of parameters is based on optimal statistical evaluation of

number of measurements, which is more preciese than parameters estimation methods

based on single measurement.

• Linear quadratic gaussian regulator - LQG

Is an extension of a traditional LQR controller on linear systems with uncertainties

in form of white gaussian noise. Structure of LQG controller is simply combination

of LQR with LQE, design of both components can be done separately thanks to

separation principle. The solution is an again linear state feedback controller similarly

as for LQR. Main disadvantage of both methods, LQR and LQG are poor robust
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properties of the resulting controllers. These drawbacks were acting as motivation, for

combination of optimal and robust control theory methods, leading to development

of H2 and H∞ control theory methods.

• H2 a H∞ control

These control methods can be equivalently formulated as an optimization problem,

with only difference in usage of mathematical norms defining objective funtion. For

H2 controller desing purposed a euclidean 2-Norm as in Def. 2.1.17 is being used,

in contrast with ∞-Norm as in Def. 2.1.18 used in H∞ controller design. Finding

a solution for H2 controller isan easy problem in principle, due to uniqueness of

solution given by two Riccati equations. Where in contrast finding a solution for H∞

controller is very difficult problem to solve theoretically and also numerically, with

usual usage of suboptimal solution with given sufficient tolerance.

• Advanced control theory methods

In industrial applications under this label most commonly are mentioned model pre-

dictive control (MPC) strategies, as nowdays very popular control theory methods.

Thanks to their applicability on broad range of systems, natural constraints consid-

eration, together with their predictive capabilities, resulting in very efficient perfor-

mances in most of the applications compared with concurent control strategies.

The following sections are mentioned to provide the reader a deeper intoduction into

the topic of MPC, followed by chapter with application of MPC strategies on building

control problems as main interest of this thesis.

3.1.3 History and Evolution of MPC

This section will be devoted to brief history and evolution of Model Predictive Control,

from early academia based concepts of optimal control theory, giving the birth to very

first industrial based control applications using MPC technology. More comprehensive

historical survey of industrial MPC can be found in Qin and Badgwell (2003), from where

the inspiration for this whole section was taken. Moreover the simplified evolution of

industrial MPC algorithms is captured in Fig. 3.3, forming a structural backbone for this

section.

Early Optimal Control Theory

Development of the modern control theory concepts using optimization techniques can

be traced in the early 1960’s beginning with the work of Kalman (1960a;b). With first

attempts for an optimal control of linear systems, resulting in development of a linear

quadratic regulator (LQR), which was designed to minimize an unconstrained quadratic

objective function over system states and inputs. This concept was further extended to a

linear quadratic gaussian regulator (LQG), simply by adding state estimation with linear

quadratic estimator (LQE), commonly called Kalman filter to honor the author. Main

asset of LQR and LQG controllers are powerful stabilizing properties thanks to the infinite
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Figure 3.3: Simplified evolutionary tree of the most significant industrial MPC algorithms.

horizon. However the early practical issues handling applications were huge in quantity,

the quality and impact on the industrial process control technology was strongly limited

because of missing incorporation of the following listed properties in its formulation, as

well as from cultural and educational reasons (Garćıa et al. 1989, Richalet et al. 1976).

• constraints

• real systems nonlinearities

• model uncertainty (robustness)

• unique performance criteria

Even though it is conceived as a firt and necessary step for developlent of following rev-

olutionary concepts in advanced process control applications. The imediate impact of

LQG control was in fields with accurate fundamental models, e.g. on aerospace industry.

In Goodwin et al. (2001) it was estimated there may be thousands of real-world LQG

applications with roughly 400 patents per year based on the Kalman filter.

First Generation MPC

To handle a drawbacks of a LQG approach to process control issues, a new methodology was

developed in industrial enviroment with more general model based control with solution of

the dynamic optimization problem on-line at each control execution over a time interval

called prediction horizon. The main contribution of this approach is incorporation of the

process input and output constraints directly in the problem formulation so that future

constraint violations are anticipated and prevented. Moreover allowing usage of explicit

multivariable mathematical models of processes. In addition an increasing flexibility was

acquired by new process identification technology developed to allow quick estimation of
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empirical dynamic models, significantly reducing the cost of model development. This new

control paradigm for industrial process modeling and control is what we now refer to as

MPC technology (Qin and Badgwell 2003).

In the beginning there was, however a wide gap between MPC theory and practice, with

essential contributions from industrial engineers with their applications in process industry.

First of them was developed in the late 1970s by Richalet et al. (1976; 1978) refered

as Model Predictive Heuristic Control (MPHC), later called Model Algorithmic Control

(MAC), with software solution referred to as IDCOM, an acronym for Identification and

Command. In todays context the MPHC control algorithm would be refered as linear MPC

controller. Main features of IDCOM control algorithm are:

• impulse response model

• imput and output constraints

• quadratic objective function

• finite prediction horizon

• reference trajectory

• optimal imputs computed by heuristic iterative algorithm, interpreted as the dual of

identification

Another independent MPC technology was developed by engineers at Shell Oil in the early

1970s, with an initial industrial application in 1973. Subsequently Cluter and Ramaker

presented unconstrained multivariable control algorithm named Dynamic Matrix Control

in the 1979 (Cutler and Ramaker 1979; 1980). And Prett and Gillette, algorithm was

modified to handle nonlinearities and time variant constraints (Prett and Gillette 1980).

Predicted future output changes are represented as a linear combination of future input

moves in compact matrix form called Dynamic Matrix. Main features of the DMC control

algorithm are:

• linear step response model

• quadratic objective function

• finite prediction horizon

• output behavior specified by trying to follow the setpoint as closely as possible

• optimal imputs computed as the solution to a least squares problem

The initial IDCOM and DMC algorithms were algorithmic as well as heuristic, taking

advatage of rapid development of digital computers technology. However the first MPC

were not automatically stabilizing, stability was estabilished by good heuristics and well

performed tuning by experienced control engineer. Moreover they were able to provide a

small degree of robustness to model error. The IDCOM and DMC are classified as first

generation MPC, and in contrast with LQR they had an enormous impact on industrial

process control and layed the foundation the industrial MPC paradigm.
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Second Generation MPC

Even though the first generation MPC algorithms provided excellent control performance

of unconstrained multivariable processes, handling the process constraints was still prob-

lematic task with unsatisfactory results. The solution to this porblem came again from

Shell Oil engineers at early 1980s, proposing the original DMC algorithm as a quadratic

program (QP) in which input and output constraints appear explicitly. Namely Cutler et.

al., came with first description of the QDMC (Cutler et al. 1983), and Garcia and Mor-

shedi with more comprehensive description few years later (Garcia and A.M. 1986). Main

features of the QDMC control algorithm are:

• linear step response model

• input and output constraints collected in a matrix of linear inequalities

• quadratic objective function

• finite prediction horizon

• output behavior specified by trying to follow the setpoint as closely as possible

• optimal imputs computed as the solution to a quadratic program

Strenght of this approach was also the fact that the resulting QP optimization problem was

convex and hence easily solved by standard commercial optimization algorithms. Thanks

to this qualities the QDMC algorithms refered as second generation of MPC proved to

be profitable in an on-line optimization environment. As a main drawback of the QDMC

approach was lack of clear way approach to handle an infeasible solution and missing

recovery mode.

Third Generation MPC

From this point a popularity and usage of the MPC technology rise strongly in numbers,

creating new complex problems and revealing application challenges, pointing out most

important as follows.

• solving infeasibility issues

• fault tolerance control

• control requirements formulation and scaling problems

To solve infeasibility issues a new approach to constraints handling was proposed, by in-

corporating soft constraints which violations were penalized in objective function, and by

distinguishing between high and low priority constraints. Main objective of fault tolerance

as a important practical issue, was making best from control even during failure, with

relaxation control specifications during this kind of situations. Third problem was diffi-

cult translation of control specifications into a consistent set of relative weights in a single
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objective function for larger problems. Where these scaling problems that lead to an bad-

conditioned solution, comented in Prett and Garcia (1988) as follows. The combination of

multiple objectives into one objective (function) does not allow the designer to reflect the

true performance requirements.

These issues were motivations for engineers of industrial comapies as Adersa, Setpoint,

Inc., and Shell which were among first implementing MPC algorithms. The IDCOM-M

controller was a commercial trademark of Setpoint, Inc. (where M stands for multiple

input/output), and was first described in Grosdidier et al. (1988), and few years later

by Froisy and Matsko (1990) implemented to a Shell fundamental control problem. Main

features of the IDCOM-M control algorithm are:

• linear impulse response model

• controllability supervisor to screen out bad-conditioned plant subsets

• multi-objective quadratic function formulation, one for inputs and one for outputs

• control of coincidence points chosen from reference trajectory, as a subset of future

outputs trajectories

• single move for each input

• hard or soft constraints with priority ranking

Adresa company owned nearly identical version to the IDCOM-M called hierarchical con-

straint control (HIECON). The IDCOM-M product was combined with setpoints identifica-

tion, simulation, configuration, and control products into a single integrated system called

SMCA, for Setpoint Multivariable Control Architecture.

The Shell research engineers was not far behind and in the late 1980s developed the SMOC,

or Shell Multivariable Optimizing Controller, refered as a bridge between state-space and

MPC algorithms (Marquis and Broustail 1998). Their approach was to combine constraint

handling features of the MPC, with the richer framework for feedback by state-space meth-

ods, so that full range of linear dynamics can be represented. Main features of the SMOC

control algorithm, which are now considered essential to a modern MPC formulation are

listed as follows:

• state-space model

• explicit disturbance model describing the effect of unmeasured disturbances

• Kalman filter for estimation of plant states and disturbances from output measure-

ments

• distinction between controlled variables in objective and feedback variables for esti-

mation

• QP formulation of control problem with constraints incorporation
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The SMOC algorithm can be than perceived as solving the LQR problem with input and

output constraints, but lacking the strong stabilizing properties due to the finite horizon.

Not long after in the 1990s a stabilizing, infinite-horizon formulation of the constrained

LQR algorithm came to embrace the MPC theoretical background (Rawlings and Muske

1993, Scokaert and Rawlings 1998). Other algorithms not described but yet belonging

in this section of third MPC generation was a PCT algorithm sold by Profimatics, and

Honeywells RMPC algorithm.

Fourth Generation MPC

The mid and late 1990s bring significant changes in the industrial MPC landscape, mainly

due to increased competition driven companies acquisitions and technologies merges. In

1995 a robust model predictive control technology RMPCT was created by merging Hon-

eywells RMPC algorithm with Profimatics PCT controller under the label of Honeywell

Hi-Spec Solutions. Second big acquisition become reality in 1996, when Aspen Technology

Inc. purchased both Setpoint, Inc. and DMC Corporation, followed by by acquisition of

Treiber Controls in 1998. What was resulting in subsequent merging of SMCA and DMC

technologies to current Aspen Technologys DMC-plus. A simplified overwiew of the MPC

technology evolution is sumarised structurally in Fig. 3.3 as refered in the beginning of this

section.

The RMPCT and DMC-plus as a flagships of fourth generation of MPC technology, are be-

ing sold today with integrated high standards features of all above mentioned technologies,

enhanced with following improvements.

• windows based graphical user interface

• multiple optimization levels for control objectives with different priorities

• improved identification technology based on prediction error method

• additional flexibility in the steady-state target optimization, including QP and eco-

nomic objectives.

• robustness properties with direct consideration of model uncertainty

All this has been a cause to a large increase in the number and variety of practical appli-

cation areas including chemicals, food processing, automotive, or aerospace applications.

Mainly thanks to the MPC significant performance improvements, increasing safety, de-

creasing energy consumption or enviromental burden of plants production.

3.2 MPC Overwiev and Features

MPC is a control strategy that uses an optimization to calculate the optimal control inputs,

with usage of mathematical model of the system and current state measurements for pre-

dicting a evolution of the system behavior, and keeping these future predictions in account

during optimization. The optimization problem as proposed in Chapter 2.2.2 is composed
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of two parts, objective function and constraints. In the MPC framework the cost or also

called objective function evaluates fitness of a particular predicted profile of state, output

and inputs with respect to qualitative criteria. Task of the optimization is then to compute

the optimal profile of predicted control actions for which the cost function is minimized.

The set of admissible decisions to choose from is then represented by the constraints of the

optimization problem.

The MPC is based on iterative character of an optimization process executed over finite time

interval also called a prediction horizon, which can be simplistically percieved as measure

of how far into the future the MPC algorithm can see. At current time the plant states

are being measured and a cost minimizing control strategy is computed, via a numerical

algorithms over given prediction horizon.

Basic building elements forming characteristic structure of standard MPC are sumarised

and listed as follows.

• Model of the system

• State measurements

• Constraints

• Objective

• Prediction horizon

• Sampling time

Note here, that multiple possibilities for each building element of MPC exist, each with

specific properites which are suitable or necessary for particular control application prob-

lem.

3.2.1 Standard MPC Formulation

Standard MPC optimization problem can be formulated in a general way as follows:

min
u0,...,uN−1

ℓN (xN ) +

N−1∑

k=0

ℓ(xk, uk) (3.1a)

s.t. xk+1 = f(xk, uk, dk), k ∈ N
N−1
0 (3.1b)

xk ∈ X , k ∈ N
N−1
0 (3.1c)

uk ∈ U , k ∈ N
N−1
0 (3.1d)

x0 = x(t), (3.1e)

where xk ∈ R
n, uk ∈ R

m and dk ∈ R
q denote, respectively, values of states, inputs

and disturbances predicted at the k-th step of the prediction horizon N . The predictions

are obtained from the prediction model f(x, u, d), that can be arbitrary (e.g. linear or

nonlinear). Predicted states and inputs are subject to constraints sets in (3.1d) and (3.1c).
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The term ℓN(xN ) in (3.1a) is called terminal penalty, while ℓ(xk, uk) is called a stage cost

and its purpose is to assign a cost to a particular choice of xk and uk.

For a particular initial condition x(t) in (3.1e), the optimization (3.1) yields the sequence

u∗
0, . . . , u

∗
N−1 of control inputs that are optimal with respect to the cost (3.1a). Computa-

tional complexity of obtaining such a sequence depends on the type of the prediction model

employed in (3.1b) and on the choice of the cost function (3.1).

More specifically a general MPC problem (3.1), can be given in a form

min
u0,...,uN−1

‖QNxN‖p +

N−1∑

k=0

(‖Qxxk+1‖p + ‖Quuk‖p) (3.2a)

s.t. xk+1 = Axk +Buk + Edk, k ∈ N
N−1
0 (3.2b)

Hxxk ≤ Kx, k ∈ N
N−1
0 (3.2c)

Huuk ≤ Ku, k ∈ N
N−1
0 (3.2d)

x0 = x(t). (3.2e)

Where cost function (3.2a) is represented by an arbitrary p-Norm as in Def. 2.1.15, defined

over prediction horizon N ∈ N with weight matrices Qx ∈ R
n×n, Qu ∈ R

m×m and terminal

penalty weight QN ∈ R
n×n, with conditions Qx � 0 and QN � 0 to be positive semidefinite

andQu ≻ 0 to be positive definite. Moreover the prediction model holds the form of discrete-

time linear time-invariant system in a state-space representation (3.2b) with incorporated

disturbances dk. With the model matrices A ∈ R
n×n, B ∈ R

n×m and E ∈ R
n×q, linear

constraints matrices Hx ∈ R
nx×n, Kx ∈ R

nx , Hu ∈ R
nu×m and Ku ∈ R

nu , where nx, nu

stands for number of state and input inequalities. Recalling that n, m and q denotes the

dimension of state, input and disturbances, respectively.

Remark 3.2.1 Notice that, MPC optimization problem (3.2) with cost function (3.2a) in

form of 2-Norm as in Def. 2.1.17 is resulting in convex QP problem (2.26). Additionally if

the model of the system contains state variables, which can only acquire integer or binary

values, than the system exhibits hybrid dynamics behavior and the resulting optimization

problem becomes non-convex MIQP problem (2.28). �

3.2.2 Receding Horizon Control

Standardly the MPC algorithms are being implemented in the closed-loop fashion using

the principle of the receding horizon control (RHC), where the prediction horizon keeps

being shifted forward, implementing only the first step of the computed control strategy

and discarding the rest. The closed-loop MPC procedure can be sumarised in the following

general RHC policy Algorithm 1. Moreover, a characteristic behavior of a discrete closed-

loop MPC strategy is captured in Fig 5.1. Alternatively, an open-loopMPC can be designed

by ignoring a RHC control policy and simply implementing, not only the first control input,

but the whole control strategy computed over the given prediction horizon, paying the cost

of loosing the feedback from the controlled system.
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Algorithm 1 Receding horizon control.

1. At time t, measure (or estimate) the plant’s state x(t)

2. Compute the optimal sequence of control inputs {u∗(t), . . . , u∗(t+NTs)} by solving
the optimization problem (5.8).

3. Select and apply only the first element of the control signals sequence, i.e., u∗(t), to
achieve the feedback behaviour of the MPC controller.

4. Implement the selected control signal over a pre-defined time interval, called sampling
time Ts.

5. Time advances to the next interval, and the procedure is repeated from step 1, with
new measurements at time t+ Ts, using values of x(t+ Ts).

Past Future

Prediction horizon

Ts

LEGEND

Reference trajectory
Predicted output
Measured output

Implemented inputs
Predicted inputs
Current input

tk tk+1 tk+2 tk+3 . . . tN−1

Figure 3.4: Characteristic behavior of a receding horizon control policy.

3.2.3 Explicit Solution of MPC Problem

The objective here is to employ parametric programming (Bemporad et al. 2002, Borrelli

2003) to pre-calculate the optimal control inputs in (3.2) for all admissible values of initial

conditions. Hence we aim at constructing, off-line, the explicit representation of the opti-

mizer as a function of the vector of initial conditions. Then, once we need to identify the

optimal control action on-line for particular measurements, we can replace optimization

by a mere function evaluation. This significantly reduces computational requirements of

implementation of MPC. For further details on parametric programming see Section 2.2.5.

Lets consider the MPC problem (3.2) to be a QP problem by using a 2-Norm in the objective

function (3.2a). To see now the relation between Theorem 2.2.4 and the QP problem (3.2),

notice that U = [u0, . . . , uN ] and ξ = [x(t), d(t)]. Moreover, the matrices H , Q, R, d, G, w,
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E of the corresponding mpQP problem (2.31) can be obtained by straightforward algebraic

manipulations, see e.g. Borrelli (2003). Parameters of the PWA function U∗(ξ) in (2.34),

i.e., gains Fi, gi and polyhedra Ri, can be obtained e.g. by a parametric programming

solver implemented in the freely-available MPT toolbox (Kvasnica et al. 2004).

Remark 3.2.2 For a closed-loop implementation of MPC, only the first element of U∗, i.e.,

u∗
0, needs to be applied to the plant at each time instant. Therefore the explicit receding-

horizon feedback law is given by

u∗(t) = [ 1 0 ··· 0 ]U∗(ξ) = F̃iξ + g̃i, if ξ ∈ Ri, (3.3)

where F̃i, g̃i are obtained from Fi, gi by retaining only the first row of a corresponding

matrix. �

3.3 Summary and Further Reading

This chapter briefly presented the history and the mathematical basis behind the model

predictive control. The standard formulation of the MPC problem was introduced, which

is further modified for case specific building control problems in Section 5.3. From the

implementation point of view, two solution methods were discussed. First, the on-line

solution which is based on solving the optimization problem at each sampling instant,

following the principle of the receding horizon control. And second, the explicit solution

which exploits the multi-parametric programming to pre-calculate the entire solution off-

line as a function of the initial conditions. Both approaches are further used in the context

of the building climate control applications investigated in Chapter 6.

There are several publications comprehensively covering the theoretical and practical issues

of MPC techniques. Tutorial overview on MPC with the focus on control engineers can be

found in Rawlings (2000). Allgower et al. (1999) provides a more comprehensive overview

of nonlinear MPC and moving horizon estimation (MHE). Review of theoretical results on

the closed-loop behaviour of MPC algorithms can be found in Mayne et al. (2000). The

paper by Mayne (2014) recalls a few past achievements in MPC, gives an overview of some

current developments and suggests a few avenues for future research. On a top of that,

interesting surveys on MPC technology can be found in many papers, e.g. Garćıa et al.

(1989), Mayne (1997), Morari and Lee (1991), Muske and Rawlings (1993), Rawlings et al.

(1994), Ricker (1991), or in books, e.g. Allgower and Zheng (2000), Camacho and Bordons

(2004), Kouvaritakis and Cannon (2001), Maciejowski (2002), Mayne et al. (2000).
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Chapter 4

Building Modeling

All models are wrong, but some are useful.

George E. P. Box

The mathematical models of physical plants play a vital role in many areas, including the

control synthesis, verification and simulation. They represent a mathematical abstraction

that should on one hand be sufficiently accurate to capture the dynamical behavior of the

plant and, on the other hand, sufficiently simple as to render the control synthesis easy.

4.1 Basic Concepts and Modeling Tools

Despite these intensive research efforts the commercialization of MPC in building sector is

still in its early stages. This is partially due to the lack of direct comparison (i.e., for the

same scenario) of different optimization algorithms, of different controller models and their

prediction performance, of the simulation parameters such as sampling time, prediction

horizon and of climate forecast, as pointed out in the review paper by Hilliard et al. (2015).

The main difficulty remains, however, to obtain a good controller model of the whole

building with a minimum of effort as it is the most time-consuming part (Li and Wen 2014,

Pŕıvara et al. 2011b, Sourbron et al. 2013, Široký et al. 2011). Detailed building energy

simulation software (BES) allow accurate building modeling but generate models which are

too complex to be used in efficient optimization algorithms (Sourbron et al. 2013, Široký

et al. 2011). Low order linear models are usually preferred due to their computational

tractability (Hazyuk et al. 2012). Therefore, simplified models need to be generated by

means of grey-box (Bacher and Madsen 2011, Pŕıvara et al. 2013, Reynders et al. 2014,

Sourbron et al. 2013) or black-box system identification such as auto regressive (Yun et al.

2012), subspace (Ferkl and Široký 2010, Pŕıvara et al. 2011a) and artificial neural network

methods (Ruano et al. 2006) or by simplified white-box modeling (Gorecki et al. 2015,

Gyalistras and Gwerder 2009, Lehmann et al. 2013, Picard et al. 2015).
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While black-box identification has the advantage that no prior knowledge of the system

is required and that it can deal more efficiently with large sets of data, its prediction

performance for longer time horizons (e.g., more than 12 hours) is not sufficiently ac-

curate (Pŕıvara et al. 2013). Grey-box system identification is more suitable for a long

time horizon but the method becomes very costly for large multiple-input multiple-output

(MIMO) systems. As shown by (Bacher and Madsen 2011, De Coninck 2015, Reynders

et al. 2014) a good choice of the structure of the grey-box model, i.e., its order, its inputs

and its states, is crucial for its performance but this choice is very case specific. Therefore

authors involved in the opti-control project (Gyalistras and Gwerder 2009, Lehmann et al.

2013, Sturzenegger et al. 2014), and others (Gorecki et al. 2015, Picard et al. 2015) opted

for a linear white-box approach where the model is set up based on geometrical and on

physical data of the building and simplified physical laws. The authors showed that this

simplified approach could mimic the results (typically expressed as operative temperatures)

of the more complex models obtained with BES software within an error margin of ± 0.5

to 1 K. By applying model order reduction methods, the complexity of the obtained linear

model can be further reduced (Foucquier et al. 2013, Gouda et al. 2002, Kim and Braun

2012, Sturzenegger et al. 2014). Both for the grey-box and for the white-box approach, the

necessary level of model complexity in order to obtain a good MPC still remains unknown

and no systematic method to determine this optimal model complexity is available (Harish

and Kumar 2016, Li and Wen 2014).

The building modeling plays a crucial role when applying MPC as a climate controller.

However, the analysis of the optimal choice of the controller model complexity is difficult

and case varying. The results presented by (Picard et al. 2016) indicate that the MPC

performance is very sensitive to the prediction accuracy of the controller model. They

showed that both, grey-box as well as white-box approach can lead to an efficient MPC

as long as very accurate identification data sets are available. However, for the considered

simulation case, the white-box MPC resulted in a better thermal comfort and used only

50% of the energy comparing to best grey-box MPC.

Some studies have investigated the influence of the model order on the model off-line

prediction performance (Kramer et al. 2012). At the building component level, Gouda

et al. (2002) applied a non-linear optimization technique to optimally reduced a higher

building element to a second order model. Xu and Wang (2007) also reduced their model

complexity to a second order model by minimizing the error between the frequency response

of a higher model and their model. Fraisse et al. (2002) concludes that a wall should be

represented by a fourth order model. At the multi-zone building level, Sturzenegger et al.

(2014) and Kim and Braun (2012) created a linear model with a large number of states and

they reduce the order by applying Model Order Reduction (MOR). Foucquier et al. (2013)

also started from a high order building model but they reduced the complexity by merging

different walls together.

BES programs are simulation tools that simulate the energy flows in buildings. This in-

cludes the interaction between the building envelope and its surroundings (i.e., weather, ra-

diation heat losses, etc.), between the building envelope and its HVAC system and possibly

between the HVAC system and the electrical grid. BES programs use physical equations to
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describe the systems. A wide range of the software modeling tools for buildings is available

nowadays. These include, but are not limited to, TRNSYS (Beckman et al. 1994), Energy

Plus (Crawley et al. 2001), ESP-r (Yahiaoui et al. 2003), or Modelica (Buildings (Wetter

et al. 2014), IDEAS (Baetens et al. 2015)). They usually consider very complex building

models based on nonlinear energy and mass balances written in symbolic language. To

deal with this issue the middleware softwares such as BCVTB (Wetter and Haves 2008),

MLE+ (Bernal et al. 2012) and OpenBuild (Gorecki et al. 2015) were designed for mak-

ing communication bridges between various tools. More comprehensive overwiev of HVAC

system modeling and simulation tools can be found in Trcka and Hensen (2010), Zhou

et al. (2013). Directories listing all available software tools for modeling, analysis, opti-

mization and simulation for buildings can be found on-line in Energy (2014), EUROSIS

(2014), Nghiem (2011).

In this work we used two distinct BES programs for obtaining two particular building mod-

els. First, Section 4.3 describes a simplified linear single-zone building model obtained from

Indoor temperature Simulink Engineering (ISE) tool (van Schijndel 2005), which is used for

straightforward evaluation of the developed controllers. And second, Section 4.3 introduces

a complex linearized six-zone building model obtained from Integrated District Energy As-

sessment by Simulation (IDEAS) tool (Baetens et al. 2015), used for more elaborate analysis

of the behaviour of the developed controllers.

4.2 Simplified Single-zone Building Model

In this Section we consider a linear model of a one-zone building, obtained from ISE. In

general, ISE is a free, MATLAB-based modeling tool for simulation of the indoor tem-

perature of a single-zone building. It uses a linear model and provides a user-friendly

graphical interface to Simulink. Contrary to the complex modeling tools mentioned above,

models provided by ISE are directly suitable for control synthesis. Another advantage is

that ISE is standalone, i.e., it does not rely on any other external software packages and is

based entirely on MATLAB/Simulink, which allows easily verify the performance of various

control strategies just by wrapping any MATLAB-based control algorithm as a Simulink

S-function.

The model has 4 state variables, denoted as x1 to x4 in the sequel. Here, x1 is the floor

temperature, x2 represents the internal facade temperature, x3 is the external facade tem-

perature, and x4 stands for the internal room temperature. All temperatures are expressed

in ◦C. The model considers a single control input u, which represents that amount of heat

injected to the zone, expressed in watts. Moreover, the model also features 3 disturbance

variables d1, . . . , d3. Here, d1 is the external temperature (in ◦C), d2 is the heat generated

inside in the zone due to occupancy (in W), and d3 is the solar radiation which heats the

exterior of the building (in W).

The model can be compactly represented by a linear state-space model in the discrete-time
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domain

xk+1 = Axk +Buk + Edk (4.1a)

yk = Cxk (4.1b)

where x is the state vector, d is the vector of disturbances, subindex k denotes the time

period, and A ∈ R
4×4, B ∈ R

4, E ∈ R
4×3 are the state-update matrices. Following values

of A, B, E in (4.1) were extracted from ISE toolbox with sampling frequency Ts = 15

seconds:

A =







0.9997 0 0 0.0003

0 0.9997 0 0.0003

0 0 0.9992 0

0.0177 0.0428 0 0.9348






, B = 10−4 ·







0

0

0

0.4421






,

E = 10−3 ·







0.0007 0 0.0006

0.0007 0 0

0.8111 0 0

4.6897 0.0442 0.0088






, C =

[
0 0 0 1

]
.

Instead of considering an analytic model for prediction of disturbances, the ISE tool uses

historical data for external temperatures (d1) and solar radiations (d3). For the heat

generated by the occupancy, the ISE model considers d2 = 500W during daytime hours,

and d2 = 0W otherwise.

4.3 Complex Six-zone Building Model

This section describes the modeling of an existing house (Section 4.3.1) in the BES program

IDEAS. The Modelica library IDEAS is a recently developed district energy commodity flow

modeling environment which enables multi-zone thermal building simulation, including

building envelope, heating, ventilation and air-conditioning systems, and electric system

simulation. The governing equations are discretised partial differential equations, ordi-

nary differential equations and algebraic equations, which are solved simultaneously. The

governing equations in IDEAS are presented in section 4.3.2, section 4.3.3 describes their

linearization in order to obtain a SSM, and section 4.3.4 describes the applied model order

reduction technique.

4.3.1 Building Description

The plant model is based on an existing 6-rooms terraced house in Bruges, Belgium (see

Fig. 4.1) with general parameter values given by Table 4.1. The heating system is composed

of one radiator per room fed by a central gas-boiler. The original building is badly insulated

and it has a poor air-tightness. The column Original of Table 4.2 gives its overall heat

transfer coefficient (U-value), its maximum volume air change per hour (ACH) and the
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composition of its outer walls, floors, windows and roof. For the renovated case, the U-

value is decreased by adding insulation to the outer walls (see column Renovated in Table

4.2). The thickness of the insulation layer varies for the different outer walls, respecting

the actual renovation plans of the building. Finally, the case of a light-weight building

is considered by replacing all outer walls and the roofs by an insulated wooden structure

which leads to a better insulation and a lower building mass. The last row of the table

indicates the number of state variables of each model.

Figure 4.1: Picture of the modeled
house (Bruges, Belgium).

Table 4.1: General building parameters

Floor area [m2] 56
Conditioned volume [m3] 130.6

Total exterior surface area [m2] 195
Window to wall ratio [-] 19%
Windows orientation [-] North-East

Original Renovated Light weight

U-value [W/m2/K] 1.28 0.65 0.36
ACH [1/h] 8.7 4.1 4.1
Walls [m] concrete 0.268 concrete 0.200 wood and 0.150

[m] plaster 0.010 insulation 0.015-0.115 insulation
plaster 0.010

Floors [m] reinforced 0.120 reinforced 0.120 reinforced 0.120
concrete concrete concrete

[m] screed 0.040 insulation 0.020 insulation 0.020
[m] topping 0.060 screed 0.060 screed 0.060
[m] tiles 0.030 tiles 0.030 tiles 0.030

Windows double glass double glass double glass
g=0.75, U=1.4 g=0.75, U=1.4 g=0.75, U=1.4

Roof [m] fibre-cement 0.180 fibre-cement 0.180 wood and 0.200
[m] insulation 0.080 insulation 0.080 insulation
[m] plaster 0.010 plaster 0.010

# States 283 286 250

Table 4.2: Parameter values and number of states in the BES model for the original, the
renovated and the light weight buildings.

4.3.2 Building Thermal Model

In this study, only the building envelope, consisting of 6 thermal zones, 5 windows, 11 outer

walls, 5 boundary walls with neighboring buildings, 6 roof surfaces, 3 floor surfaces on the

ground, 3 floor surfaces between the ground floor and the first floor, and 6 internal walls

between the zones, is considered. The heating system is idealized as a perfectly controllable,

limited heating power which can directly be injected in each room. The radiators and the

gas boiler are thus not modeled but they are replaced by one heat input per zone. The

building envelope is modeled using the Modelica IDEAS library (Baetens et al. 2015). The

following paragraph gives a brief description of the main equations of the building envelope
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as they are developed in IDEAS. For a complete description we refer to Picard et al. (2015)

and to Baetens (2015).

The thermal response of the building is governed by three main processes: (i) interaction

with the surroundings by means of radiation and convection, (ii) heat transfer through the

solid layers and, (iii) heat exchange between the different surfaces within the building.

The convective heat flow Q̇cv,k(t) from the surroundings to an outer surface Ak is described

by:

Q̇cv,k(t) = hcv(t)Ak (Tdb(t)− Ts,k(t))

hcv(t) = max
{

5.01(v10(t))0.85, 5.6
}
W/m2K

(4.2)

with convective heat transfer coefficient hcv(t), dry bulb ambient temperature Tdb(t), sur-

face temperature Ts,k(t) and the undisturbed wind speed at 10 meters above the ground

v10(t). The longwave radiation heat flow Q̇lw,k(t) from the surface to the surroundings is

modeled using Boltzman’s law:

Q̇lw,k(t) = σǫlw,kAk

(
T 4
s,k(t)− T 4

env

)
(4.3a)

T 4
env = Fce,kT

4
ce(t)− (1− Fce,k)T 4

db(t) (4.3b)

Fce,k =
1 + cos ik

2
(4.3c)

with the Stefan-Boltzmann constant σ, surface long-wave emissivity ǫlw,k, surface, celestial

dome, dry bulb and so-called environment temperatures Ts,k(t), Tce(t), Tdb(t) and Tenv,

respectively, view factor Fce,k between the surface k and the celestial dome, and inclination

of the surface ik. The short-wave solar irradiation absorbed by the exterior surface k equals:

Q̇sw,k(t) = ǫsw,kAkEe,k(t) (4.4)

with surface short-wave emissivity ǫsw,k and incident solar irradiation Ee,k(t) on surface Ak

as a function of time. Finally, the absorption and transmission through glazing is described

by highly non-linear functions which depend on the spectral properties of the window, on

the angle of incidence of the sun and on possible shading, see Picard et al. (2015).

The heat transfer through walls and floors is approximated as a 1-D partial differential

equation which is discretized using a finite volume approach. Similarly, the temperature

of zone i (Ti) is computed as:

Cp,eq
∂Ti

∂t
=
∑

j

Qj (4.5)

with equivalent thermal capacity Cp,eq for the air and the furniture in the zone and
∑

j Qj

the sum of all convective and radiative heat flows to the air node of the zone.

Finally, interior surfaces can exchange heat with the air of the zone by means of convection:

Q̇cv,k(t) = hcv,k(t)Ak (Tdb(t)− Ts,k(t)) (4.6)

with convective heat transfer coefficient hcv,k(t) which depends on the inclination of the
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surface and on the temperature difference between the surface and the air. All surfaces of

a same zone can also interact by means of long-wave radiation. This interaction is modeled

using the radiant star model approach:

Q̇k→star(t) =
σAk

Rk

(
T 4

k (t)− T 4
star(t)

)
(4.7)

with a distribution coefficient Rk and the temperature of the fictive node Tstar used in the

radiant star model. Here Q̇k→star(t) stands for the heat flow from surface k at temperature

Tk to the fictive temperature Tstar.

4.3.3 Linearization of the Building Thermal Model

The Modelica building envelope model, as implemented using the IDEAS library, is not

directly usable as controller model due to its high complexity. As explained in Section 6.3.1,

the Modelica reference building model is linearized around a working point in order to

obtain a linear SSM. This corresponds to linearizing equations (4.2), (4.3), (4.6) and (4.7)

around a working point. For typical European weather the linearization error for these

equations remains typically below 1 K. However, the equations for the solar transmission

and absorption through the windows are highly non-linear and they should not be linearized.

The solar transmission and absorption are instead pre-computed using the IDEAS model

and they are considered as inputs to the linearized SSM. For a complete description of the

linearization process we refer to Picard et al. (2015).

The obtained SSM has the following form:

∂x(t)

∂t
= Acx(t) +Bcu(t) (4.8a)

y(t) = Ccx(t) +Dcu(t) (4.8b)

All states x represent temperatures. The input vector u contains the control variables, i.e.,

the heat flow from each radiator to the rooms (composed of 40% of radiative and 60%

of convective heat flow), and the disturbances, i.e., the heat absorbed and the direct and

diffuse solar radiation transmitted by each window, the direct, diffuse solar radiation and

the environment temperature (i.e. a radiation temperature taking both the environment

and the sky temperature into account) per orientation and inclination present in the model,

the ambient temperature, and the ground temperature. Fig. 4.2 gives the temperature error

between the non-linear IDEAS models for the three building types and the obtained SSM.

The errors are computed for a full year open-loop simulation. A standard weather file

of Uccle, Belgium (Meteotest 2009) is used to represent the weather condition and each

zone temperature is kept within its comfort band using a PID-controller. All inputs of the

non-linear and the linear models are exactly the same. As Fig. 4.2 shows, all outlier errors

are below ± 1K and the median of the error is close to zero for each zone. This confirms

that the obtained SSMs with pre-computed inputs are accurate approximations of the non-

linear IDEASmodels. The obtained SSMs will be further referenced as building models. The

overall dimensions of the used building models are summarized in the Table 4.3.
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Figure 4.2: Boxplot of the temperature error between the non-linear IDEAS models and
their linear state space models for a full year open-loop simulation. The errors
are given for each building type. The centered line gives the median, the box
gives the first and third quartiles, the wiskers contain 99.5% of the data, and
the crosses are the outliers.

Notation Description Values

nx number of states 250, 283, 286
nu number of inputs 6
ny number of outputs 6
nd number of measured disturbances 44

Table 4.3: Dimensions of the three building models.

4.3.4 Model Order Reduction

Model order reduction (MOR) is an umbrella term for methods used for reducing the com-

putational complexity of mathematical models. The method reduces the model associated

state-space dimensions in order to reduce the computational cost of model evaluation. The

reduced model is, however, less accurate.

Balanced Truncation

In this work, the square root balanced truncation algorithm is used to obtain the reduced

order models (ROMs) of different orders. The command reduce of MATLAB with default

settings is used. This method is based on the Hankel Singular Values (HSV) and was chosen

because it guarantees an error bound and preserves most of the system characteristics in

terms of stability, frequency, and time responses (Antoulas 2005). Furthermore the HSV

of the building models decrease rapidly, the HSV based method gives accurate models

even for very low-orders (Antoulas and Sorensen 2001). The error bound of the balanced

truncation method is given by:

σm ≤ ||M − M̂ ||∞ ≤ 2
n∑

i=m+1

σi. (4.9)
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with σi the HSVs of the original model, M and M̂ the amplitude of the frequency response

of the original and of the reduced models, ||M−M̂ ||∞ their infinity norm (i.e., the maximum

difference between the two responses) and n and m the order of the original and of the

reduced models (Enns 1984). Note that the HSV σi are sorted from large to small. For a

complete description of the calculation of the HSV and of the balancing method we refer to

Antoulas (2005) and Enns (1984). Based on computed error bounds, a set of ROMs with

orders ranging from 4 to 100 is chosen to investigate the influence of the model complexity.

Reduced Order Model Initialization and Discretization

When applying MOR, the initial state values also need to be transformed in their reduced

form. However, the MATLAB function reduce does not provide the transformation matrix.

As the physical meaning of the initial states for the reduced models is lost by MOR, the

initialization of reduced models is not straightforward. This section describes how the

original SSM can be adapted to have zero initial state values without changing its input-

output behavior.

We assume a LTI SSM in continuous time domain with a given initial states value x0 =

293.15 K. Because x0 is a constant the SSM (4.8) is equivalent to:

∂ (x(t)− x0)

∂t
= Ac (x(t)− x0) +Bcu(t) +Acx0 (4.10a)

y(t) = Cc (x(t)− x0) +Dcu(t) + Ccx0 (4.10b)

By substitution x̄(t) := (x(t)− x0), the model can be compactly rewritten as follows.

∂x̄(t)

∂t
= Acx̄(t) +

[
Bc Acx0

]
[
u(t)

1

]

(4.11a)

y(t) = Ccx̄(t) +
[
Dc Ccx0

]
[
u(t)

1

]

(4.11b)

The new SSM with state variables x̄ has an initial states vector x̄0 = 0. The reduced model

can now also be initialized at zero.

The discretization of the transformed continuous SSM (4.11) is necessary because the con-

troller design and the simulations will be performed in discrete time domain. Based on the

relevant dynamics and associated time constants, the unified sampling frequency Ts = 15

minutes was used as a motivated choice for all investigated model types. The discretized

model has the following form

xk+1 = Axk +Buk + Edk +G, (4.12a)

yk = Cxk +Duk +H. (4.12b)

Where xk, uk and dk are states, inputs and disturbances at the k-th time step, respectively.

The Bc matrix of the continuous SS model (4.11) contains both the control inputs u and

the disturbances d. However, for control purposes it is necessary to separate them into
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individual matrices. The Bc matrix is therefore split into an input matrix and a disturbance

matrix which correspond, after discretization, to the matrices B and E of Eq. 4.12. The

constant value matricesG andH are necessary to include the initial conditions, as explained

above.

4.4 Summary

This chapter presented the basic principles of the building modeling as a crucial part of the

model predictive building control. The main difficulty here is to obtain an accurate build-

ing model with a minimum of effort as it is the most time-consuming part. The trade-off

between the model accuracy and simplicity is discussed. Building energy simulation soft-

ware (BES) allow accurate modeling but generate models too complex to be used efficiently

in optimization algorithms. Therefore, for control purposes, lower order linear models are

preferred due to their computational tractability. Three main approaches to the building

modeling are introduced, namely black-, grey- and white-box models, together with the

discussion about their advantages and disadvantages. Two different building models are

introduced. First, simplified single-zone low order linear model obtained from MATLAB’s

ISE toolbox (van Schijndel 2005). And second, complex six-zone higher order linearized

model obtained from Modelica-based IDEAS library (Baetens et al. 2015). These models

are further used in Chapter 6 in four case studies, as both, the controller model as well as

the emulator model.
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Chapter 5

Building Climate Control

Life is chaotic, dangerous, and surprising. Buildings should reflect that.

Frank Gehry

Building climate controllers are responsible for the comfort experienced in buildings. The

controller controls the HVAC of the building ensuring that comfort (i.e., temperature, CO2

concentration, etc.) remains in each room in its prescribed time-dependent band. As a

similar comfort can be achieved with different sequences of control actions, the required

energy to maintain the building in its comfort bound can vary significantly with the con-

troller algorithm type. The meaning of the symbols used to describe the variables of the

different controllers used in this section are listed in Table 5.1.

In this section, we focus on thermal comfort, whereby the thermal comfort and the energy

use objectives are firstly defined (see Section 5.1). Section 5.2 introduces two common build-

ing controller types: a rule-based-controller (RBC) and a proportional-integral-derivative

(PID) controller. Section 5.3 discusses the different formulations of a model predictive

controller (MPC) considered in this work. Finally, Section 5.4 introduces the novel ap-

proach for synthesis of simple yet well-performing approximations of MPC via regression

algorithms.

5.1 Control Objectives

A Building Automation and Control System (BACS) governs buildings such that certain

comfort and economic criteria are fulfilled. These include internal room temperatures, air

quality, lighting etc. Instead of tracking particular reference values, a BACS typically

considers ranges, also called comfort bands. The task is then to manipulate the building

inputs such that required comfort criteria are kept within the band while the total amount

of used energy is minimized. It should be noted that the comfort and the energetic criteria

are often competing as the increase of comfort typically leads to an increase of energy use.



5.1. CONTROL OBJECTIVES

Notation Units Description Control setup

x [K, -] temperatures for the SSM, states
no physical meaning for the ROM

y [K] room temperatures outputs
r [K] desired room temperatures references
u [W ] radiators heat flows inputs
d [K,W ] temperatures, heat flows measured disturbances

and radiation gains
p [-] augmented state variables unmeasured disturbances
s [K] comfort band violations slack variables
y [K] upper comfort boundary constraints
y [K] lower comfort boundary constraints

Table 5.1: Notation of variables used in Section 5.

In this work, thermal comfort is the most emphasized objective, treated as soft constraint

to guarantee a solution.

5.1.1 Thermal Comfort

The thermal comfort objective is achieved by maintaining each room temperature yi of

the house in the comfort band as defined by the European norm ISO-7730. The lower

and upper temperature bounds (y, y) vary between [20, 23]◦C and [24, 26]◦C, respectively,

as a function of the 7-days average of the ambient temperature. The comfort objective

corresponds thus to the constraint:

y
k
− sk ≤ yi,k ≤ yk + sk (5.1)

with s the relaxation variable which should be minimized and the index k the sampling

time.

5.1.2 Minimization of Energy Use

The second objective is to use a minimal amount of energy to achieve the comfort. In this

work, the energy use is the sum of the thermal energy injected by all heating systems. The

RBC and the PID controllers have been tuned such that they keep the zone temperatures

as close as possible to the lower comfort bound, but without endangering the comfort. For

the case of MPC, the square of the energy use instead of its absolute value is minimized in

order to avoid power peaks.

5.1.3 Objective Weights

It should be pointed out that the two aforementioned qualitative criteria are counteracting

against each other. To drive the internal temperature towards the comfort zone, the first
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objective forces the heating systems to become active. On the other hand, zero heating

is preferred by the second objective. Therefore so-called weighting parameters need to be

assigned to each objective as to indicate its preference. Needless to say, achieving comfort

with minimal energy must be done while satisfying all constraints of physical equipment.

5.2 Standard Building Control Strategies

Usually the controller consists of a set of rules which determine the control action as a

function of inputs (e.g., a room temperature, the outside weather conditions, etc.) and

a set of set points. These types of controllers are the so-called rule-based controllers

(RBC). They are widely used for residential buildings because of their simple design and

configuration and their low computational demands allowing cheap hardware solutions.

Their main drawbacks are that they are not adaptive, not flexible, not predictive and they

need to be tuned. The RBC controllers cannot track a time-varying reference or minimize

the energy necessary to stay within a bound. The RBC implementation used in this work

is described in Section 5.2.1. An alternative approach is presented by the PID controllers

which are better suited to track a reference. However PID controllers are difficult to tune

and badly tuned PID leads to oscillations, overshoots and time-lags. Moreover, one PID

controller needs to be constructed for each zone individually.

5.2.1 Rule-Based Controller

The commonly used controller for residential buildings with central heat production and ra-

diators is a hysteresis rule based controller (RBC) also called central thermostat controller.

Its working principle is as follows: a temperature sensor is placed in the main room, typi-

cally the living room. Based on this temperature and a comfort band, the central heating

is turned on or off. Hot water can only flow to the radiators when the central heating is

on. All radiators are equipped with thermostatic valves, except those in the room of the

thermostat. The valve acts as a proportional controller by controlling the water mass flow

rate through the radiator and so controlling its power.

The supply temperature Tsup is for all radiators the same and it is calculated using a typical

heat curve equation:

Tsup = r +

(
Tsup,n + Tret,n

2
− yj,n

)

q1/m +
Tsup,n − Tret,n

2
q (5.2)

q =
r − (Te,6h + ǫ)

yj,n − (Te,n + ǫ)
(5.3)

where subscripts sup and ret stand for supply and return water temperatures, e stands for

external air temperature, n refers to the nominal conditions (Tsup, n = 70◦C, Tret,n = 50◦C,

Te,n = −10◦C), and the index j refers to the room with the thermostat. The exponent

m depends on the heating system (for radiator, m = 1.3). A correction term ǫ = 8 K on
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the outside temperature Te,6h (averaged over 6 hours) is added to take the solar gain into

account.

The binary control action zk of the central heating in k-th time step, based on the tempera-

ture measurement in j-th (central) room yj,k and given reference temperature rk is defined

by a switching rule of the relay based thermostat given by following equation

zk =







1 if (zk−1 = 1 ∧ (yj,k ≤ rk + γ))∨
(zk−1 = 0 ∧ (yj,k ≤ rk − γ))

0 otherwise

(5.4)

where ∧ is the logic conjunction and ∨ denotes for the logic disjunction. The parameter

2γ here represents the width of the hysteresis. The values of the control action represent

the heating mode if zk = 1 and not heating if zk = 0.

Finally the actual power ui,k delivered by the i-th radiator to the i-th zone at the k-th time

step is given by:

ui,k =

{

Gizk(Tsup,k − yi,k), if i = j

αiGizk(Tsup,k − yi,k), otherwise
(5.5)

with αi ∈ [0, 1] the proportional gain of the thermostatic valve and Gi the total thermal

conductance of the radiator. Each radiator is sized such that its maximum power is required

when the outside temperature drops to −10◦C. The same power bounds are used for the

other controllers.

5.3 Model Predictive Building Control

Model predictive control (MPC) is a control strategy which optimizes the control actions

over a finite time-horizon by anticipating the effect of these actions, of the future distur-

bances and of the future constraints on the system. The ability of anticipation comes

from the mathematical model of the system (i.e., the controller model) and the prediction

of the future disturbances. Moreover MPC has the ability to directly take into account

given control objectives (see Section 5.1), by penalizing them in the cost function of the

optimization problem. The main drawback of this strategy is the difficulty of obtaining an

accurate and computationally efficient controller model and the high computational cost

(CPU) needed to solve the optimization problem.

The following sections describe the general controller setup (Section 5.3.1), the state es-

timator (Section 5.3.2). The deterministic MPC objective function and constraints are

cast in Section 5.3.3, together with the state condensing method which is used to speed

up the algorithm. Section 5.3.4 introduces the stochastic MPC formulation with proba-

bilistic modeling of the disturbances, and computationally efficient explicit solution of the

corresponding optimization problem.
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5.3.1 Model Predictive Control Setup

Fig. 5.1 illustrates the MPC setup used in this work. The control loop consists of the

building model representing the real building, the estimator, and the MPC controller which

is composed of a controller model, an objective function and a set of constraints. Two

cases are considered: a standard MPC (S-MPC) and an off-set free MPC (OSF-MPC). In

the case of S-MPC, the estimator is used to estimate the state values x̂ of the controller

model. In the case of OSF-MPC, a set of extra states p is added to the controller model to

take into account the mismatch between the controller model and the building model. In

that case the estimator also estimates p̂ (see Section 5.3.2). We assume that the building

is affected by disturbances d (e.g., weather conditions), which are measured and used as

perfect predictions (with zero prediction error) by MPC and the estimator. MPC optimally

manipulates the control action u, which represents the heat flow injected in the building.

The feedback vector y consists of temperatures.

MPC Building

Estimator

d

yur

x̂, p̂

Figure 5.1: Schematic representation of the closed-loop system. Here, d are measured dis-
turbances, y denotes the outputs, r are the output references, u are the control
actions, and x̂, p̂ denote the estimates of the buildings states and building
model mismatch, respectively.

5.3.2 State and Disturbance Estimation

A state observer is an algorithm that computes an estimate of the state values of the

controller model based on the measurements of the inputs and outputs of the building

model. In this work, a standard Luenberger observer is used under the following form:

x̂k|k = x̂k|k−1 + L
(
ym,k − ŷk|k−1

)
(5.6a)

x̂k+1|k = Ax̂k|k + Buk|k + Edk|k (5.6b)

ŷk|k = Cx̂k|k + Duk|k (5.6c)

where the estimator gain L given as discrete stationary Kalman filter, can be computed

e.g. by the discrete Riccati equation using the dlqe MATLAB function. The subscript

k|k − 1 means that the value is estimated for time k based on the observed value of time

k − 1. The vector ym denotes the vector of the measured outputs and the vectors x̂k and

ŷk stand for the estimated states and outputs of the controller model, respectively.
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Remark 5.3.1 The matrices G and H due to the initialization transformation (see Section

4.3.4) are further omitted for the clarity of the notations. However, they are still included

in the calculations. �

In the case of OSF-MPC, a set of extra fictitious states p, representing unmeasured internal

disturbances, is added to the controller model to take the building model mismatch into

account (Muske and Badgwell 2002). One extra state with a constant dynamic is added per

each output of the controller model (Pannocchia and Rawlings 2003). This approach, also

called the active disturbance rejection control, allows us to consider a simpler controller

model, since the modeling error is compensated in real time. The augmented controller

model is now given by:

[
x̂k+1

p̂k+1

]

︸ ︷︷ ︸
x̃k+1

=

[
A 0

0 I

]

︸ ︷︷ ︸

Ã

[
x̂k

p̂k

]

︸ ︷︷ ︸
x̃k

+

[
B

0

]

︸︷︷︸

B̃

uk +

[
E

0

]

︸︷︷︸

Ẽ

dk, (5.7a)

ŷk =
[
C F

]

︸ ︷︷ ︸

C̃

[
x̂k

p̂k

]

+

[
D

0

]

︸︷︷︸

D̃

uk. (5.7b)

where the output disturbance matrix F was chosen as a full column rank identity matrix

and all other matrices are the same as in Eq. 4.12.

Remark 5.3.2 For the clarity of the notation, only the S-MPC equations will be used

further. The equations for the case of OSF-MPC are obtained by replacing the matrices

(A,B,C,D) by their augmented equivalent (Ã, B̃, C̃, D̃). For the observer, the gain L is also

recomputed using the augmented matrices. �

5.3.3 Deterministic MPC Formulations

The aim of this section is to devise an optimal controller policy which minimizes the energy

used while maximizing the thermal comfort for the occupants. The MPC optimization

problem is formulated in a quadratic way as follows

min
u0,...,uN−1

N−1∑

k=0

(
||sk||2Qs

+ ||uk||2Qu

)
(5.8a)

s.t. xk+1 = Axk +Buk + Edk, k ∈ N
N−1
0 (5.8b)

yk = Cxk +Duk, k ∈ N
N−1
0 (5.8c)

y
k
− sk ≤ yk ≤ yk + sk, k ∈ N

N−1
0 (5.8d)

u ≤ uk ≤ u, k ∈ N
N−1
0 (5.8e)

x0 = x̂(t), (5.8f)

d0 = d(t). (5.8g)
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where xk, uk and dk represent the values of states, the inputs and the disturbances, re-

spectively, predicted at the k-th step of the prediction horizon N . The predictions are

obtained from the LTI prediction model given by the equations (5.8b) and (5.8c). The

y
k
and yk parameters represent the comfort band given by the constraints (5.8d), where

the variables sk are used as the indicators of a comfort band violation. The min/max

constraints for the control input amplitude are given by (5.8e). The initial conditions of

the problem (5.8f) and (5.8g) are given as the state estimates and the measurements of

the disturbances. For particular initial conditions, the optimization computes the sequence

u∗
0, . . . , u

∗
N−1 of control inputs that are optimal with respect to the quadratic objective

function (5.8a) and the constraints. The term ‖a‖2
Q in the objective function represents

the weighted squared 2-norm, i.e., aTQa, with the weighting matrices Qs and Qu given as

positive definite diagonal matrices. The first term of the quadratic cost function minimizes

the square of comfort band violations, while the second term minimizes the square of the

energy used.

Denote by ξ the vector which encapsulates all time-varying parameters of (5.8), i.e. the

current states x(t), current and future disturbances d(t), . . . , d(t+NTs), as well as comfort

boundaries signals y(t), . . . , y(t + NTs) and y(t), . . . , y(t + NTs). The receding horizon

feedback law is then given by

u(ξ) =
[
I 0 · · · 0

]
UN , (5.9)

where I and 0 represent, respectively, identity and zero matrices of appropriate dimensions.

Note that the optimal open-loop sequence UN in (5.9) is defined as the optimal solution

of (5.8), formulated for a particular initial conditions given in (5.8f). Therefore to obtain the

optimal control action for a particular value of ξ from (5.9), one needs to solve (5.8) at each

sampling instant. Such a procedure, however, requires significant computational effort and

must be implemented on a hardware platform that allows to run optimization algorithms.

Such a requirement is in contrast to our objective of implementing the control strategy on

very simple hardware with limited computational and memory storage resources. Therefore

in the next section we show how to derive simple regression-based controllers that mimic

the behavior of MPC policy (5.9) and can be implemented on simple hardware.

State Condensing

In the problem formulation (5.8), each input and each state is considered as an optimization

variable. However, the computation cost to solve a linear-quadratic control problem is

O
(
N3(nx + nu)3

)
, with N the control horizon, nx the number of states and nu the number

of inputs, Frison and Jorgensen (2013). If the solver makes use of the sparsity of the

problem, the complexity of the problem becomes O
(
N(nx + nu)3

)
. Another approach is

to use the so-called state condensing method which rewrites the large and sparse system into

a smaller but denser form. In this method only the inputs are considered as optimization

variable and the complexity becomes O
(
N3n3

u

)
. Due to the large number of states and

relatively small horizon, the condensing method is the most appropriate method for this

study.
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The states can be eliminated by straightforward linear algebra substitutions as follows:

x1 = Ax0 +Bu0 + Ed0 (5.10a)

x2 = A (Ax0 +Bu0 + Ed0) +Bu1 + Ed1 (5.10b)

...

xk+1 = Ak+1x0 + . . .
[
AkB . . . AB B

] [
uT

0 . . . u
T
k

]T
+ . . .

[
AkE . . . AE E

] [
dT

0 . . . d
T
k

]T
(5.10c)

yk = CAkx0 + . . .

C
[
Ak−1B . . . AB B

] [
uT

0 . . . u
T
k−1

]T
+ . . .

C
[
Ak−1E . . . AE E

] [
dT

0 . . . d
T
k−1

]T
+Duk + Fp0 (5.10d)

The state variables from the previous time instants are substituted into the subsequent

state prediction equations. Recursively adopting this procedure we obtain an explicit for-

mula (5.10c) for calculating the state update in the (k + 1)th time step based only on the

initial state condition and predicted control actions. The output equation (5.10d) with

condensed states can now replace the equations (5.8b) and (5.8c) of the controller model

in the original MPC problem formulation (5.8).

5.3.4 Stochastic MPC Formulations

In this section we show how to synthesize explicit representations of MPC feedback laws

that maintain temperatures in a building within of a comfortable range while taking into

account random evolution of external disturbances. The upside of such an explicit MPC

solution stems from the fact that optimal control input can be obtained on-line by a mere

function evaluation. This task can be accomplished quickly even on cheap hardware. To

account for random disturbances, our formulation assumes probabilistic version of thermal

comfort constraints. A finite-sampling approach can be used to convert the probabilistic

bounds into deterministic constraints. To reduce the complexity, and to allow for synthesis

of explicit feedbacks in reasonable time, the set of samples is furthermore pruned, depending

on activity of constraints.

The simple implementation of stochastic MPC is achieved by pre-computing, off-line, the

optimal solution to a given optimal control problem for all initial conditions of interest using

parametric programming (see Section 2.2.5). This gives rise to an explicit representation

of the MPC feedback law as a Piecewise Affine (PWA) function (2.1.12) that maps initial

conditions onto optimal control inputs. The upside is that the on-line implementation

of such controllers reduces to a mere function evaluation. This task can be performed

efficiently even on cheap hardware. However, parametric programming is only applicable

to MPC problems of small size (Grancharova et al. 2008).

In our setup, however, the dimensions are large. In particular, the space of initial param-
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eters for the single-zone building model from Section 4.2 is 14-dimensional, hence general-

purpose explicit stochastic MPC approaches cannot be readily applied. Therefore we show

how to formulate the stochastic control problem such that it can be subsequently solved,

and such that the solution is not of prohibitive complexity. First, by exploiting the results

of Campi and Garatti (2008) we show how to replace stochastic probability constraints by a

finite number of deterministic constraints. Subsequently, exploiting a particular dynamics

of the building, we show that the number of deterministic constraints can be reduced sub-

stantially as to render parametric programming useful. At the end we arrive at an explicit

representation of stochastic MPC that achieves a given probability of thermal comfort while

simultaneously minimizing consumption of heating/cooling energy sources. Performance

of the proposed stochastic scheme is then compared versus a best-case scenario (which

employs fictitious perfect knowledge of future disturbance), and against a worst-case setup

that employs conservative bounds on future evolution of disturbances.

Probabilistic Disturbances Modeling

There are several aspects which distinguish control of buildings less complex that control

of generic plants. Foremost, buildings can be conceived as a complex, but inherently stable

systems with slow dynamics. This simplifies control synthesis to some extent. E.g., one

does not need to explicitly account for closed-loop stability, and slow dynamics allows

to apply control methods that are based on computational-heavy optimization. However,

buildings are often affected by disturbances, which need to be considered by the controller.

Some of these disturbances can be measured, some can only be estimated. These include,

among others, weather conditions (external conditions, cloudiness, humidity, etc.) as well

as occupancy of the building. Quality of the overall building control then depends on how

well we are able to estimate, or predict future evolution of these disturbances.

The nontrivial part of designing a suitable control strategy stems from presence of distur-

bance variables d in (4.1). In real-life situations, at each time t one can reasonably expect

that the current value of the disturbance d(t) is measured. Future disturbance are, however,

unknown. We assume that at each time instant t we have knowledge of building’s state

vector x(t), as well as current values of disturbances d(t). Then depending on what type

of knowledge we have about future disturbances, we can aim at synthesizing one of the

following three control strategies.

1. If we have a reasonably accurate model to predict weather and occupancy conditions,

then the values d(t + kTs) are known for k ∈ N
N
0 , where N is the length of the

prediction window. Then we call the control strategy

u∗(t) = µ(x(t), d(t), . . . , d(t+N)) (5.11)

the best-case scenario.

2. If we can bound future disturbances by ‖d(t + kTs) − d(t + (k + 1)Ts)‖ ≤ ωmax for
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any k ∈ N
N
0 , then the control strategy

u∗(t) = µ(x(t), d(t), ωmax) (5.12)

is referred to as the worst-case scenario.

3. If the future disturbances are unknown, but we know that the future disturbances

follow some probability distribution (2.3.2) of rate of change of disturbances. To

achieve a tractable formulation of the control problem, we therefore assume that we

know the probability distribution

ω ∼ N (0, σ(t)) (5.13)

such that the future disturbances at discrete time steps t+Ts, . . . , t+NTs are given

by

d(t+ kTs) = d(t) + kω, k ∈ N
N
1 , (5.14)

where N denotes the prediction window over which the distribution in (5.13) is

deemed reasonably accurate. Then the control strategy

u∗(t) = µ(x(t), d(t), σ) (5.15)

is called the stochastic scenario.

Remark 5.3.3 Please note, that the disturbances either increase or decrease linearly, what

means that the confidence interval of the uncertainty is growing bigger for a longer predic-

tions. But thanks to the knowledge of the probability distribution ω for every k-th step of

the prediction, we can model this behavior by simple summation of predicted disturbances as

shown in formula (5.14), where range of the confidence interval for predicted disturbance

in k-th step is directly dependent on range confidence interval in previous sampling step k-1.

�

It should be pointed out that the first scenario is not realistic, as weather and/or occupancy

varies randomly. Due to the same reason, the worst-case scenario often requires employing

conservative bounds ωmax, which leads to deterioration of control performance. While the

third stochastic case is the most natural from the practical point of view, introduction

of probabilistic functions requires a modification of the thermal comfort criterion (5.1).

Because the control authority is limited and due to the random nature of disturbances,

the deterministic thermal comfort constraint needs to be relaxed in a probabilistic sense

as follows:

Pr(yi,k ≥ yk
− sk) ≥ 1− α, (5.16a)

Pr(yi,k ≤ yk + sk) ≥ 1− α, (5.16b)

where 1−α the denotes probability with which the constraints in (5.1) have to be satisfied

for some α ∈ [0, 1].
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Stochastic Comfort Zone Temperature Tracking

Our further goal will be to synthesize the state-feedback control policy u(t) = µ(x(t), d(t), σ(t))

that maps measurements onto optimal control inputs such that maintains thermal comfort

over the prediction window N , and minimizes the total energy.

Here, the deterministic MPC problem (5.8) needs to be modified for maintaining the high

probability of thermal comfort satisfaction while minimizing energy consumption. The

state update equation (5.8b) is modified to:

xk+1 = Axk +Buk + E(d0 + kω), (5.17)

the comfort constraints (5.8d) are replaced by (5.16), and future disturbances predicted

in (5.17) employ the random variable ω ∼ N (0, σ(t)), where σ(t) is assumed to be available

to the optimization. The term d0 + kω originates directly from (5.14).

Due to the probabilistic constraints (5.16), resulting optimization problem is hard to solve,

in general. In this thesis we propose to tackle the probabilistic constraint by employing a

finite number of realizations of the random variable ω, as captured by the following two

lemmas.

Lemma 5.3.4 (Campi and Garatti (2008)) Let g(u, ω) : RN ×R
nd → R be a function

that is convex in u for any ω, and let ω be a random variable as in (5.13). Assume a

probabilistic constraint

Pr(g(u, ω) ≤ 0) ≥ 1− α (5.18)

for some α ∈ [0, 1]. Let ω(1), . . . , ω(M) be M samples of the random variable independently

extracted from (5.13). Then the probabilistic constraint in (5.18) is satisfied with confidence

1− β, i.e., Pr(Pr(g(u, ω) ≤ 0) ≥ 1− α) ≥ 1− β, if

g(u, ω(i)) ≤ 0, ∀i ∈ N
M
1 , (5.19)

holds for a sufficiently large M . �

Lemma 5.3.5 (Alamo et al. (2010)) The number of samplesM required in Lemma 5.3.4

is bounded from below by

M ≥ 1 +N + ln(1/β) +
√

2(N + 1) ln (1/β)

α
. (5.20)

�

By employing Lemma 5.3.4 we can thus replace the probabilistic constraints (5.16) by a

finite number M of deterministic constraints, each obtained for one of the realizations ω(i)

of the random variable. In addition, Lemma 5.3.5 quantifies the lower bound on the number

of such realizations, which grows only moderately with the confidence measure β.

Consider the i-th realization of the random variable, i.e., ω(i), and denote by

y
(i)
k = C

(

A
k
x0 +

k−1∑

j=0

A
k−j−1

(
Buj + E

(
d0 + (j + 1)ω(i)

))

)

(5.21)
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the indoor temperature, predicted at the k-th step of the prediction horizon using the distur-

bance ω(i). Note that (5.21) follows directly by solving for yk = Cxk from (5.17). Then the

probabilistic comfort constraints (5.16) can be replaced by finite number of deterministic

constraints:

y
(i)
k ≥ yk

− sk, ∀i ∈ N
M
1 , (5.22a)

y
(i)
k ≤ yk + sk, ∀i ∈ N

M
1 , (5.22b)

where y
(i)
k is given per (5.21). Note that (5.21) serves as a substitution in (5.22a)-(5.22b)

and is not considered as an equality constraint. By Lemma 5.3.4, a feasible solution to

a problem employing constraints (5.22) implies that the probabilistic constraints (5.16)

will be satisfied with a high confidence 1 − β. The initial conditions are the current state

measurements x0 = x(t), current value of the disturbance vector d0 = d(t), and the M

samples ω(1), . . . , ω(M) extracted from the probability distribution (5.13) for a current value

of the standard deviation σ(t). Most importantly, the devised optimization problem is a

quadratic program in decision variables u0, . . . , uN since the objective function is quadratic

and we have finitely many linear constraints.

Therefore a control policy that provides satisfaction of thermal comfort constraints in (5.16),

respects limits of the control authority in (5.8e), and minimizes the energy consumption,

can be achieved as follows:

1. At time t, measure x(t), d(t) and obtain σ(t), y(t), y(t).

2. Generate M samples ω(1), . . . , ω(M) from (5.13).

3. Formulate the corresponding QP with constraints (5.22) and solve it to obtain u∗
0, . . . , u

∗
N .

4. Apply u(t) = u∗
0 to the system and repeat from the beginning at time t+ Ts.

Explicit Stochastic MPC

Even though the explicit representation of the MPC feedback law in (3.3) provides a simple

and fast implementation of MPC on embedded hardware, it suffers from the so-called curse

of dimensionality. Simply speaking the number of polyhedral regions Ri grows exponen-

tially with the number of constraints in (2.31). Therefore, from a practical point of view,

explicit MPC solutions as in (2.34) can only be obtained for reasonably simple mpQP

problem (2.31). Note that our QP resulting from stochastic comfort zone temperature

tracking MPC formulation has 2N(M + 1) constraints, N decision variables (u0, . . . , uN),

and nx+ny +ny +(M+1)nd parameters. SinceM ≫ N in practice due to (5.20), the main

driving factor of complexity is thus M , the number of realizations of the random variable

ω employed in (5.22).

To give the reader a flavor of complexity, consider α = 0.05 (which corresponds to a

95 % probability of satisfying the thermal comfort criterion), N = 10, and β = 1 · 10−7

(which means a 99.9999999 % confidence in Lemma 5.3.4). The graphical representations of

dependancies of number of samples M to the parameter α and three different settings of the
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parameter β are shown in Fig 5.2, with highlighted above mentioned setup. Then we have

M = 919 by (5.20), hence the resulting QP employing building model from Section 4.2

has 18400 constraints and 927 parametric variables. Solving such a QP parametrically

according to Theorem 2.2.4 would lead to an explicit solution defined over billions of regions,

which is not practical and defeats the purpose of cheap and fast implementation of MPC

on embedded hardware.

0 0.05 0.1
0
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1000

1500

2000

 

 

α

M
β = 10−1

β = 10−4

β = 10−7

Figure 5.2: Dependance of number of M samples ω(i) on parameter α, for three different
settings of parameter β. Where point depicted as black square representsM =
919 samples for α = 0.05, N = 10, and β = 1 · 10−7.

Fortunately, most of the constraints are redundant and can hence be discarded, allowing a

tractable solution. To see this, consider the constraint in (5.22b), rewritten as

C(Axk +Buk + E(d0 + kω(i))) ≤ yk + sk. (5.23)

Since the constraint is linear in all variables, it holds if and only

max
i
{C(Axk +Buk + E(d0 + kω(i)))} ≤ yk + sk, (5.24)

which is furthermore equivalent to

C(Axk +Buk + Ed0) + kmax
i
{CEω(i)} ≤ yk + sk. (5.25)

Similarly, we have that (5.22a) holds if and only if

C(Axk +Buk + Ed0) + kmin
i
{CEω(i)} ≥ y

k
− sk. (5.26)

Let

ω = arg maxω(i){CEω(i)}, ω = arg minω(i){CEω(i)}. (5.27)
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Remark 5.3.6 Identification of ω and ω in (5.27) does not require any optimization, as

the minima/maxima are taken element-wise from a finite set. �

Then for any sample ω(i) with ω ≺ ω(i) ≺ ω the constraints in (5.22a)-(5.22b) are redundant.

We conclude that, instead of considering M samples ω(i) in (5.22), one can equivalently

state the problem using only the extremal realizations ω, ω, hence M = 2. Using the same

figures as above, this leads to a QP with only 60 constraints and 14 parameters in ξ, for

which the explicit representation of the optimizer in (2.31) can be obtained rather easily.

Remark 5.3.7 Note that the values ω and ω are considered as free parameters in (5.22).

Since the samples ω(i) vary in each instance of the QP, it is not possible to prune redundant

constraints a-priori. �

Implementation of stochastic explicit MPC thus requires two steps. The first one is per-

formed completely off-line. Here, the QP is formulated using symbolic initial conditions x0,

d0, y, y, ω and ω, all concatenated into the vector ξ. Then the QP is solved parametrically

for all values of ξ of interest and the explicit representation of the MPC feedback in (3.3)

is obtained by the MPT toolbox. Finally, parameters of the feedback, i.e., the gains F̃i, g̃i,

and polyhedra Ri are stored in the memory of the implementation hardware.

The on-line implementation of such an explicit feedback is then performed as follows:

1. At time t, measure x(t), d(t), and obtain σ(t), y(t) and y(t).

2. Generate M samples ω(1), . . . , ω(M) from (5.13).

3. From the generated samples pick ω and ω by (5.27).

4. Set ξ = [x(t), d(t), y(t), y(t), ω, ω] and identify index of the polyhedron for which

ξ ∈ Ri. Denote the index of the “active” region by i∗.

5. Compute u∗(t) = F̃i∗ξ + g̃i∗ , apply it to the system and repeat from the beginning

at time t+ Ts.

There are various ways how to identify index of the active region in Step 4. The most

trivial way is to traverse through the polyhedra sequentially, stopping once ξ ∈ Ri is

satisfied. Runtime complexity of such an approach is O(R), where R is the total number

of polyhedra. More advanced approaches, such as binary search trees (Tøndel et al. 2003),

can improve the runtime to O(log2 R) by pre-computing a search structure. The amount

of memory required to store the PWA function (3.3) in the memory is linear in R.
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5.4 Approximate Model Predictive Building Control

This section introduces a versatile framework for synthesis of simple, yet well-performing

feedback strategies that mimic the behaviour of optimization-based controllers, such as

those based on model predictive control (MPC). The approach is based on employing re-

gression analysis and dimensionality reduction algorithms to derive the dependence of real-

valued control inputs on measurements. The main advantage of the proposed regression-

based control strategies stems from their easy implementation even on a very simple hard-

ware.

Section 5.4.1 elaborates the methodology for the approximation of an arbitrary controller

behaviour with multiple manipulated variables in the context of the building climate control.

Section 5.4.2 defines the problem of interest as a multivariate regression and discusses the

computational and practical aspects of the proposed approximation method. Section 5.4.3

provides the overview and differentiation of the various regression algorithms and justifies

the selection of the regression trees (RT) and time delay neural networks (TDNN), which

are further described in Sections 5.4.4, and 5.4.5, respectively. Section 5.4.6 introduces a

systematic feature selection approach for predictive models in the scope of the building

climate control applications.

5.4.1 Methodology

This work introduces the methodology and provides the detailed step by step tutorial

on the synthesis of the approximated MPC strategies with low-complexity representations

suitable for application in the complex building control problems. The overall methodology

is represented in Fig. 5.3 and can be compactly divided into three main parts: i, modelling

part represented by first three blocks, ii, the ‘teacher‘ MPC control strategy synthesis and

evaluation represented by a fourth block, and iii, machine learning controller approximation

and performance evaluation part represented by last three blocks in Fig. 5.3.

The accurate building model is a fundamental precondition for the success of the model

based control strategy (Pŕıvara et al. 2013). Therefore for this work, an existing house

with six zones is modelled with high accuracy using the open-source Modelica library

IDEAS (Baetens et al. 2015): a state-of-the-art building energy simulation program (see

Section 4.3). In the next step, the Modelica non-linear building model is accurately lin-

earized, and transformed into a linear time-invariant (LTI) state space model (SSM) (Picard

et al. 2015). The obtained SSM is further used for both simulations as well as controller

model, such that no plant-model mismatch is considered. This case is therefore the the-

oretical benchmark, with the aim to investigate the performance bound of the proposed

control strategy. In the next step, the MPC is formulated, tuned and implemented on-line

in receding horizon fashion in MATLAB R© environment. The performance of the ‘teacher‘

MPC is evaluated on simulations by calculating the thermal comfort and the energy use.

The simulation data are collected and serve as a training dataset for a machine learning

approximation. Further, for the sake of the dimensionality reduction and improved approx-

imation accuracy, only the most significant variables are selected as features in the machine
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SSM

Figure 5.3: Schematic view of the methodology. From left to right: a real building is mod-
elled using the BES Modelica library IDEAS. The obtained nonlinear model
is then linearized and converted to a state space model (SSM) representation.
The model is employed for both emulating the building dynamics in the sim-
ulations, as well as a controller model in the MPC. The MPC is being imple-
mented and evaluated in MATLAB R© environment in an on-line fashion. The
simulation data are collected and reduced in dimensions by selecting only the
most significant feature variables. Next, the machine learning model is selected
and further trained and tuned to mimic the behaviour of the original ‘teacher‘
MPC. Finally, the performance of the original and approximated MPC is being
evaluated and compared with traditional controllers.

learning model via various feature engineering techniques. The problem to be solved in

the next step is the multivariate regression problem of finding the model describing the

relationship between multiple real-valued variables. For this task deep TDNNs are selected

as universal function approximators (Hornik 1991). The reason behind TDNNs is that

they are capable of handling complex multivariate time series regression problems which

arise from the behaviour of the dynamical systems. Moreover, RT are also used for this

task mainly because of their rule-based nature, making them suitable for easy implemen-

tation on today’s building hardware. Next, the machine learning models are trained and

tuned on the reduced data obtained from simulations of the ‘teacher‘ control strategy, in

our case a linear MPC with quadratic cost. Finally, the best performing machine learning

models approximating the behaviour of the original ‘teacher‘ MPC are evaluated on sim-

ulation scenarios. Additionally, the performances of the original and approximated MPC

are compared altogether with a traditional RBC and a PID controller.

Remark 5.4.1 In this thesis, a white box modelling approach was used in order to increase

the accuracy of the case study. However, the methodology 5.4.1 is more general and suitable

for any type of the modelling approach, either white-, black- or gray-box models. Similarly,

the presented methodology is also not limited to a particular control strategy which serves

as a ‘teacher‘ for the machine learning model. On the contrary, any type of the advanced

control strategies which require high computational resources can be approximated by this

approach. �
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5.4.2 Machine Learning Problem Definition

From mathematical point of view, the parametric solution of the problem (5.8) has a form

of a piecewise affine function defined over polyhedral regions, mapping the parametric space

to the control inputs space, i.e. fMPC : Rnξ → R
nu . However, this property holds only for

the linear and quadratic objective functions, respectively, subject to the linear constraints.

In the following sections, we show how to find explicitly defined approximations for the

solutions of the MPC problems with an arbitrary type of the cost function and constraints

by using multivariate regression.

MPC-like Regression-based Feedback Law

In a regression a set of m training data1 {(ξ(1), u(1)), . . . , (ξ(m), u(m))} is given with ξ(i) ∈
R

nξ and u(i) ∈ R
nu . The objective is to devise a regression function fΘ : Rnξ → R

nu which

predicts the values of u (often called the response or target variable) that correspond to the

measurements ξ (representing the feature vector in Machine Learning jargon) as accurately

as possible.

The central idea here is to replace the implicitly defined feedback policy (5.9) by an explicit

representation of the feedback law u = fΘ(ξ), constructed by regression on a set of training

data. The main advantage over the explicit MPC approach is that in regression we can

control the complexity of fΘ(·) directly. In other words, we can devise the regression-based

feedback strategy while considering limitations of the control hardware. Moreover, the

regression approach is not limited on lower dimensional parametric space as it is in the

case of the explicit MPC, which allows construction of the approximated explicit control

laws also for complex problems with many parameters. The implied limitation of the

approach is that the regression-based control policy is suboptimal w.r.t. the MPC cost

function (5.8a). Therefore, our objective in this section is to devise the approximated

explicit MPC control law, or regressor fΘ(·) that minimizes the deterioration of the control

performance w.r.t. the criteria given in Section 5.1.

In general, we propose to construct the regression-based feedback policy as follows:

1. Fix the number of training data m and select the set {ξ(1), . . . , ξ(m)} of initial values
of parameters for the MPC problem (5.8).

2. For each ξ(i), obtain the corresponding optimal control move u(i) from (5.9) by solv-

ing (5.8).

3. Collect ξ(i) and u(i) into the training data set {(ξ(1), u(1)), . . . , (ξ(m), u(m))} and

devise a regressor fΘ(·) that predicts the value of the control moves for an arbitrary

vector of features ξ by u = fΘ(ξ).

Data Generation

The selection of the set of initial values of the feature vector ξ as the training examples in

the first step of the proposed procedure can be performed in two ways. The first option

1Here, ξ(i) ∈ R
nξ denotes the i-th sample of a vector ξ.
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is to grid the region of parameters of interest P ⊆ R
nξ into ξ(1), . . . , ξ(m), like presented

in Coffey (2013). Providing representative samples ξ(i) for the whole range of parameters.

Although, such an approach is only applicable if the dimension of the parametric space, i.e.,

nξ, is low. In particular, let ng be the number of equidistantly-placed grid points for each

element of the nξ-dimensional vector. Then the total number of generated points is n
nξ
g .

Please note that in the MPC problem 5.8, with the model from Section 4.3, nξ = 1518,

and therefore the grid-based approach is far from practical reach in our case.

If nξ is large (what is usually the case in building climate control applications), an al-

ternative way is to extract the pairs (ξ(i), u(i)) from closed-loop profiles, as introduced

in May-Ostendorp et al. (2011). Here, the building is controlled by an MPC strategy of 5.8

for a limited amount of time. While doing so, we record the values of ξ(t) and the corre-

sponding optimal control moves u(t) at a fixed sampling rate Ts. The training dataset is

then composed of the tuples (ξ(i∆), u(i∆)) for i = 0, . . . ,m, where ∆ is the collection period

and m is the number of samples to be collected.

Remark 5.4.2 In this thesis, the collection period ∆ is considered to be equal to the sam-

pling period Ts, for the sake of simplicity. In general the collection period can be an ar-

bitrary positive integer multiple of the sampling period gives as ∆ = αTs, with α ∈ Z>0.

Here α > 1 can be useful in order to reduce the computational burden in a case when big

data with small sampling rate for a long time periods are available. �

Practical Aspects

From a practical point of view to address the issue of large computational load induced by

using the implicit MPC strategy, represented by (5.8), we propose to run the optimization

on a remote machine. Here, a remote server takes over all computation for a limited amount

of time. During this period the remote device communicates with the building over the

Internet and collects the closed-loop data. An alternative approach is to artificially generate

the data from simulations based on high-fidelity building models developed in BES software.

After collecting enough closed-loop data, the regressor fΘ(·) is constructed on the remote

computer and is subsequently uploaded to the local (simple) control hardware that resides

directly in the building. From this moment, the control commands are generated by the

regressor locally and the remote machine is no longer needed.

Moreover, we suggest monitoring the performance of the regressor periodically. This can be

done by comparing, from time to time at a fixed or at a variable rate, the control commands

generated locally by the regressor to the optimal control moves provided by solving (5.8)

on a remote machine. If the mismatch exceeds some threshold, the remotely-running MPC

can take over the control of the building for some period to generate new training data,

followed by synthesis of a new regressor or retraining of the existing one.

Remark 5.4.3 The proposed regression-based control policy is in no way tied to the par-

ticular MPC formulation in (5.8). On the contrary, the procedure applies to training data

generated by an arbitrary controller. As an example, the proposed approach can be used to

extrapolate properties of controllers based on stochastic MPC formulations, such as those
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Algorithm Function Multivariate Parametric Memory Dimensions

GLM linear yes yes no high
NLR nonlinear no yes no high
RT PWC no no no high
SVM nonlinear no no no moderate
MLP nonlinear yes no no high
TDNN nonlinear yes no yes high
VAR linear yes yes yes high

Table 5.2: Comparison of the different regression algorithms.

proposed by Oldewurtel et al. (2010) and Ma et al. (2012a), or when nonlinear PMV-based

thermal comfort criteria are included into (5.8) per Cigler et al. (2012), Freire et al. (2005).

�

5.4.3 Regression Algorithm Selection

In general, the problems naturally arising in the building control applications are those with

multiple controlled and manipulated variables as opposed to single input control problems.

Therefore the task of finding the approximate control law u = fΘ(ξ) belongs to the class

of multivariate regression problem, for which an objective function is given by (5.28).

min
Θ

nu∑

j=1

m∑

i=1

(

fΘ(ξ(i))j − u(i)
j

)2

(5.28)

The objective here is to minimize over the Θ the square of the difference between the pre-

computed control inputs u
(i)
j (obtained from the (5.9)) and regressor functions fΘ(ξ(i))j

w.r.t. the given features ξ(i) parametrized by Θ. The superscript i denotes the i-th sam-

ple of the training data, and subscript j stands for the j-th target variable, representing

manipulated variable in the control context.

Table 5.2 summarizes the comparison of the seven most commonly used regression algo-

rithms nowadays: generalized linear models (GLM), nonlinear regression (NLR), regression

trees (RT), support vector machines (SVM), multilayer perceptron (MLP) neural network

architecture, time delay neural networks (TDNN) and vector autoregressive model (VAR).

The comparison is based on following properties. The nature of the regressor function, e.g.

linear, nonlinear and piecewise constant (PWC). The ability to handle problems with more

than a single target variable. The division between parametric models where the model

structure needs to be selected a priori before learning and non-parametric models where

the model structure is not chosen beforehand, but it is being learned instead. The mem-

ory property which says about the ability of the model to handle the time series problems.

And finally the ability of the compared models to handle high dimensional learning datasets

with many samples. For the MPC problem formulations resulting in linear or quadratic

optimization problem, the feedback law takes a form of a piecewise affine (PWA) function
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defined over a polyhedral domain of the state space. However, this property no longer

holds for the MPC formulations when nonlinearity is present in the objective functions

or constraints. Therefore for the sake of the versatility and flexibility of the developed

methodology, we opted for the regression models with nonlinear nature of the fit. Further,

we are forced to consider only the models which can handle multivariate nature of the

problem (5.28). The non-parametric models were chosen instead of the parametric ones

because to set up the model structure before the learning process for the problems of this

complexity is a very tricky task. Moreover, the abundance of the training data supports

the notion of the learning the structure of the model as well as the model parameters. The

ability of the model to capture the dynamics of the data is also desired property because

the parameters of the MPC problem (5.8) are naturally time-dependent. And finally, we

want to choose the regression model which can also handle large high dimensional datasets,

generated by the precomputed MPC solutions. After considering all these aspects, the

natural choice for this type of problems is to use TDNN as the regression model. However,

also the RT are chosen for investigation due to the human readable nature of the regressor

and the ability to handle time series data after appropriate feature engineering procedures.

5.4.4 Regression Trees

This section is based on the previous work of the author as given in Klaučo et al. (2014).

We are interested in finding an optimal regressor fΘ(·) which partitions the training data

into M cells, denoted by P1, . . . ,PM , such that fΘ(·) is well posed in the sense of the

following definition:

Definition 5.4.4 The regressor fΘ(·) is well posed and optimal if:

R1: fΘ(·) is a single-valued function, i.e., Pi ∩ Pj = ∅ for all i 6= j;

R2: given a set P such that xj ∈ P ∀j, the domain of the regressor is equal to P, i.e.,
P =

⋃

i Pi.

R3: for all ξ ∈ Pi we have that u = freg,i(ξ) where freg,i : Rnξ → R
nu is the optimal local

regressor in the cell Pi, i.e., freg,i and Pi minimize the point-wise regression error

min
freg,i,Pi

∑

ξj∈Pi

‖uj − freg,i(ξj)‖. (5.29)

�

Note that R1 requires that fΘ(·) provides a unique prediction of the response variable for

each particular vector of parameters ξ. If fΘ(·) is a continuous function, then R1 can

be relaxed to int(Pi) ∩ int(Pj) = ∅, where int(·) is the interior of the corresponding set.

Then, R2 forces the regressor to be defined for all ξ from a region of interest P . Finally,

R3 provides optimal regression of the training data. Note that optimal selection of local

regressors freg,i depends on the selection of the corresponding cell Pi and vice versa.
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Once the optimal cells Pi and the associated local regression functions freg,i(·) are con-

structed, the overall regression policy is given by

u = fΘ(ξ) =







freg,1(ξ) if ξ ∈ P1,
...

freg,M (ξ) if ξ ∈ PM .

(5.30)

Construction of Regression Trees

A popular approach for construction of the regressor functions fΘ(·) is by employing binary

regression trees (Breiman 1993). Such trees consist of a finite number of nodes, each of

which may contain pointers to two child nodes. Nodes without any children are called leaf

nodes. Each leaf node contains a local expression of the regressor. All non-leaf nodes, on

the other hand, contain an expression of a splitting function σ : Rnξ → R and pointers to

a maximum of two child nodes. The left child node is visited if σ(ξ) ≤ 0, while the right

node is explored if σ(ξ) > 0.

The regression tree can be constructed by a recursive procedure, summarized as Algo-

rithm 2. In particular, in Step 2 of Alg. 2 we need to determine the optimal splitting func-

tion σ : Rnξ → R, along with optimal local regressors fL : Rnξ → R
nu and fR : Rnξ → R

nu

that solve the following optimization problem:

min
σ,fL,fR




∑

ξ(i)∈PL

‖u(i) − fL(ξ(i))‖+
∑

ξ(j)∈PR

‖u(j) − fR(ξ(j))‖



 , (5.31)

where

PL = {ξ : σ(ξ) ≤ 0}, PR = {ξ : σ(ξ) > 0}, (5.32)

are the cells generated by the split σ(·). Note that, since PL and PR depend on σ, prob-

lem (5.31) is nonlinear in the decision variables.

Once the optimal split and the optimal local regressors are computed in Step 2, we need

to determine whether the currently explored node needs to be subdivided. This decision

is based on two criteria: the number of points in each of the split cells, and the regression

error in each cell. The former is computed in Step 3 and the latter is evaluated in Step 5.

If the number of points (card(·)) in the left cell (cf. (5.32)) drops below a pre-defined

threshold mmin, or when the local regression error is smaller than emin, exploration of the

left cell is terminated and a leaf node containing the corresponding local regressor fL(·) is

returned in Step 7. Otherwise, the left cell is explored recursively in Step 9. The right cell

is treated similarly in Steps 11−15. Finally, the node, which consists of the split σ(·) and

the pointers to child nodes NL, NR, is returned in Step 16.

Remark 5.4.5 Alternatively, the stopping criteria in Steps 6 and 11 can be modified to

stop the recursion when a maximal tree depth Dmax is reached. Such a criterion gives the

designer a direct control over size of the tree, and hence over complexity of the implemen-

tation in the control hardware. �
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Algorithm 2 Construction of the binary regression tree.

1: function treeNode({ξ(1), . . . , ξ(m)}, {u(1), . . . , u(m)})
2: Compute optimal splitting function σ(·) and optimal local regressors fL(·) and fR(·)

from (5.31).
3: Split the set {1, . . . ,m} into subsets L = {i : σ(ξ(i)) ≤ 0} andR = {i : σ(ξ(i)) > 0}.

4: Denote (ξL, uL) = {(ξ(i), u(i)) : i ∈ L} and (ξR, uR) = {(ξ(i), u(i)) : i ∈ R}.
5: Evaluate the regression errors

eL =
∑

i∈L

‖u(i) − fL(ξ(i))‖, eR =
∑

j∈R

‖u(j) − fR(ξ(j))‖. (5.33)

6: if card(ξL) < mmin or eL < emin then ⊲ left node stopping criterion
7: NL = leafNode(fL).
8: else
9: NL = treeNode(ξL, uL).

10: end if
11: if card(ξR) < mmin or eR < emin then ⊲ right node stopping criterion
12: NR = leafNode(fR).
13: else
14: NR = treeNode(ξR, uR).
15: end if
16: return N = {σ,NL,NR}. ⊲ obtain the regression tree
17: end function

The difficulty of constructing an optimal regression tree stems from the nonlinearity of

the optimization problem in (5.31)−(5.32) for general types of the split function σ(·) and

of the local regressors fL(·), fR(·). To simplify the computation, standard regression tree

approaches restrict splits to orthogonal hyperplanes of the form σ = αT ξ + β, where

the optimal vector α is selected from the finite set {[1, 0, . . . , 0]T , [0, 1, 0, . . . , 0]T , . . . ,

[0, . . . , 0, 1]T}. Moreover, the local regressors are typically assumed to be constant functions,

i.e., fL(ξ) = gL and fR(ξ) = gR. Then Algorithm 2 generates a binary tree that encodes a

piecewise constant (PWC) regressor fΘ(·) where each cell Pi is an axis-aligned hyperbox.

However, such simplifications set back the quality of the regression. As a consequence, a

high number of nodes is typically required to achieve the desired regression error. Moreover,

the RTs are only single variate regression models, and due to this fact, a standalone RT

needs to be constructed for each zone separately, what increases the complexity of the final

controller and also causes some loss of the performance by not taking into account the

coupling between the controlled outputs.

Optimal Node Splitting with Affine Splits and Affine Regressors

In this section, theoretical contributions towards regression trees are introduced. The stan-

dard regression trees presented in Section 5.4.4 are limited only to the splitting functions

that are orthogonal hyperplanes, and the local regressors inside each cell are assumed to
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be constant. This section shows how to split the nodes optimally by general hyperplanes.

Simultaneously, the local constant regressors are replaced by affine expressions that provide

a better approximation of the training data. As a consequence, such a regression-based

feedback policy can be described as a PWA function defined over a polyhedral domain,

akin to explicit MPC solutions (see Section 3.2.3). The added benefit is that the regression

function is directly encoded as a binary tree, which offers a fast implementation even on

simple hardware.

First we show how to obtain optimal expressions of affine functions

σ(ξ) := αT ξ − β, (5.34a)

fL(ξ) := FLξ + gL, (5.34b)

fR(ξ) := FRξ + gR (5.34c)

from (5.31)−(5.32) by solving a mixed-integer quadratic program (MIQP). Here, α ∈ R
nξ ,

β ∈ R, FL ∈ R
nu × nξ, gL ∈ R

nu , FR ∈ R
nu×nξ , gR ∈ R

nu .

Theorem 5.4.6 Given are m datapoints {(ξ1, u1), . . . , (ξm, um)}. The optimal split σ(·)
and optimal local regressors fL(·), fR(·) as in (5.34) that solve (5.31)−(5.32) are given as

the optimal solution to the mixed-integer quadratic program (MIQP)

min

m∑

i=1

(ui − zi)
T (ui − zi) (5.35a)

s.t. −M(1− δi) ≤ zi − (FLξi + gL) ≤M(1− δi), (5.35b)

−Mδi ≤ zi − (FRξi + gR) ≤Mδi, (5.35c)

αT ξi ≤ β +M(1− δi), (5.35d)

αT ξ ≥ β + ǫ−Mδi, (5.35e)

‖α‖∞ = 1, (5.35f)

where the minimization is performed over continuous decision variables α, β, FL, gL,

FR, gR, zi ∈ R
nu , and the binary variables δi ∈ {0, 1}, i ∈ N

m
1 . Note that constraints

in (5.35b)−(5.35e) are enforced for i ∈ N
m
1 with a small positive numerical tolerance ǫ and

a sufficiently large constant M . �

Proof. Consider a fixed index i and assume that δi = 1 is the optimal decision. First we

show that such a decision implies that zi = FLξi + gL and that α, β satisfy αT ξi ≤ βi, i.e.,

ξi is associated to the “left” (i.e., non-positive) side of the split. The latter follows directly

from (5.35d) which, for δi = 1, reduces to αT ξi ≤ β. Similarly, zi = FLξi + gL follows

directly from (5.35b) for δi = 1. Moreover, notice that (5.35c) and (5.35e) are inactive for

δi = 1 since M is assumed to be sufficiently large. Next, assume δi = 0 is the optimal

solution in (5.35). Then zi = FRξi +gR by (5.35c) and αT ξi > βi from (5.35e) since ǫ > 0 is

assumed. Note that (5.35b) and (5.35d) are both inactive when δi = 0. Finally, optimality

of the split and of the associated fits follows from minimizing the fitting error in (5.35a),

Page 83



5.4. APPROXIMATE MODEL PREDICTIVE BUILDING CONTROL

which is equivalent to (5.31) since zi = fL(ξi) if δi = 1 and zi = fR(ξi) if δi = 0. Note

that (5.35a) yields the same optimizer as minimization of
∑ ‖ui − zi‖.

Although MIQPs are still nonlinear due to presence of binary variables δi, they can be solved

efficiently with state-of-the-art solvers, such as with GUROBI (Gurobi Optimization 2012).

Remark 5.4.7 The MIQP (5.34) is related to construction of so-called hinging hyperplane

(HH) regressors that are frequently used to identify PWARX models of dynamical systems.

Compared to the HH formulation of Roll et al. (2004), problem (5.34) has fewer binary

optimization variables and is thus easier to solve as the number of datapoints increases.

An another advantage is that construction of discontinuous regressors does not require

additional binary/continuous variables as in the case of HH formulations. �

Remark 5.4.8 The reason for constraint (5.35f) is to rule out the trivial solution α = β =

0 when all points are allocated only to one side of the split. Note that (5.35f) normalizes

the largest value in α to ±1. �

Remark 5.4.9 If M is chosen sufficiently large, problem (5.35) is always feasible. Rules

of selecting a suitable constant M are discussed e.g. in Bemporad and Morari (1999). Note

that finding a suitable M requires the decision variables of (5.35) to be bounded. �

Employing (5.35) in Step (5.31) of Algorithm 2 generates a nodeN that consists of an affine

split σ(·). Such a split divides the space of independent variables ξ into polyhedra PL, PR

per (5.32). As our next result we provide a formal proof that the tree generated by recursive

application of Algorithm 2 to the set of training data {(ξ1, u1), . . . , (ξm, um)} encodes a

piecewise affine regressor fΘ(·) as in (5.30) which is defined over polyhedra P1, . . . ,PM

that satisfy R1 and R2 of Definition 5.4.4 (note that R3 is achieved by (5.35a)). To do so,

we first prove an intermediate statement.

Theorem 5.4.10 Let the polyhedron P ⊆ R
nξ and the split σ(·) of (5.34a) be given. De-

note by

PL = P ∩ {ξ : αT ξ ≤ β}, PR = P ∩ {ξ : αT ξ > β}, (5.36)

the sets that originate from splitting P by σ(·). Then:

1. PL and PR are polyhedra,

2. PL ∩ PR = ∅,

3. PL ∪ PR = P.

�

Proof. Notice that the set S≤ = {ξ : αT ξ ≤ β} is a closed polyhedron and the set

S> = {ξ : αT ξ > β} is an open polyhedron. Then the first statement follows directly from

the fact that intersection of two polyhedra yields a polyhedron, see, e.g. Ziegler (1994).

The second statement follows from the fact that intersection is an associative operation.

Therefore PL ∩ PR = (P ∩ S≤) ∩ (P ∩ S>) = (P ∩ P) ∩ (S≤ ∩ S>). Clearly, P ∩ P = P
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and S≤ ∩ S> = ∅. Since P ∩ ∅ = ∅, the result follows. For the third statement, notice

that union is also an associative operation. Hence PL ∪ PR = (P ∩ S≤) ∪ (P ∩ S>) =

(P ∩ P) ∪ (S≤ ∩ S>) = P ∪ ∅ = P .

Theorem 5.4.11 Let T be a tree generated by Algorithm 2. Denote by T the set of leaf

nodes of T , and let PTi
, i = 1, . . . , card(T ) be the region of validity of the i-th leaf node.

Assume that the polyhedron P is given such that ξi ∈ P for all ξi from the training data.

Then

⋃

i

PTi
= P , (5.37a)

PTi
∩ PTj

= ∅, ∀i, j ∈ T, i 6= j. (5.37b)

�

Proof. Consider the root node of T σ(·), which splits P into PL, PR per (5.36). By

Theorem 5.4.10, PL ∪PR = P and PL ∩PR = ∅. At the second level of the tree, PL is split

by σL(·) into PLL and PLR. Similarly, PR from the first level is split into PRL and PRR

by σR(·). Again, by Theorem 5.4.10, we have that PLL ∪ PLR = PL, PRL ∪ PRR = PR,

and PLL ∩ PLR = ∅, PRL ∩ PRR = ∅ . Therefore PLL ∪ PLR ∪ PRL ∪ PRR = P and

PLL ∩ PLR ∩ PRL ∩ PRR = ∅ at the second level of the tree. Then (5.37) follows by

induction.

Algorithm 2 can be easily adapted to return the corresponding regions of validity Pi of

the i-th terminal node and thus to obtain an explicit representation of the regressor fΘ(·)
as in (5.30). Then fΘ(ξ) can be evaluated by searching sequentially through P1, . . . ,PM ,

stopping once ξ ∈ Pi. However, a more efficient way to evaluate fΘ(·) is to directly

traverse the binary tree starting from its root node. Here, the associate splitting function

is evaluated and, based on its value,either the left or the right branch is explored. Such

a procedure is repeated at each subsequent child node until a leaf node is encountered,

whereupon the evaluation is stopped and the predicted value u = freg,i(ξ) is returned. It

is well known that the computational effort needed to evaluate fΘ(ξ) via a binary tree is

O(log2 M), where M is the number of leaf nodes of the tree. The total memory storage

is O(M). The data that need to be stored are the splits associated to each non-leaf node,

pointers to child nodes, and local regressors in each leaf node.

5.4.5 Deep Time Delay Neural Networks

It has been shown that a neural network (NN) with a sufficient number of hidden units can

approximate arbitrary continuous function defined on a closed and bounded set (Cybenko

1989, Hornik 1991). Because of this, the NNs are popularly used as general nonlinear

regression models. NNs are mathematical models inspired by the human brain, defined by

the interconnections (synapses) of the individual neurons in the successive layers. This can

be visualized as a directed graph. When no cycles are present in the graph the network is

called feedforward; otherwise, it is called recurrent.
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Mathematically, NN is a function f(·) composed of weighted sums (synapses) of bounded

monotone functions g(·), also called neuron activation functions, which are again composite

of the activation functions from the previous layers of the net, all the way down to the

input layer, which consist of the features ξ. The compact representation of the general

multilayer feedforward NN, also called multilayer perceptron (MLP) is given by the set of

equations (5.38).

f(ξ)i = gM,i (zM) (5.38a)

zM = BM +

nM∑

j=1

WM,jgM−1,j (zM-1) (5.38b)

zM−1 = BM−1 +

nM−1∑

k=1

WM−1,kgM−2,k (zM-2) (5.38c)

...

z1 = B1 +

nξ∑

l=1

W1,lξl (5.38d)

Here, the function f(·)i represents the i-th output of the net, gM,i(·) is the activation

function of the i-th neuron, while zM is the total weighted sum of the inputs in the M-th

layer (i.e. the outputs from the (M−1)-th layer). ξl stands for the l-th feature. The number

of the units (neurons) in the the M-th layer is given by nM . WM,j denotes the weight of

the output of the j-th neuron in the M-th layer and BM is the bias term for the M-th layer.

Te weights and biases are grouped into a single vector Θ, regarded as a vector of optimized

variables in the optimization problem, which needs to be solved in order to train the NN.

The individual types of the neural networks are being differentiated by the different setup

of the three parameters: first, the structure of the neural network imposed by the intercon-

nections of the neurons, second, the activation function type which determines the output

of the individual neurons and third, the weights of the interconnections. The first two pa-

rameters are to be chosen prior the learning process, while the weights are updated during

the learning. In our case, we opted for the deep time delay neural network (TDNN) with

sigmoid activation functions. The reason behind the TDNNs is that they are capable of

handling the time series modelling problems which are characterized by the dynamically

dependent data points in time, as it is in the case of the data generated by the control

problems. The only difference between TDNN and MLP lies in the input layer, where

the dynamic is captured by the set of delayed time signals {ξ(t), ξ(t−1), . . . , ξ(t−N)} derived
from the original features ξ. The reason for using a deep architecture is a substantially

better performance in comparison with the shallow nets, as showed by Hinton et al. (2006)

and Busseti et al. (2012). The compact schematic representation of the TDNN with deep

architecture, consistent with the equations (5.38) is shown in Fig. 5.4.
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Figure 5.4: Schematic representation of the time delay neural network with deep architec-
ture. Here, TDL stands for the time delay operator, WM and BM are weights
and biases for the M-th layer, respectively.

5.4.6 Feature Engineering

Feature Engineering (FE) is a process of selection, creation, or learning of the features

used in the machine learning model. Due to the strong influence of the features on the

performance of the predictive model, it is considered to be a fundamental part of almost any

practical machine learning application (Heaton 2017). The gains from using only the most

relevant features are threefold: first, improved performance, second, reduced complexity,

and third, improved interpretability of the developed models. This is, however, typically

where most of the effort in a machine learning project goes, learning is often the quickest

part (Domingos 2012). Engineering features properly is primarily a manual, difficult and

time-consuming task, mostly because it is domain-specific, while learners can be largely

general-purpose. Additionally, each type of the model will respond differently to different

types of engineered features (Heaton 2017). Therefore, one of the holy grails of machine

learning is to automate more of the feature engineering process (Domingos 2012). For

these reasons a substantial research interest has been given in the recent years into the

development of the feature learning algorithms (Hinton and Salakhutdinov 2006, Le et al.

2012), or advanced semi-automated feature engineering systems (Anderson et al. 2013).

Even though the feature creation, transformation and learning are powerful tools for obtain-

ing new, well-performing features, the main drawback here, is that the physical meaning

of the original features is lost during this process. Therefore, these methods are not suit-

able for the problem of interest as given in 5.4.2. We are primarily interested only in the

selection of the most relevant features ξ̃ as a subset of the original feature vector ξ, i.e.

R
nξ̃ ⊂ R

nξ , without loss of their physical meaning. Several feature selection (FS) methods

suitable for building energy models are available in the literature nowadays. In Magoules

and Zhao (2016) authors presented a heuristic approach tailored for support vector machine

(SVM) models, while in Dodier and Henze (2004) a statistical Wald’s test has been used for

identification and of irrelevant features for neural network (NN) models. In overall there

are three categories of FS algorithms: filter, wrapper and embedded methods. However,

the finding of all relevant features is, in general, a NP-hard problem (Guyon and Elisseeff

2003).
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In following, we present a simple and systematic approach for efficient FS for predictive

models in the scope of the building climate control applications. The method presented here

is versatile and can be used for identification and selection of the most relevant variables

in the dynamical model of the building, either for controller approximation, reducing the

complexity of the model, or for reduction of the cost of the sensory equipment in the real

building. The presented method is composed of three independent steps, first the manual

selection and elimination of linearly dependent features, second, a principal component

analysis (PCA) based feature selection, and third, selection of the disturbance features

based on the model dynamics.

Manual Selection and Elimination of Linearly Dependent Features

The most straightforward is the manual FS, which is done by exploiting the engineering

knowledge of the system. In contrast with the standard MPC scheme from Fig. 5.1, the

machine learning controller from the closed-loop system representation as given in Fig. 5.5

is approximating and replacing not only behaviour of the MPC but also the state observer.

In our case, this setup reduces the parametric space ξ by discarding the 286 state variables

ML-MPC Building

d

yur

Figure 5.5: Schematic representation of the closed-loop system with machine learning con-
troller mimicking the behavior of the MPC and state observer. Here, d are
measured disturbances, y denotes the outputs, u are the control actions, r is
are reference signals covering lower and upper comfort bounds, respectively.

x and manually replacing them by the six output variables y as a part of the reduced

feature vector ξ̃. Further, all linearly dependent features can be discarded, because they

do not carry the additional information for the machine learning model (Das 1971). In our

case, we consider the same comfort boundaries for all zones, and therefore the 12 original

variables are reduced to a single variable. Similarly, by the elimination of the linearly

dependent variables from the vector d, we cut 44 original disturbances only to 26 features.

Principal Component Analysis Feature Selection

Principal component analysis (PCA) is a well-known multivariate statistical technique

used mainly for the dimensionality reduction of the high-dimensional datasets. It is an

eigenvector-basedmethod, which reveals the internal structure of the data by extracting the

relevant information by representing it as a set of the new uncorrelated orthogonal variables,

also called principal components. The principal components are in fact a linear combination

of the original variables constructed in a way to have the largest possible variance. The first
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principal component has the largest variance, and each following component is computed

under the constraint to be orthogonal to the previous component and to have the largest

possible variance. Mathematically, PCA depends upon the singular value decomposition

(SVD) of a data matrix (rectangular matrices), or upon the eigenvalue decomposition of a

covariance matrix (positive semi-definite matrices) (Abdi and Williams 2010).

Because FS is essentially a dimensionality reduction problem several techniques based on

PCA have been developed, see, e.g. Jolliffe (1986), Krzanowski (1987), Lu et al. (2007).

In this work, we choose a simple and computationally efficient adaptation of the method

from Song et al. (2010). The procedure is defined by the following steps:

1. Compute the covariance matrix of the feature vector ξ, given as: Σ = 1
mξ

T ξ.

2. Perform SVD of Σ, to obtain: Σ = USV T , where U are the principal component

coefficients, and S are the principal component variances, i.e. eigenvalues of the Σ.

3. Compute the percentage of the total variance captured by i-th principal component,

given as: vi =
Si,i

tr(S) .
2

4. Define the precision threshold η value for the retained variability of the data and select

only the q most significant principal components which total accumulative variance

is within the given threshold: max q, s.t.
∑q

i=1 vi ≤ η.

5. Compute the normalized contribution νj of the j-th feature ξj on selected principal

components from step 4. by summation of the absolute values of the coefficients of

the first q columns of the matrix U : νj =

∑
|Uj;1,...,q|

max
1≤k≤nξ

(
∑

q

i=1
|Uk;i|)

.

6. Define the threshold ψ value for the minimal contribution of the features on the

principal coefficients and select the p most important features by satisfying: νj ≥
ψ, ∀j ∈ N

nξ

0 .

The method is demonstrated on the disturbance vector d with two months data derived from

six-zone building model from Section 4.3. The results for the parameter values η = 99.9%,

and ψ = 99.0% are shown in Fig. 5.6, where Fig. 5.6(a) illustrates the PCA coefficient ma-

trix U (Step 2.), Fig. 5.6(b) shows the total variance percentage of the individual principal

components (Step 3.), Fig. 5.6(c) illustrates only the 9 most significant PCA coefficients of

the U matrix (Step 4.), and Fig. 5.6(d) shows the normalized contribution of the individual

features ξj on selected most significant PCA coefficients (Step 5.). By this method, 22 out

of 44 disturbances are selected.

Feature Selection Based on Model Disturbances Dynamics

The idea behind the feature selection via the analysis of the disturbances dynamics is simple,

based on the investigation of the disturbance matrix E from the LTI model 4.12. The

2Here, tr(S) denotes the trace of the matrix S.
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Figure 5.6: Feature selection via principal component analysis.

method is based on the importance metric Id for each disturbance given by the following

equation:

Idj = max(dj)

nx∑

i=1

|Ei,j |. (5.39)

The sum of the absolute values of the coefficients for j-th column of the matrix E repre-

sents the aggregated dynamical effect of the j-th disturbance on the state variables. This

effect is scaled with the maximal values of the disturbances d from the dataset. Than

the relative importance rIdj for the j-th disturbance is computed by dividing the metric

Idj by the overall maximal value of metric max(Idj), ∀j ∈ N
nd

0 . The Fig. 5.7 shows the

visual representation of this metric for the disturbances of the model from Section 4.3. We

can see from Fig. 5.7(a), that the matrix E is very sparse. Therefore it is not surprising

that the relative importance of the disturbances is uneven as shown in Fig. 5.7(b). The

feature selection is now based on the selection of the threshold for the relative importance

and elimination all the disturbances not meeting this criterion. In our case, we chose this

threshold to be equal to 0.001, which in combination with previous approaches as given

in Sections 5.4.6 and 5.4.6, results in the selection of 12 out of 44 original disturbance

variables.
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Figure 5.7: Feature selection via disturbance dynamics analysis.

Feature Engineering Overview

The dimensionality of the original parametric space ξ for the MPC problem 5.8, with

prediction horizon N = 22, and with the model from Section 4.3, is given by the formula:

nx + Nnr + Nnd = 1518 (see Table 4.3). By applying the FS methods presented in

Sections 5.4.6, 5.4.6 and 5.4.6, the dimensionality of the reduced parametric space ξ̃ is

now given by the formula ny + Nnr̃ + Nnd̃ and contains only 204 selected features. Here

nr̃ = 1 and nd̃ = 8 represent the selected reference and disturbance signals dimensions,

respectively. Table 5.3 summarizes the FS procedure applied on the disturbances, where

the 8 most important signals are selected by the intersection of the results from each FS

method (see the last three columns of Table 5.3).

The time delayed features are used in general, to improve the performance of the ML

models. The value of the prediction horizon N = 22 in the MPC setup is used as a time

delay operator in the context of the TDNN, generating 22 shifted signals which correspond

to the predicted values of the comfort boundary y and disturbance d signals, respectively.

Further, due to the effect of the building mass, also the past values of the output variables

y are used, which allows preserving more of the process memory and hence improve the

performance. The dimensionality of the reduced parametric space ξ̃ for the TDNN is now

given as 22(ny + nr̃ + nd̃) = 330. The feature engineering for the RT differs however due

to the different nature of the model. Here we use only two shifted signals for the predicted

values of the comfort boundary and disturbance signals, respectively. The delayed signals

of the output variables are not used in this case. Instead, the linear time is transformed

into the three sinusoidal signals (nt = 3) with different frequencies corresponding to days,

weeks and months. The dimensionality of the reduced parametric space ξ̃ for th RT is now

given as ny +2(nr̃ +nd̃)+nt = 27. The overview of the control and machine learning setup

with overall dimensions of the selected and transformed features is given in Table 5.4.
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5.5 Summary

This chapter presented the main theoretical contributions towards the thermal comfort

control in buildings. The first section of this chapter defined the control objectives, namely

thermal comfort and minimization of energy use, representing the key performance mea-

sures for case studies in Chapter 6. In the sequel, the different control strategies have been

introduced. The current practice rule-based (RBC) and PID controllers are confronted

with advanced model predictive control (MPC) based algorithms. Section 5.3 presented

the general MPC setup used in this thesis with the state and disturbance estimation. Two

different MPC formulations were proposed. First, the ideal case deterministic MPC formu-

lation with the perfect knowledge about the future disturbances. Here, the computational

efficiency of the MPC algorithm was increased by using so-called state condensing method.

Second, the more realistic stochastic MPC formulation with the probabilistic modeling of

the disturbances. In this case, the computational efficiency of the implementation was

achieved by the explicit solution of the corresponding optimization problem.

Section 5.4 introduced the flagship of this thesis, the versatile methodology for the syn-

thesis of simple, yet well-performing approximated MPC feedback strategies suitable for

handling the complex building control problems with hundreds or even thousands of param-

eters. This approach is based on the teacher MPC which feeds the multivariate regression

algorithms with closed-loop data to derive the dependence of the real-valued control in-

puts on measurements. Two regression models were studied in detail, the regression trees

(RT) and the deep time delay neural networks (TDNN). Here, the significant theoretical

contribution was made towards the RT. The performance of the RT was increased by opti-

mally splitting the nodes of the tree by the general hyperplanes instead of the orthogonal

hyperplanes and by replacing the local constant regressors by affine expressions. As a

consequence, such a regression-based feedback policy can be described as a PWA function

defined over a polyhedral domain, in contrast with the traditional RT described as a PWC

function defined over an axis-aligned hyperbox domain.

The performance, the complexity and the implementation cost of the proposed regression-

based algorithms are improved by employing the dimensionality reduction algorithms for

selecting only the most significant MPC parameters as features for machine learning models.

The main advantage of the proposed regression-based control strategies stems from their

easy implementation even on a very simple hardware. The performance and computational

efficiency of all devised MPC-based control strategies is a subject of the four simulation

case studies investigated in Chapter 6.

Page 92



CHAPTER 5. BUILDING CLIMATE CONTROL

Notation Description Units Manual PCA Dynamics

d1 Absorbed heat in layer 1 of window 1 [W ] yes yes no
d2 Absorbed heat in layer 2 of window 1 [W ] no no no
d3 Absorbed heat in layer 3 of window 1 [W ] yes no no
d4 Direct solar radiation through window 1 [W ] yes no no
d5 Diffuse solar radiation through window 1 [W ] yes yes no
d6 Absorbed heat in layer 1 of window 2 [W ] yes yes no
d7 Absorbed heat in layer 2 of window 2 [W ] no no no
d8 Absorbed heat in layer 3 of window 2 [W ] yes no no
d9 Direct solar radiation through window 2 [W ] no no no
d10 Diffuse solar radiation through window 2 [W ] yes yes no
d11 Absorbed heat in layer 1 of window 3 [W ] yes no no
d12 Absorbed heat in layer 2 of window 3 [W ] no no no
d13 Absorbed heat in layer 3 of window 3 [W ] no no no
d14 Direct solar radiation through window 3 [W ] no no no
d15 Diffuse solar radiation through window 3 [W ] yes yes no
d16 Absorbed heat in layer 1 of window 4 [W ] no no no
d17 Absorbed heat in layer 2 of window 4 [W ] no no no
d18 Absorbed heat in layer 3 of window 4 [W ] no no no
d19 Direct solar radiation through window 4 [W ] no no no
d20 Diffuse solar radiation through window 4 [W ] no no no
d21 Absorbed heat in layer 1 of window 5 [W ] yes no no
d22 Absorbed heat in layer 2 of window 5 [W ] no no no
d23 Absorbed heat in layer 3 of window 5 [W ] no no no
d24 Direct solar radiation through window 5 [W ] no no no
d25 Diffuse solar radiation through window 5 [W ] yes yes no
d26 Direct sun radiation on horizontal surface [W ] yes yes yes
d27 Diffuse sun radiation on horizontal surface [W ] yes yes no
d28 Weighted sun radiation temperature [K] yes yes yes

between ground and sky temperature 1
d29 Direct sun radiation [W/m2] yes no no

on vertical surface with orientation 1
d30 Diffuse sun radiation [W/m2] yes yes no

on vertical surface with orientation 1
d31 Weighted sun radiation temperature [K] yes yes yes

between ground and sky temperature 2
d32 Direct sun radiation [W/m2] yes yes yes

on vertical surface with orientation 2
d33 Diffuse sun radiation [W/m2] yes yes yes

on vertical surface with orientation 2
d34 Weighted sun radiation temperature [K] no yes yes

between ground and sky temperature 3
d35 Direct sun radiation [W/m2] yes yes yes

on vertical surface with orientation 3
d36 Diffuse sun radiation [W/m2] yes yes no

on vertical surface with orientation 3
d37 Weighted sun radiation temperature [K] no yes yes

between ground and sky temperature 4
d38 Direct sun radiation [W/m2] yes yes yes

on vertical surface with orientation 4
d39 Diffuse sun radiation [W/m2] yes yes no

on vertical surface with orientation 4
d40 Weighted sun radiation temperature [K] no yes yes

between ground and sky temperature 5
d41 Ambient temperature [K] yes yes yes
d42 Convective heat coefficient [W/m2] yes yes no
d43 Dummy input for constant value [−] no no no
d44 Ground temperature [K] yes no yes

Table 5.3: Selection of the disturbances as features based on the methods from Sec-
tion 5.4.6.
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Notation Control setup ML setup RT dim. TDNN dim.

ξ MPC parameters original features 1518 1518

ξ̃ subset of MPC parameters selected/transformed features 27 330
y outputs selected features 6 6
y lower comfort bounds selected features 1 1

d disturbances selected features 8 8
t time transformed features 3 -

N prediction horizon number of time delays 2 22
u control inputs targets 1 6

Table 5.4: Machine learning setup and feature selection overview, with corresponding di-
mensions of the RT and TDNN models.
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Chapter 6

Case Studies

If you wait until there is another case study in your industry, you will be too late!

Seth Godin

This chapter introduces application of several advanced MPC strategies formulated in Sec-

tion 5 on building climate control problems employing the mathematical models from

Section 4.

6.1 Explicit Stochastic Model Predictive Control

In this section we compare the performance of the stochastic explicit MPC controller against

best-case and worst-case scenarios, formulated in Section 5.3.4. The approach is demon-

strated on a case study that assumes control of the room temperature in a single-zone

building model from Section 4.2. It will be shown that the stochastic controller attains

almost the same level of performance as the unrealistic best-case controller, while taking

into account the uncertainties about the future evolution of the disturbances.

6.1.1 Simulation Setup

To validate performance of the stochastic explicit MPC strategy derived per Section 5.3.4,

we have assumed a building model from Section 4.2 and a simulation scenario that covered

9 days of historical data. Historical evolution of disturbances (outdoor temperature, heat

generated by occupancy, and solar heat) is shown in Fig. 6.1.

The explicit representation (3.3) of the stochastic MPC feedback strategy was obtained

by formulating (5.8) with probabilistic constraints (5.22) in YALMIP (Löfberg 2004) and

solving the QP parametrically by the MPT toolbox (Herceg et al. 2013). The feedback law
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Figure 6.1: Historical trends of disturbances over 9 days. From top to bottom: external
temperature d1, solar radiation d3, and heat generated by occupancy d2.

covers following ranges of initial conditions:

−10 ◦C ≤ xi
k ≤ 35 ◦C, i ∈ N

4
1,

15 ◦C ≤ rk ≤ 25 ◦C,

0 ◦C ≤ d1
k ≤ 24 ◦C,

0W ≤ d2
k ≤ 500W,

0W ≤ d3
k ≤ 1200W.

Here the thermal comfort zone was defined by the reference signal r and its width, which

was set to ±0.5 ◦C. With the prediction horizon N = 10, sampling time Ts = 890 seconds,

α = 0.05, and β = 1·10−7, the explicit MPC feedback (3.3) was obtained as a PWA function

that consisted of 816 polyhedra in the 14-dimensional space of initial conditions. Please

note that the sampling time was determined analytically based on known time constant of

the building model by formula Ts = T/15.

6.1.2 Simulation Results

Simulated closed-loop profiles of the indoor temperature and consumed heating/cooling

energy governed by the stochastic MPC are shown in Fig. 6.4. Here the dashed lines

represent the thermal comfort zone and limits of control authority, respectively. As can

be seen, the stochastic controller allows for seldom violations of the thermal comfort zone

while maintaining hard limits of the control authority. Overall, the stochastic controller

maintains the indoor temperature within the comfort zone for 97.2 % of samples.

Performance of the explicit stochastic MPC scheme was then compared to two alternatives.

One is represented by a best-case MPC controller, which assumes perfect knowledge of

future disturbances over a given prediction horizon. The other alternative is a worst-case

scenario which employs conservative bounds on the rate of change of future disturbances.

Hence it guarantees satisfaction of constraints in robust fashion, while only minimizing
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the energy consumption with respect to the worst possible disturbance. Simulated pro-

files under the best-case and worst-case policies are shown in Fig. 6.2 and Fig. 6.3, respec-

tively. Both controllers always managed to keep the indoor temperature within the thermal

comfort zone. Moreover, the best-case scenario provides least energy consumption. The

worst-case approach, on the other hand, maintains the temperature further away from the

boundary of the comfort zone, which leads to an increased consumption of heating/cool-

ing energy. This is a consequence of using conservative bounds on the rate of change of

disturbances in the future. Aggregated results are reported in Table 6.1 and captured in

compact grapicall form in Fig. 6.5. It should be pointed out that the best-case scenario,

although it performs best, is only of fictitious nature since in practice future disturbances

are not know precisely. The stochastic scenario, on the other hand, can be easily employed

in practice. Moreover, it provides performance comparable to the best-case approach.
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Figure 6.2: Performance of the best-case MPC controller with complete knowledge of future
disturbances.
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Figure 6.3: Performance of the worst-case MPC controller which assumes conservative
bounds on future disturbances.
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Figure 6.4: Performance of the stochastic MPC controller.
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Figure 6.5: Comparison of all control approaches with respect to achievable thermal com-
fort (x-axis) and energy consumption (y-axis). Each point represents aggre-
gated performance of one controller.

6.1.3 Summary

In this Section a performance of the stochastic MPC was compared against the best-case

and worst-case scenarios. It was shown that the stochastic controller outperforms the

worst-case controller and attained almost the same level of performance as the unrealistic

best-case controller, while taking into account the uncertainties about the future evolution

of the disturbances. Moreover, the computationally efficient explicit feedback law (3.3) was

obtained as a PWA function, allowing for easy employment in practice even on a simple

hardware.
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Thermal Consumed
comfort energy

Stochastic MPC 97.2 % 125.7 kWh
Best-case MPC 100.0 % 125.2 kWh
Worst-case MPC 100.0 % 146.0 kWh

Table 6.1: Comparison of various MPC strategies.

6.2 Approximate MPC via Enhanced Regression Trees

This section shows the performance of simple, yet well-performing feedback strategies that

mimic the behavior of model predictive control (MPC) as proposed in Section 5.4. The

approach is based on employing the enhanced regression trees, given in Section 5.4.4, to

derive the dependence of real-valued control inputs on measurements. This section further-

more illustrates how to refine the local regressors such that the overal feedback strategy

guarantees the satisfaction of the input constraints. The approach is demonstrated on a

case study that assumes control of the room temperature in a single-zone building model

from Section 4.2. It will be shown that the simple feedback law attains almost the same

level of performance as the complex MPC controller.

6.2.1 Refinement of Local Regressors

Although the regression-based control policy (5.30) synthesized per Section 5.4.4 provides

an optimal regression of the training data, it does not posses guarantees that u = fΘ(ξ)

satisfies input constraints u ∈ U . Therefore in this section we show how to replace fΘ(·)
in (5.30) by a different function

f̃reg(ξ) =







f̃reg,1(ξ) if ξ ∈ P1,
...

f̃reg,M (ξ) if ξ ∈ PM ,

(6.1)

defined over the same cells P1, . . . ,PM , but with the local regressors f̃reg,i(·) being such

that u = f̃reg(ξ) ∈ U for all ξ ∈ P .
The case in which satisfaction of input constraints is easily obtained is when P is a polytope

and U ⊆ R
nu is a polyhedron. Consider the i-th terminal node of the binary tree, which is

composed of the local regressor freg,i(ξ) = Fiξ + gi and the polytopic region of validity Pi.

Then, the optimal refinement f̃reg,i(ξ) = F̃iξ + g̃ of freg,i(·) such that f̃reg,i(ξ) ∈ U for all

ξ ∈ Pi is computed by solving the following quadratic program:

min
F̃i,g̃i

∑

v∈Vi

(freg,i(v)− f̃reg,i(v))T (freg,i(v) − f̃reg,i(v)) (6.2a)

s.t. f̃reg,i(v) ∈ U , ∀v ∈ Vi, (6.2b)
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where Vi = {vi,1, . . . , vi,nv
} are the vertices of Pi. Here, (6.2a) optimizes parameters

of f̃reg,i(·) such that they are as close as possible to freg,i(·). Since both functions are

assumed to be affine, minimizing the point-wise mismatch at the vertices of Pi is equivalent

to minimizing the integrated squared error
∫
‖freg,i(ξ) − f̃reg,i(ξ)‖ dξ, evaluated over Pi.

Moreover, it is trivial to prove that if U is a convex set, Pi is a polytope, and f̃reg,i(·) is

an affine function, then f̃reg,i(v) ∈ U for each vertex of Pi is necessary and sufficient for

f̃reg,i(ξ) ∈ U for all points ξ ∈ Pi. Finally, note that with U a polyhedron, constraints

in (6.2b) are linear in the decision variables F̃i, g̃i that constitute f̃reg,i(ξ) = F̃iξ+ g̃i since

the vertices are known. Moreover, the objective function (6.2a) is quadratic in F̃i and g̃i

since freg,i(ξ) = Fiξ + gi is known in each terminal node. Notice that (6.2) is feasible in

each terminal node for an arbitrary non-empty polyhedron U .
Therefore the refined feedback policy u = f̃reg(ξ) which provides u ∈ U for all ξ ∈ P
can be easily obtained by solving (6.2) in each terminal node of fΘ(·) in (5.30). Notice

that only parameters of the local regressors are modified, while the splits stay the same.

Clearly, there is no guarantee that the refined local regressor f̃reg,i(ξ) = F̃iξ + g̃ is optimal

w.r.t. (5.31). Unfortunately, since the refinement in (6.2) depends on vertices of Pi, which

in turn depend on the split σ(·), it is not possible to include (6.2b) directly into (5.35) and

still be able to solve the regression problem as a mixed-integer quadratic program. Also

note that enforcing fΘ(ξj) ∈ U for all the training datapoints ξ1, . . . , ξm is merely necessary,

but not sufficient, to guarantee that fΘ(ξ) ∈ U for an arbitrary ξ ∈ P .

6.2.2 Simulation Results

In this section we demonstrate performance of the proposed regression-based control policy

on simulation scenario over the period of 31 days that involves control of a single-zone

building from Section 4.2, with the corresponding evolution of the disturbances is shown

in Fig. 6.6.

We assume that the state vector x(t) and the vector of disturbances d(t) can be measured at

each time instant t, but future evolution of disturbances is unknown. Therefore we assume

a constant dynamics for disturbances in the prediction model. The quadratic objective

function (5.8a) of the MPC problem (5.8) is modified to the linear form:

min
u0,...,uN−1

N−1∑

k=0

(Qssk + |uk|) (6.3)

where sk ≥ 0 are the slack variables that soften the thermal comfort constraints in (5.8d).

To limit the magnitude of violations of the optimal thermal zone, the non-negative slacks

are penalized by a large penalty Qs in (6.3). Moreover, the prediction model in (5.8b) is

defined by the state-update matrices of (4.1) discretized with sampling period Ts = 900

seconds. The input constraints (5.8e) are u = −1000 W, u = 2000 W. The lower and

upper comfort boundaries are defined by the reference signal Tref and by the the width of

the thermal comfort zone ζ = 0.5◦C as: lbk = Tref − ζ and ubk = Tref + ζ, respectively.

Note that the problem (5.8) with the objective (6.3) is a linear program with parameters
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Figure 6.6: Historical trends of the disturbance variables over 31 days: d1 is the external
temperature, d2 stands for heat due to occupancy, and d3 represents the solar
radiation.

ξ = [x(t)T , d(t)T , Tref] ∈ R
8.

To construct the regression-based control policy u = fΘ(ξ) as in (5.30), we have first

performed a closed-loop simulation over the period of 5 days and collected the closed-

loop training data {(ξ1, u1), . . . , (ξm, um)} with m = 486 (5 days sampled at 900 seconds).

The loop was closed by the receding horizon feedback (5.9) where the optimal open-loop

sequence was generated at each simulation step by solving the corresponding MPC problem

with prediction horizon N = 48 steps (12 hours sampled at 900 seconds), the reference

temperature set constantly to Tref = 20◦C, and penalty on the slacks Qs = 1 · 106. The

same historical profiles of disturbances as in Fig. 6.6 were employed in the simulation.

The initial state for the simulation was set to x(0) = [20, 20, 20, 20]T . The training data

generated over 5 days by the MPC controller are shown in the top plot in Fig. 6.7(a). The

same figure also depicts the performance of the MPC controller on the remaining 24 days

of simulation. The accumulated heating/cooling cost under the optimal MPC feedback

policy was 592 kWh. Note that the violations of the lower temperature range in the first

7 days are due to the control action being saturated at u.

Then we have computed the regression-based feedback policy u = fΘ(ξ) as in (5.30) by ap-

plying Algorithm 2 to the training data. In Step 2 of the algorithm, optimal splits and local

regressors were calculated by solving the MIQP problem (5.35). The final tree consisted of

5 non-terminal, and 6 terminal nodes, along with 6 local affine regressors. Subsequently,

the local regressors were refined per the procedure of Section 6.2.1 to guarantee that the

regression-based feedback always provides satisfaction of input constraints.

To validate performance of the proposed regression-based feedback strategy and to evaluate

decrease in performance with respect to MPC, we have performed a closed-loop simulation

under the same conditions of the MPC scenario described above. The closed-loop profiles
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of the internal building temperature and of the control actions provided by fΘ(·) are shown
in Fig. 6.7(b). As can be clearly seen, performance of fΘ(·) is close to the behavior of the

MPC policy in Fig. 6.7(a). The only notable differences are between days 13 to 17, which

correspond to hot days (cf. top part of Fig. 6.6). Here, the MPC policy is able to exploit

the thermal zone to slightly reduce consumption of cooling energy by allowing the internal

temperature to hit the upper limit of the thermal comfort zone. A similar phenomenon

also occurs in the final 3 days of the simulation.

Besides these difference, the regression-based feedback matches the MPC controller appro-

priately. Although the regressor was only trained on the first 5 days of MPC profiles, the

local affine regressors are able to reasonably extrapolate the control actions also in situ-

ations that were not present in the training data. The accumulated energy consumption

under fΘ(·) was 611 kWh, an increase of mere 3% over the MPC strategy. The biggest

difference between fΘ(·) and the MPC feedback, though, is in the implementation cost.

While the MPC policy requires solving a corresponding optimization problem at each sam-

pling instant, the regression-based controller only needs to evaluate the function in (5.30)

via the binary search tree. The tree consisted of 5 affine splits σ(·) as in (5.34a), which

require storing 45 floating point numbers (the vectors α ∈ R
8 and the scalar β for each

split). The 6 local affine regressors contributed by another 54 floating point numbers. To

evaluate fΘ(·) for a particular ξ, one then needs to traverse through the 4 levels of the tree,

evaluating σ(ξ) at each level. In total, the traversal requires less than 100 floating point

operations at each sampling instant. The low memory storage, combined with low imple-

mentation effort, make the proposed regression-based feedback strategy easily applicable

on typical building automation hardware, such as on programmable logic controllers.

6.2.3 Summary

This case study had shown the performance of simple, yet well-performing feedback strate-

gies that mimic the behavior of MPC. The regression-based strategies were synthesized by

employing the enhanced regression trees (RT) introduced in Section 5.4.4, to derive the

dependence of real-valued control inputs on measurements. It was furthermore illustrated

how to refine the local regressors such that the overal feedback strategy guarantees the

satisfaction of the input constraints. Although the regressor was only trained on the first

5 days of the MPC profiles, it was able attain almost the same level of performance as the

complex MPC controller, and it was able to reasonably extrapolate the control actions also

in situations that were not present in the training data. The constructed simple regression-

based feedback law consisted only of 5 non-terminal, and 6 terminal nodes with 6 local

affine regressors, therefore providing a cheap implementation cost.

Page 102



CHAPTER 6. CASE STUDIES

0 5 10 15 20 25 30
19

19.5

20

20.5

21

0 5 10 15 20 25 30
-1000

0

1000

2000

H
ea
ti
n
g
/
co
o
li
n
g
[W

]
In
t.

te
m
p
er
a
tu
re

[◦
C
]

Time [days]

(a) MPC feedback.
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(b) Regression-based feedback policy in (6.1).

Figure 6.7: Closed-loop profiles. The first 5 days were used as training data. The top
figures show the internal building temperature (solid red line), along with ±ζ
range of the reference temperature (black dashed lines). The bottom figures
depict the associated optimal control actions.
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6.3 Impact of the Controller Model Complexity on MPC

Performance

MPC for buildings requires accurate controller models of the building envelope and its

HVAC systems. Controller models are typically obtained by means of black- or grey-box

system identification or using a white-box modelling approach. However, the necessary level

of the model complexity used by each method in order to obtain a good MPC performance

remains a priori unknown and no systematic method or examples showing the optimal

complexity is available. This case study systematically investigates the influence of the

controller model accuracy on the evaluation of the building climate controller performance

and the minimum number of states necessary to obtain optimal control performance.

6.3.1 Methodology

The methodology is graphically represented in Fig. 6.8. For this study, a 6-rooms house

n=nSSM

SSM

Figure 6.8: Schematic view of the methodology. From left to right : a 6-rooms house is
modeled using the BES Modelica library IDEAS. The obtained model is then
linearized and converted to a time-invariant SSM. Balanced truncation MOR
technique is used to obtain ROMs of different orders. Finally, the upper bound
of the controller performance is computed by using the SSM model both as
controller and plant model (theoretical benchmark). The performances of the
MPC using the different ROMs as controller model are compared with the
upper bound and with a RBC and a PID controller.

described in the Section 4.3 is used. In the first modelling phase the existing building

is used to ensure reasonable parameter values. While the Modelica reference building

model is accurate in the physics it describes, its mathematical formulation combines non-

linear partial differential equations, ordinary differential equations and algebraic equations.

However, the non-linear model can be accurately linearized around a given working point
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(see Section 4.3.3), and as such it can be transformed into a form of LTI SSM (Picard et al.

2015). The obtained SSM is then used for simulations and control purposes in MATLAB
R© environment. The MPC problem (5.8) is solved using the SSM both as controller and

as plant model, i.e. with no plant model mismatch. This case cast as the theoretical

performance bound (PB). The accuracy of the SSM (containing more than 250 states) is

further artificially decreased by reducing its number of states to different orders ranging

from 4 to 100 using model order reduction technique from Section 4.3.4. The ROMs are

used to mimic the best possible low order controller models which can be obtained for these

orders by means of system identification, for example. Finally, the influence of the controller

model complexity is investigated by evaluating the thermal comfort, the energy use, the

computational effort (CPU) and the prediction error of the different MPCs, each using a

controller model with a different complexity while the building model is kept unchanged.

Additionally, the MPC performance is compared with a traditional thermostat RBC and

a PID controller.

In order to generalize the results, the same methodology is repeated for to three different

scenarios (see Section 4.3.1): 1) the original building, 2) the same building but with an

improved insulation level (Renovated building), and 3) the same building but with light-

weight wooden walls instead of concrete walls (Lightweight building).

6.3.2 Simulation Setup

This section discusses the performance criteria, setup of the simulation parameters and tun-

ing of the individual controllers. All parameters are chosen based on the explicit analyzes.

Performance Criteria

The controller performances are evaluated using four performance keys: energy use, thermal

comfort level, 1-step ahead prediction error and CPU time. The energy use corresponds

to the heat delivered by the radiators and is expressed in kWh. The thermal comfort κ is

defined as the number of sampling instants in which one of the zone temperatures yi falls

inside the relaxed comfort bounds [y
k
− τ, yk + τ ], divided by the simulation length Nsim

and the number of zones Nrooms:

κ =

∑Nrooms

i

∑Nsim

k ǫi,k

NroomsNsim
× 100% (6.4a)

ǫi,k =

{

1 if y
k
− τ ≤ yi,k ≤ yk + τ

0 otherwise
(6.4b)

with a violation tolerance τ = 0.1K. The 1-step ahead prediction error is the error between

the prediction of the zone temperatures made by the Luenberger observer and the outputs

of the building model at the next time step. Finally, the CPU time corresponds to the

overall simulation time.
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Simulation Parameters

Based on the dynamic response of the building models, the sampling period was chosen

equal to Ts = 900 seconds. The maximum heating power of the radiators for each building,

representing the upper bound on the control action, is shown in Table 6.2. The values are

chosen such that the maximum powers correspond to the loads needed to achieve thermal

comfort on the coldest days. The state values x(0) are initialized to 20◦C, based on the

Model Type Maximum Radiator Gains u [W ]

Original [2940 960 300 1400 460 253]T

Renovated [1680 685 154 1000 320 232]T

Light Weight [840 343 77 500 160 116]T

Table 6.2: Maximum heating power of the radiators (per zone).

procedure described in Section 4.3.4. The disturbance vector d was generated from a typical

year in Uccle, Belgium (Meteotest 2009). The overall simulation period was chosen to be

a single year.

Controllers Tuning

To improve thermal comfort satisfaction of the benchmark controllers (RBC and PID) and

as such ensuring a fair comparison with MPC and neural network controllers, the reference

temperatures rk are shifted slightly above the lower boundary of the comfort band lbk. For

the RBC controller: rk = y
k

+ 2.5◦C, while the width of the switching zone was equal

to 0.5◦C. For the PID controller: rk = y
k

+ 1◦C. On a top of that, the positive change

in the reference signal was shifted by one hour (4 sampling instants) before the positive

change of the upper comfort boundary y occurs. This was done to increase the comfort

satisfaction for the RBC and PID controllers. For the purpose of PID design, a decoupling

of the MIMO SSM into the set of six SISO models is done a priori. The derivation of the

PID parameters is performed using MATLAB command pidtune with a posteriori manual

tuning for enhancing the performance. Both RBC and PID are well tuned with respect to

given performance criteria to provide a fair comparison with the MPC controllers.

In case of MPC, the values of the prediction horizon N and the weighting factor Qs

Qu
are

chosen based on the dependence of the MPC performance on the parameter values, as shown

in Fig. 6.9. With emphasis on thermal comfort satisfaction the choice of the prediction

horizon is set to N = 40 steps (i.e., 10 hours), and weighting factor Qs

Qu
= 108. We

assume here that MPC has full disturbances preview, hence the perfect weather predictions

are provided. The comfort band is given by two time-varying parameters, lbk and ubk,

representing the lower and upper bound, respectively as defined in Section 5.1 based on

ISO-7730.

The MPC is constructed in the MATLAB environment, using the modeling and optimiza-

tion toolbox YALMIP (Löfberg 2004). The closed-loop simulation was performed by apply-

ing the optimal control inputs u⋆(t), computed at each sampling instant Ts by MPC to the
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Figure 6.9: Analysis of the MPC performance based on the change of the parameters N
and Qs

Qu
, while fixing the rest of the parameters.

building model. The objective function (Eq. (5.8a)) is quadratic, and all constraints are

linear; therefore the problem (5.8) can be solved as a convex quadratic program (QP). In

this study, we used the state of the art optimization solver GUROBI (Gurobi Optimization

2012).

6.3.3 Simulation Results

Fig. 6.10 presents the performance key values for the full year simulations and for the three

building types using different controllers. The bars represent the PID, the RBC and

the MPCs with different ROMs as controller models. The stars represent the results for

the equivalent OSF-MPCs. Fig. 6.10a shows that the comfort of MPC using the SSM as

controller model is very close to 100% for all buildings. The minimal comfort violations

here are caused by the small overheating of the well insulated buildings during the hot days.

This confirms that the radiators are sized properly. The benchmark controllers are also well

tuned as they show a good comfort satisfaction, spanning from 95.6% to 99.6% for the PID

and from 93.9% to 95.2% for the RBC. The high comfort satisfaction of the benchmark

controllers, however, is coupled to a high energy use (see Fig. 6.10b). In comparison to the

MPC with a controller model of highest order, the PID uses 6.6%, 8.9% and 8.0% more

energy in the original, the renovated, and the light weight buildings respectively. Due to

its switching behavior, the RBC is even less efficient using 11.2%, 12.8% and 8.0% more

energy in the original, the renovated, and the light weight buildings, respectively.

Fig. 6.10c shows a decrease of the one-step ahead prediction error with an increase of the
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controller model complexity. Here the ROMs with nx ≥ 30 have negligible prediction error

for all three building types. The prediction error for equivalent controller complexities

also decreases with decrease of the building mass and with increase of the insulation. The

former is due to the fact that heavy structures require more states to compute the thermal

diffusion accurately and the latter is due to a smaller influence of disturbances (ambient

temperature). From Fig. 6.10 it appears that MPCs using a ROM of order lower than

30 score significantly worse than MPCs using a higher order ROM. This is due to the

prediction error made by the observer, as shown in Fig. 6.10c. Even a very small error

difference of 0.2-0.3K between ROM 20 and ROM 30 results in a significant difference in

thermal comfort of about 15% without affecting the energy use. Good controller models

are thus effectively crucial for multi-zone building control. Note that obtaining an accurate

30 states controller model for a 6-zone building using system identification is a challenging

task (Pŕıvara et al. 2013).
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Figure 6.10: Comparison of the performance keys evaluated for the PID, RBC, S-MPC and
the OSF-MPC approach for different controller model orders.

Fig. 6.10a shows that OSF-MPCs using low order ROM achieve a significantly better

comfort than S-MPC with the same model complexity. This comfort improvement, however,

comes with an increase in the energy use (Fig. 6.10b) for the OSF-MPCs using very low

order ROMs (nx ≤ 15). For ROMs with nx > 15, the comfort improvement comes with a

small or negligible increase in energy use. This can be explained by the prediction errors

shown in Fig. 6.10c. The OSF approach adds one constant dynamic variable per output

to the controller model, compensating the initialization error at each sampling instant,

rather than improving the dynamical behavior of the ROM on the whole prediction horizon.

Therefore when the model mismatch between controller model and building model is too
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large, the OSF method will not guarantee a good performance. Overall, in the case of a

sufficiently small model mismatch, the OSF method will improve the MPC results.

A reason to limit the controller model complexity is the computational effort required to

solve the optimization problem. Fig. 6.11 shows, however, that when applying the dense

approach, the CPU time becomes independent of the number of states. The CPU times

for full year simulation scenarios and all building types using the dense approach have an

average of 75.9 minutes with the maximum equal to 98.0 minutes and the minimum equal

to 54.9 minutes with all computations performed on a 2.8 GHz machine with 2 CPU units

each with 6 cores, under the GNU/Linux 64-bit Debian 3.16.7 operating system. As shown

by Fig. 6.11 the sparse approach leads to intractable CPU times for a large number of

states.
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Figure 6.11: Comparison of the computational demands of the sparse and dense formula-
tion of the control problem.

6.3.4 Summary

This case study systematically investigates the influence of the controller model complexity

on the performance evaluation of MPC used in building climate control. The number of

necessary states decreases with the level of insulation of the building and it increases with

its mass content. This study shows that a prediction error of more than 0.5 K within the

MPC prediction horizon can significantly lower the MPC performance. In the case of the

investigated 6-rooms house, a minimum of 30 states was necessary to obtain the optimal

control performance. This number, however, is significantly higher than the typical orders

used by black- or grey-box system identification techniques. The minimum number of states

might be chosen lower when offset-free MPC (OSF-MPC) is used instead of conventional

MPC. However, OSF-MPC might significantly increase the energy use when a significant

plant model mismatch is present. Finally, the case study shows that the computational

effort required to solve the optimization problem becomes independent on the number of

states of the controller model when a dense approach is used. The controller model can

thus be as complex as necessary to generate accurate predictions without increasing the

solving time.
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6.4 Approximate MPC via Time Delay Neural Net-

works

This section studies the behavior of the approximated MPC controllers (see Section 5.4) on

a large scale simulation case study employing the six-zone building model from Section 4.3.

The methodology from Section 5.4.1 is followed. Two machine learning (ML) algorithms are

trained and tuned on closed-loop simulation data from originalMPC. Than the performance

of the ML controllers, namely basic regression trees (RT) (see Section 5.4.4) and the time

delay neural networks (TDNN) with deep architecture (see Section 5.4.5) is compared with

the performance bound (PB) MPC (see Section 5.3.3) and benchmark control strategies:

RBC and PID (see Section 5.2). Section 6.4.1 sets up the simulation study and Section 6.4.2

presents and discusses the results. It will be shown that for complex building control

problems employing more than a thousand of parameters the performance of the classical

RT is somewhat unsatisfactory. On the other hand the deep TDNN are able to cope with

the increased complexity and generate low-complexity and well-performing representations

of the MPC laws.

6.4.1 Simulation Setup

The overall simulation setup, and MPC used here is based on the case study 6.3, with

the performance criteria and tuning of the RBC, PID and MPC conttrollers given in 6.3.2.

Here, only the renovated case of the 6-zone building model from Section 4.3 is used.

The overall simulation time was 90 days (8640 data points) which correspond to three

months (January to March) in the winter period. The control profiles generated by MPC

(see Section 5.3.3) in the first 60 days (5760 data points) were used as a training set for

the machine learning models (see Section 5.4), while the last 30 days (2880 data points)

acted as a test set for evaluation and comparison of the designed controller. All simulations

were performed on a 2.8 GHz machine with two CPU units each with six cores, under a

GNU/Linux 64-bit Debian 3.16.7 operating system.

Machine Learning Models Training and Tuning

In the case of the TDNN, all features and targets are normalised to fall in the range

[−1, 1]. The scaled conjugated gradient was chosen as the fastest training algorithm based

on the comparison of the algorithms on similar dataset type provided by MathWorks1.

To further accelerate the training of the NN, we used the hyperbolic tangent sigmoid

activation function for all hidden neurons. Linear functions define the output layer. The

initial training performance measure of for the TDNN was a mean squared error (MSE),

however, from the control point of view, the actual performance measure was given by

the criteria from Section 6.3.2. Because the maximum number of iterations was 4000, the

evaluation of the closed-loop simulation performance of the TDNN in each iteration would

1https://www.mathworks.com/help/nnet/ug/choose-a-multilayer-neural-network-training-
function.html
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dramatically slow down the learning process. The simulation performance was therefore

evaluated only each 100 iterations as a stopping criterion for the training. This modification

in the learning process was done mainly because the MSE of the trained models is not

strongly correlated with their control performance. In fact, the NN with lower MSE may

have lower control performance due to overfitting. To reduce the overfitting and increase

the generalisation of the NN, we retrained each net several times with randomly initialized

weights Θ. Another simple method for improving the generalisation of the NN, inspired

by Occam’s razor, is to use only the NN that is just large enough to provide an adequate

fit (Hagan et al. 1996). By training and evaluation of the different architectures multiple

times, we choose the simplest best performing network structure with two hidden layers

with 24 and 12 neurons, respectively. For the recall, our TDNN had 330 features in the

input layer and six-dimensional output layer. This accounts for the total number of 8280

weight parameters Θ, which are represented as a floating point numbers. Assuming that

4 bytes are needed to store a single-precision floating point number, the memory footprint

of the TDNN parameters used in this study is 33.1 kilobytes.

The advantage of the RT is that no pre-processing of the data is necessary. A single

RT was constructed for each building zone via MATLAB’s fitrtree function. The MSE

was used as a training performance measure as well as a splitting criterion 5 for the RT.

The stopping criteria for the Algorithm 2 were given as follows: the minimum number of

branch node observations mmin = 10, the quadratic error tolerance per node emin = 10−6,

the maximal number of decision splits (maximal tree depth) Dmax = m− 1. These values

were chosen in order to grow deep trees, trading the better regression performance for

increased complexity. The final set of the six trees, consisted of 1567, 1723, 1385, 1397,

1391 and 1139 nodes, respectively. Out of which, the number of terminal nodes for each

tree was 784, 862, 693, 699, 696 and 570, respectively. In total, the combined number of

all nodes for six RTs is 8602, out of which 4298 are splitting nodes and 4304 are terminal

nodes. For binary regression tree, employing 27 features, the single splitting node requires

storing 28 floating point numbers (the vectors α ∈ R
27 and the scalar β for each split),

while storing one terminal node requires just a single floating point number. Assuming

that 4 bytes are needed to store a single-precision floating point number, the total memory

footprint of the six RTs used in this study is hence 481.4 kilobytes, which is roughly fifteen

times more than in the case of TDNN.

Both, TDNN and RT, were designed and trained by using built-in functions from MAT-

LAB’s Statistics and Machine Learning ToolboxTM. Finally, the post-processing saturation

of the control laws was performed to provide the satisfaction of the input constraints.

Heuristic Rules for Post Processing of TDNN Control Laws

To enhance the performance of the TDNN, we introduce simple heuristic rules defined by

Algorithm 3. These rules can be used for post-processing of the generated control actions

u for each zone, adjusting the room temperatures y to be closer to the lower comfort

boundary y. This behaviour is achieved by slightly decreasing the control action when the

temperature is too high, and slightly increasing the control action when the temperature is
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about to violate the comfort boundary y. The tuning parameters of the algorithm, together

with their values for our particular case are as follows: lower threshold thrlow = 0.1, upper

threshold thrup = 0.4 and corresponding lower Glow = 0.1 and upper Gup = 0.05 correction

gain, respectively. Because the rules are intuitive and easily tunable in the field, they

increase the adaptivity of the proposed approach also for various cases with some degree

of uncertainty.

Algorithm 3 Enhancement of the time delay neural network control laws.

1: function CtrlEnhance(u) ⊲ given TDNN control action u
2: if day then ⊲ apply this procedure only during the daytime
3: if y < y + thrlow then ⊲ room temperature too close to lower comfort

boundary
4: u← u+Glowu ⊲ increase control action
5: return u ⊲ obtain enhanced control action
6: end if
7: if y > y + thrup then ⊲ room temperature too far from lower comfort

boundary
8: u← u−Gupu ⊲ decrease control action
9: return u ⊲ obtain enhanced control action

10: end if
11: end if
12: end function

6.4.2 Simulation Results

This section presents the results of the simulation case study for a heating control of a six-

zone house. To validate the performance of the proposed approximated MPC strategies

we have performed closed-loop simulations under the same conditions for all investigated

controllers. The dynamical behaviour of the investigated controllers is shown and discussed,

together with the comparison of the control performances.

Control Profiles

To demonstrate the dynamical behaviour of the building controlled via different controllers

and to verify the tuning, we provide the closed-loop profiles over a representative time win-

dow of ten days chosen from the test set. For the clarity, we decide to show the temperature

profiles only for the second zone of the building. Fig. 6.12 gives the corresponding distur-

bance profiles. The RBC profiles with typical switching behaviour of the control action and

oscillatory indoor temperature profiles are shown in Fig. 6.13(a). Conservative reference

setting in the middle of the comfort bounds (see Section ) achieved the highest comfort

satisfaction. The control profiles of the well-tuned PID controller with reference tracking

behaviour are shown in Fig. 6.13(b). Again we opted here for the reference setting slightly

above the lower comfort boundary in order to achieve the highest possible comfort satis-

faction. The control profiles of the performance bound MPC are presented in Fig. 6.14(a).
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Figure 6.12: 6-days test set disturbance profiles. Left: temperature disturbances, ambient
temperature (yellow), ground temperature (purple) and radiation tempera-
tures (red and blue). Middle: solar radiation through and absorbed by each
window. Right: solar radiation per surface orientation.

Here we can observe the optimal performance of MPC minimizing the consumed energy

by keeping the zone temperature as close as possible to the lower comfort boundary while

taking the full disturbances preview into account.

The control profiles of the supervised machine learning controllers trained on two months

data approximating MPC actions acting as a ‘teacher‘ are shown in Figs. 6.14(b), 6.14(c)

and 6.14(d). First, RT behavior is given in Fig. 6.14(b). The RT are roughly mimick-

ing MPC and can maintain high comfort standard with some energy saving potential in

comparison with the RBC. However, in overall, they fail to generalise the learned MPC

behaviour well on the new test set data and they perform worse than the group of the PID

controllers. The main limitation of the RT is the piecewise constant nature of their approx-

imation, which for the problems of this complexity generates overly deep trees with too

many branches and nodes, which are hard to tune. The second limiting factor of the RT is

their single variate nature. Because of that, a single RT controller needs to be constructed

for each zone separately, not allowing to capture the coupling between the individual zones.

Not taking into account the heat gains from the adjacent zones causes the increase of the

temperature in some zones, which is the reason for the additional increase in the energy

consumption by the RT controllers. On the other hand, the deep TDNN can mimic the

MPC actions for all controlled zones with limited complexity and good generalisation with

new data. The control profiles of the TDNN are shown in Fig. 6.14(c). However, because

the TDNN tries to mimic the optimal MPC behaviour by keeping the temperatures of the

zones closer to the lower boundary, the smaller violations of the comfort bounds occur due

to the approximation errors. In order to improve the performance of the TDNN, simple

heuristic rules from Section 6.4.1 were implemented, slightly adjusting the control actions

generated by the TDNN. As shown in Fig. 6.14(d), the enhanced TDNN with heuristic

are keeping the room temperatures closer to the lower boundaries with only occasional

violations, which results in the improved performance for both, the comfort as well as the

energy consumption.
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(a) Control profiles of the RBC.
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(b) Control profiles of the PID.

Figure 6.13: Single zone 6-days test set control profiles of the traditional controllers. Right
column: closed-loop response of the indoor temperature (blue) in the second
building zone w.r.t. the reference (red) and the comfort constraints (black).
Left column: corresponding profile of the control action (blue) w.r.t. the
control boundaries (black).
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(a) Control profiles of the MPC.
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(b) Control profiles of the RT.
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(c) Control profiles of the TDNN.
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(d) Control profiles of the TDNN enhanced with heuristics.

Figure 6.14: Single zone 6-days test set control profiles of the MPC-based controllers. Right
column: closed-loop response of the indoor temperature (blue) in the second
building zone w.r.t. the reference (red) and the comfort constraints (black).
Left column: corresponding profile of the control action (blue) w.r.t. the
control boundaries (black).
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Performance Comparison

The overall simulation performances of the investigated controllers on 30-days test set

based on the criteria given in Section 6.3.2 are compared in Table 6.3. The comparison

w.r.t. the energy consumption and comfort satisfaction is also compactly represented in

Fig. 6.15, here the best performance is in lower right corner. All designed controllers can

Method Comfort [%] Energy savings [%] CPU time [ms]

RBC 5.2.1 98.15 - 0.13
PID 5.2 100.00 7.62 0.14
MPC (Gurobi) 5.3 100.00 15.89 15.19
RT 5.4.4 98.23 4.10 3.70
TDNN 5.4.5 95.14 11.64 2.01
TDNN 5.4.5 and 97.54 12.82 2.13
Heuristics 6.4.1

Table 6.3: 30-days test set performance comparison, evaluated w.r.t. pefrormance crite-
ria 6.3.2.

achieve high comfort satisfaction performance; this comes however with different costs on

the energy consumption. With regards to the energy savings, the RBC is taken here as a

benchmark controller, then the PID energy savings potential is equal to 7.62%, while the

original MPC acting as a performance bound (PB) scores close to 16%. Even though, the

RT-based control policy is able to improve the energy consumption of the RBC by 4%, it

scores worse than well-tuned PID, which makes RT less attractive in practice due to higher

construction time and tuning effort in comparison with the PID. Moreover, the evaluation

time of the RT is almost twice as big as for the TDNN. The TDNN is outperforming both

RBC and PIDs in the energy consumption; w.r.t RBC by 11.6% and 12.8%, w.r.t PID

by 4.0% and 5.2%, before and after the enhancement of the control laws, respectively. In

comparison with the PB MPC, the energy savings of the TDNN drop only by 3%, this

accounts roughly for 80.7% restoration of the optimal MPC performance, with just a small

increase in the discomfort equal to 2.5%. The biggest difference between machine learning

controllers and the MPC feedback, though, is in the implementation cost. While the MPC

policy requires solving (5.8) at each sampling instant, the TDNN-based controller only

needs to evaluate the function in (5.38). Hence, the implementation of TDNN is reducing

the computational effort imposed by the PB MPC roughly by the factor of 7. Moreover,

the advanced software libraries are no longer required, and the representation of the TDNN

can be easily implemented also on low-level hardware with low memory footprint2, which

makes this approach easily applicable on typical building automation hardware, such as on

programmable logic controllers.

2The actual size of the TDNN used in this study, implemented as MATLAB functions spanned from
100 KB to 1 MB.
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Figure 6.15: 30-days Test Set Performance Comparison.

6.4.3 Summary

This case study showed how to design and evaluate the simple well-performing approxima-

tions of the optimization-based controllers by using advanced machine learning algorithms.

The focus was given on the complex multi-zone building control problems, employing mul-

tiple continuous control inputs. It is important to note, that even though the problems

of multivariate time series approximation are particularly challenging, there exist powerful

tools which are frequently used in different domains, e.g. pattern recognition, weather

and trajectory forecasting, etc.. Despite this fact, these methods received so far only little

interest in the context of the building control applications.

The method presented in this work is based on the multivariate regression algorithms,

namely deep time delay neural networks (TDNN) and set of regression trees (RT). The re-

gression is used to mimic the complex behaviour, in our case the model predictive controller

(MPC), based on the simulation data. A simple tunable feature selection (FS) method in-

troduced in Section 5.4.6 was further used in order to decrease the dimensionality of the

parametric space, hence reducing the complexity of the devised controller and reducing the

implementation cost of the sensory equipment. This selection was based particularly on

the prior engineering knowledge of the system, the principal component analysis (PCA)

algorithm and the dynamical analysis of the building’s model.

The approach was demonstrated on a temperature control of a six-zone building (see Sec-

tion 4.3), described by the linear model with 286 states and 42 disturbances. The results

from a three months simulation case study showed that the TDNN approximations were

able to maintain high comfort and energy savings, with just a small loss of the performance

compared to the original MPC, while drastically reducing the complexity of the solution.

Moreover, the TDNN controllers showed a good generalization capabilities with respect to

new data. The only requirement for a good generalization is that the new measurements

have the same probability distribution as the training data. This fact provides a valuable

clue for the selection of the representative training data set, which can be chosen based

on the historical weather profiles for particular location and season. Please note that the
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selection of the most relevant training data significantly reduces the training time of the

TDNN. The complete coverage of all operating conditions would be practically infeasible

due to the high dimensionality of the parametric space. To further enhance the TDNN

controllers, a simple heuristic rules were introduces slightly improving the performance in

both terms, comfort as well as energy consumption. The set of RT, however, scored worse,

even though they outperformed the traditional RBC, their performance was worse than

a well-tuned set of PID controllers. The reason behind this is twofold. First, the piece-

wise constant nature of the RT does not allow them to mimic more complex control laws

with high precision, and second, their single-variate nature does not take into account the

dynamical coupling between the zones. Moreover, because the deep branching of the RT,

which was used in this work, the memory footprint of the RTs was roughly fifteen times

higher in comparison with the TDNN.
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Conclusions

No one can be a great thinker who does not recognize that as a thinker it is his first duty to follow

his intellect to whatever conclusions it may lead.

John Stuart Mill

Main aim of this thesis was investigation of the different mathematical formulations of

the model predictive control (MPC), and their applications in building automation sys-

tem (BAS), in particular for control of heating, ventilation and air conditioning (HVAC)

systems.

For this purpose a supporting mathematical background was summarized in Chapter 2.

Section 2.1 defined several notions on sets and functions, necessary for the introduction of

mathematical optimization in Section 2.2, followed by brief overview of the probability and

statistics in Section 2.3. Chapter 3 acts as an introduction for the general MPC technology.

Chapter 4 deals with the building modeling as a necessary component for synthesis of MPC

formulations. Overall building control concepts are subject of study in Chapter 5. For all

control strategies proposed in this thesis a uniform control objectives are considered in

Section 5.1. The different MPC formulations for HVAC control problems are proposed in

Section 5.3.

All results from the simulation case studies dealing with the building thermal comfort

control problems are demonstrated in Chapter 6. Here, Section 6.1 investigated the per-

formance of the explicit stochastic MPC in comparison with the conservative worst-case,

and idealistic best-case scenarios. We can conclude that proposed explicit stochastic MPC

controller was able to maintain almost similar energy consumption demands, with lost

nor even 3% of thermal comfort in comparison with unrealistic best-case MPC controller

with given full knowledge of future disturbances over the whole prediction horizon. The

fundamental limitation of explicit MPC solution, however, is that the complexity of the

computed control law grows exponentially with the dimensionality of the parametric space

imposed by prediction horizon and number of variables. Therefore it can be applied only



on the hardware with storage capacity large enough to accommodate the solution . How-

ever, this is usually not a realistic assumption, since the size of the explicit MPC solutions

can easily exceed several megabytes even for the systems with low complexity, making it

infeasible for complex building control problems with several thousand parameters.

Section 6.2.2 evaluated the performance of the enhanced regression trees, introduced in

the Section 5.4.4, used for the approximation of the MPC laws on the building control

problem with modest complexity. The low memory storage, combined with the low im-

plementation effort, overcomes the drawbacks of the explicit MPC solutions and make the

proposed regression-based feedback strategy easily applicable also on a typical building

automation hardware, such as on programmable logic controllers. However the cost to be

paid are the sub-optimality of the devised solution and loosing the guarantees on closed-

loop behaviour, such as stability and output constraints satisfaction. However, as pointed

out in Section 5.3.4 the buildings can be conceived as a complex, but inherently stable

systems with slow dynamics, which means that one does not need to explicitly account for

the closed-loop stability.

Section 6.3 systematically investigated the required controller model complexity necessary

to obtained the optimal control performance for a given building. The number of necessary

states decreased with the level of insulation of the building and it increased with its mass

content. In the case of the investigated six-rooms house, a minimum of 30 states was

necessary to obtain the optimal control performance which is significantly higher than the

typical orders used by black- or grey-box system identification techniques. The minimum

number of states might be chosen lower when offset-free MPC (OSF-MPC) is used instead

of the conventional MPC. However, OSF-MPC might significantly increase the energy use

when poor controller models (high plant-model mismatch) are used.

Section 6.4 demonstrated the practical aspects of the automatic procedure for the syn-

thesis of the near-optimal MPC-like controllers with low-complexity also on the complex

building control problems with high number of the parameters. The advantage of this

approach is that the devised controllers are readily applicable to low-level hardware to

control the building in real time, without the need for the advanced software libraries. The

methodology 5.4.1 is versatile and applicable to any building controlled by an arbitrary

optimization-based control algorithm. In comparison with the performance bound MPC,

the energy savings of the TDNN drop only by 3%, this accounts roughly for 80.7% restora-

tion of the optimal MPC performance, with just a small increase in the discomfort equal

to 2.5%. Moreover, TDNN-based controllers trained on a limited dataset of two months

showed a good generalization on new data, which makes the use of these type of control

strategies even more promising for the practical applications.

This kind of studies act like the intermediate steps towards more advanced data-driven

low-complexity well-performing controllers in the future. Particularly, the vision of the

self-constructing and self-tuning near-optimal controllers with easy plug and play imple-

mentation is very appealing. The possible direction in minimizing the commissioning effort

and cost could be combining the black- or grey-box system identification techniques with

automatic MPC design and tuning, together with the automated synthesis of simplified

controllers. The challenge here emanates from a complex task of hyper-parameters setting
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and iterative nature of the training and tuning process for the machine learning models.

However, with extensive research effort nowadays in the field of hyper-parameter optimiza-

tion and machine learning in general, the efficient tools for handling these challenges can

soon be expected and implemented also in the building sector. Another disadvantage to

being tackled in the future is the lack of the analytical closed-loop performance guarantees

concerning stability and constraints satisfaction. Although, this appears to be only the

minor issue for non safety-critical applications like building control.
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Z. Váňa, J. Cigler, J. Široký, E. Žáčeková, and L. Ferkl. Model-based energy efficient

control applied to an office building. Journal of Process Control, 24(6):790 – 797, 2014.

ISSN 0959-1524. doi:https://doi.org/10.1016/j.jprocont.2014.01.016. Energy Efficient

Buildings Special Issue. 2

R. Webster. Convexity. Oxford, England: Oxford University Press, 1995. 9

E. W. Weisstein. The web’s most extensive mathematics resource, 2014. URL

http://mathworld.wolfram.com/. 9

M. Wetter and P. Haves. A modular building controls virtual test bed for the integration

of heterogeneous systems. In Third National Conference of IBPSA-USA, Berkeley/Cal-

ifornia, 2008. URL https://gaia.lbl.gov/bcvtb. 53

M. Wetter, W. Zuo, T. S. Nouidui, and X. Pang. Modelica buildings library. Journal of

Building Performance Simulation, 7(4):253–270, 2014. 53

L.A. Wolsey. Integer Programming. John Wiley and Sons, New York., 1998. 21

Xinhua Xu and Shengwei Wang. Optimal simplified thermal models of building envelope

based on frequency domain regression using genetic algorithm. Energy and Buildings, 39

(5):525–536, 2007. 52

A. Yahiaoui, J.L.M. Hensen, and L. Soethout. Integration of control and building per-

formance simulation software by run-time coupling,. Proceedings of 8th International

IBPSA Conference, International Building Performance Simulation Association, Eind-

hoven, The Netherlands, pages 1435–1442, 2003. 53

K. Yun, R. Luck, P. J. Mago, and H. Cho. Building hourly thermal load prediction using

an indexed arx model. Energy and Buildings, 54:225–233, 2012. 51

K. Zhou and J. C. Doyle. Essentials of Robust Control. Prentice Hall, 1997. ISBN 0-13-

525833-2. 36

K. Zhou, J. C. Doyle, and K. Glover. Robust and Optimal Control. Prentice Hall, 1995.

ISBN 978-0134565675. 36

Xin Zhou, Tianzhen Hong, and Da Yan. Comparison of building energy modeling programs:

Hvac systems. Building Simulation, 08/2013 2013. 53

G. M. Ziegler. Lectures on Polytopes. Springer, 1994. 84
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Appendix C

Resumé

Predkladaná dizertačná práca pojednáva o syntéze a implementácii predikt́ıvneho riade-

nia na problémy energeticky efekt́ıvneho riadenia vykurovaćıch systémov budov za účelom

zabezpečenia vysokej tepelnej pohody vnútorného prostredia. V zahraničnej literatúre je

tento typ riadenia známy pod pojmom model predictive control (MPC). O pokročilé reg-

ulátory, ktoré riadia teplotu v budovách, je v praxi vel’ký záujem, pretože výrazne znižujú

náklady na vykurovanie a klimatizovanie budov a zároveň zvyšujú komfort obyvatel’ov a

produktivitu pracovńıkov.

V úvode tejto práce (kapitola 1) uvádzame prehl’ad súčasnej literatúry a identifikujeme

hlavné výzvy a problémy spojené s aplikáciou pokročilých metód predikt́ıvneho riadenia

v praxi. Predikt́ıvne regulátory patria do kategórie optimálneho riadenia. Z toho dôvodu

sú v kapitole 2 položené teoretické základy, ako sú matematické defińıcie o množinách,

funkciách a polygónoch, ako aj úvody do matematickej optimalizácie, pravdepodobnosti a

štatistiky, ktoré sú nevyhnutné na plné porozumenie tomuto textu. O histórii, základných

súčastiach a vlastnostiach MPC následne pojednáva kapitola 3.

Teoretické pŕınosy tejto dizertačnej práce sú detailne oṕısané v jej druhej časti, ktorá je

rozdelená do troch kapitol. Kapitola 4 poskytuje základné informácie o matematickom

modelovańı budov ako aj prehl’ad dostupných simulačných programov. Predstavené sú

dva konkrétne matematické modely rezidenčných budov vo forme lineárneho časovo ne-

menného systému v stavovom opise, vid’ rovnice (4.1) a (4.12). Oba modely sú použité

v simulačných štúdiách v kapitole 6, ktoré slúžia na overenie energetickej a výpočtovej

efektivity pokročilých predikt́ıvnych regulátorov navrhnutých v kapitole 5.

Hlavné výhody predikt́ıvneho riadenia budov v porovnańı s klasickými regulátormi sú:

• schopnost’ predpovedat’ správanie sa budovy na základe jej matematického modelu,

predpovediach počasia a iných porúch,

• schopnost’ systematického pŕıstupu k znižovaniu energetických nákladov,

• schopnost’ dodržiavat’ požiadavky na kvalitu vnútorného prostredia, akou je napŕık-

lad tepelný komfort,



• schopnost’ rešpektovat’ technologické a fyzikálne ohraničenia budov.

Nevýhodou predikt́ıvneho riadenia je však jeho náročná aplikácia v praxi, ktorá je aj na-

priek intenźıvnemu vedeckému záujmu ešte stále v počiatočnom štádiu. A to hlavne z

dvoch dôvovov. Prvým je fakt, že MPC vyžaduje presný matematický model budovy a jej

vykurovaćıch, ventilačných a klimatizačných (anglicky heating, ventilation and air condi-

tioning (HVAC)) systémov. Ako bolo spomenuté v kapitole 4, źıskanie presného matemat-

ického modelu budovy je však časovo aj technicky náročná úloha. Navyše potrebná úroveň

zložitosti modelu na dosiahnutie dobrého výkonu MPC zostáva a priori neznáma a na toto

určenie nie je k dispoźıcii žiadna systematická metóda.

Prvým ciel’om tejto práce je preto systematická štúdia zložitosti predikčného modelu

potrebného na dosiahnutie optimálneho správania sa regulátora pre konkrétnu budovu.

Použitá metodológia zobrazená v obr. 6.8 uvažuje tri varianty zložitého nelineárneho model

existujúcej šest’-zónovej budovy zobrazenej na obr. 4.1, ktoré sú následne linearizované na

modely s vyšš́ım počtom stavov, oṕısané v podkapitole 4.3. S využit́ım metódy reduk-

cie zložitosti modelu (anglicky model order reduction (MOR)) je vygenerovaná množina

modelov s rôznym počtom stavov, t.j. s rôznou úrovňou zložitosti. Výkonnost’ MPC s

použit́ım redukovaných modelov (anglicky reduced order models (ROM)) je systematicky

porovnávaná s výkonnost’ou MPC využ́ıvajúceho najzložiteǰśı model budovy, slúžiac ako

horná medza výkonnosti. Výsledky simulačnej štúdie vzhl’adom na kritériá definované v

podkapitole 6.3.2 sú kompaktne zobrazené v obr. 6.10. Štúdia ukázala, že minimálny počet

stavov modelu sa znižuje s úrovňou izolácie a zvyšuje sa s nárastom hmotnosného obsahu

budovy. Bolo demonštrované že predikčná chyba viac ako 0.5 K v rámci predikčného

horizontu MPC výrazne znižuje kvalitu riadenia. V pŕıpade skúmanej šest’-zónovej bu-

dovy, minimálny počet stavov modelu bol rovný 30. Toto č́ıslo je však výrazne vyššie ako

mnohé modely źıskané pomocou identifikačných techńık. Bolo tiež ukázané, že matem-

atická formulácia MPC s modelovańım porúch (anglicky offset-free MPC (OSF-MPC))

mierne znižuje nároky na zložitost’ modelu a zlepšuje kvalitu riadenia aj pre modely s

rozumne malými predikčnými chybami. Obr. 6.11 porovnáva výpočtové nároky on-line im-

plementácie MPC s využit́ım takzvanej hustej formulácie (anglicky dense approach) oproti

často využ́ıvanej riedkej formulácie (anglicky sparse approach). Obr. 6.11 dokazuje že

zvýšené nároky na zložitost’ lineárneho modelu nemajú pri využit́ı hustej formulácie vplyv

na výpočtové zat’aženie riešenia pŕıslušného optimalizačného problému.

Druhou azda závažneǰsou prekážkou aplikácie MPC v praxi sú zvýšené požiadavky na

hardvér a softvér. Z matematického pohl’adu totiž ide pri implementácii MPC o riešenie

zložitých optimalizačných úloh 3.1, ktoré vyžadujú vel’ké výpočtové kapacity a tým pá-

dom sa nedajú použit’ na l’ahko dostupných a lacných zariadeniach. Pokročilé algoritmy

riadenia ako MPC navyše vyžadujú špeciálne vyškolených pracovńıkov schopných ladit’ a

odstraňovat’ poruchy pri zavádzańı tejto technológie do praxe.

Druhým ciel’om tejto práce bolo preto navrhnút’ efekt́ıvne a vysoko kvalitné MPC regulá-

tory, ktoré je možné použit’ a implementovat’ v dostupných ńızkonákladových zariadeniach.

Toto riešenie sa v tejto práci dosahuje dvomi principiálne odlǐsnými spôsobmi.

Prvým pŕıstupom je źıskanie takzvaného explicitného riešenia pŕıslušného optimalizačného

problému aj pre formulácie MPC ktoré zohl’adňujú neistoty v predpovedi počasia. Ide o
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takzvané stochastické predikt́ıvne riadenie, ktoré je teoreticky detailne predstavené v pod-

kapitole 5.3.4. Toto riešenie využ́ıva takzvané viac-parametrické programovanie (anglicky

multiparametric programming), vid’. podkapitola 2.2.5. Takéto riešenia sú najprv predpoč́ı-

tané v režime off-line a v on-line režime potom umožňujú jednoduchú a výpočtovo efekt́ıvnu

implementáciu MPC aj na zariadeniach s obmedzeným výpočtovým výkonom. Výsledky

tejto simulačnej štúdie sú predstavené v podkapitole 6.1. Výkonnost’ stochastického reg-

ulátora predstaveného na obr. 6.4 je porovnaná s najlepš́ım možným scenárom z obr. 6.2,

ktorý uvažuje dokonalé poznanie predpovede počasia a s najhorš́ım možným scenárom z

obr. 6.3, ktorý uvažuje konzervat́ıvne ohraničenia na tepelnú pohodu. Výsledky potvrdzujú

že navrhnutý stochastický regulátor dosahuje takmer rovnakú efektivitu spotreby energie

ako nerealistický najlepš́ı možný scenár. Výpočtová efektivita je navyše zabezpečená vd’aka

explicitnému riešeniu s ńızkymi pamät’ovými nárokmi. Nevýhodou tohto pŕıstupu sú však

striktné obmedzenia na zložitost’ riešeného problému.

Nevýhoda obmedzenia zložitosti problému je v druhom pŕıstupe prekonaná zostrojeńım

regulátorov ktoré napodobňujú správanie predikt́ıvneho regulátora cez využitie algorit-

mov strojového učenia (vid’. podkapitola 5.4). Navrhnutá metodológia je kompaktne

zobrazená v obr. 5.3. Jej prvá čast’ spoč́ıva vo využit́ı presného matematického mod-

elu budovy na návrh predikt́ıvneho regulátora, ktorého správanie v uzavretej slučke je

simulované v programovom prostred́ı MATLAB. Druhá čast’ metodológie je založená práve

na využit́ı strojového učenia na aproximáciu správania vzorového predikt́ıvneho regulá-

tora. Konkrétne ide o využitie algoritmov mnohorozmerovej regresie, akými sú regresné

stromy (anglicky regression trees (RT)) predstavené podkapitole 5.4.4) a časovo onesko-

rené neurónové siete s hlbokou architektúrov (anglicky deep time delay neural networks

(TDNN)) predstavené v podkapitole 5.4.5. Podkapitola 5.4.4 navyše predstavuje výz-

namné teoretické pŕınosy k regresným stromom. Výkonnost’ RT je zvýžená vd’aka op-

timálnemu rozdel’ovaniu uzlov stromu pomocou všeobecných nadrov́ın 2.1.19 oproti kla-

sickým pravouhlým nadrovinám a vd’aka výmene konštantných lokálnych regresorov za

af́ınne výrazy 2.1.11. V tejto časti práce ide v neposlednom rade aj o využitie techńık

redukcie zložitosti na výber najvýznamneǰśıch parametrov, bližšie oṕısaných v podkapi-

tole 5.4.6. Konkrétne sa využ́ıva analýza hlavných komponentov (anglicky principal com-

ponent analysis (PCA)), alebo analýza vplyvu porúch v matematickom modeli budovy.

Redukciou použitých parametrov sme schopńı zńıžit’ výpočtovú náročnost’ zostrojovaných

regulátorov ako aj zńıžit’ náklady potrebné na senzorifikáciu budov. Hlavná výhoda navrho-

vaných metód spoč́ıva v ich l’ahkej implementácii aj na lacných zariadeniach bez potreby

pokročilých softvérových knižńıc. Takéto jednoduché regulátory sú navyše zostrojitel’né

aj pre zložité problémy s viacerými vstupmi a výstupmi (MIMO) a s vel’kým množstvom

parametrov, ktoré sú bežné pri problémoch riadenia budov. Všetky tieto vlastnosti sú

následne demonštrované na dvoch simulačných štúdiách.

Prvá simulačná štúdia zaoberajúca sa aproximovanými zákonmi predikt́ıvneho riadenia

s využit́ım rozš́ırených regresných stromov je predstavená v podkapitole 6.2.2. Ukázali

sme (vid’ podkapitola 6.2.1), ako upravit’ pŕıslušné RT na dodržiavanie obmedzeńı na

akčné zásaky cez riešenie kvadratického optimalizačného problému (6.2). V tejto štúdii je

použitý jednoduchý matematický model jedno-zónovej budovy, oṕısaný v podkapitole 4.2.
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Aj napriek relat́ıvne malej trénovacej množine dát (pät’ dńı), dokázali RT, ktorých priebeh

je zobrazený na obr. 6.7(b), dosiahnut’ takmer rovnakú výkonnost’ ako omnoho zložiteǰśı

predikt́ıvny regulátor ktorého profil je zobrazený na obr. 6.7(a). Navyše boli RT schopné

uspokojivo extrapolovat’ akčné zásahy aj na situácie ktoré sa v trénovacej množine ne-

nachádzali.

Druhá simulačná štúdia zaoberajúca sa aproximovanými zákonmi predikt́ıvneho riadenia s

využit́ım neurónových siet́ı je predstavená v podkapitole 6.4. Simulačné nastavenie ako

aj model budovy je prevziaty z podkapitoly 6.3. Bolo ukázané že výkonnost’ regulá-

torov založených na TDNN môže byt’ vylepšená jednoduchými heuristickými pravidlami 3.

Priebehy riadenia pomocou natrénovaných neurónových siet́ı zobrazené v obr. 6.14(c) a

obr. 6.14(d) sú následne porovnané s klasickými regresnými stromami v obr. 6.14(b),

zložitým predikt́ıvnym regulátorom v obr. 6.14(a) ako aj s tradičnými pŕıstupmi k riadeniu

ako sú regulátory založené na pravidlách (anglicky rule-based control (RBC)) v obr. 6.13(a)

a skupina PID regulátorov v obr. 6.13(b). Výsledky tejto štúdie zhrnuté v tabul’ke 6.3

a v obr. 6.15 demonštrujú schopnost’ zostrojit’ jednoduché a výkonné aproximácie MPC

s využit́ım neurónových siet́ı, aj pre vel’mi zložité problémy riadenia budov s viacerými

vstupmi a výstupmi, ktoré obsahujú aj viac ako tiśıc parametrov.

Na záver je možno zhrnút’, že predkladaná práca sa zaoberá návrhom výpočtovo efek-

t́ıvnych algoritmov predikt́ıvneho riadenia a ich využit́ım na problémy energeticko efek-

t́ıvneho riadenia tepelnej pohody v budovách. Teoretické ako aj aplikačné pŕınosy tejto

práce slúžia ako nevyhnutné medzikroky vedúce k výkonným a ńızkonákladovým metó-

dam pokročilého riadenia budov s vysokým praktickým potenciálom. Výzvou zároveň však

zostávajú analytické záruky dodržania ohraničeńı, ako aj záruky kvality riadenia počas

celého operačného cyklu budovy. Ako budúce rozš́ırenia tejto práce vńımam v́ıziu využitia

dostupných dát na automatizovú syntézu a ladenie pokročilých, zároveň však jednoduchých

predikt́ıvnych regulátorov, ako aj prepojenie s automatizovanými metódami identifikácie

presných matematických modelov budov do jedného funkčného rámca.
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