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1. INTRODUCTION

Mathematical models of physical plants play a vital role
in many areas, such as in rigorous simulations, analysis,
or control synthesis. Typically, high model accuracy is
usually desired while keeping the model complexity on
an acceptable level. Traditionally, nonlinear models were
preferred from simulations, while most of available control
techniques are based on a local approximation around a
single operating point. PWA systems (Sontag, 1981) can
be viewed as a compromise solution between accuracy
of the model and its complexity. They are composed of
several local models accompanied with logic IF-THEN
conditions which enforce switching of the local dynamics.
Therefore they belong to the class of hybrid systems.

The problem which we address in this paper is the follow-
ing: given a nonlinear dynamical model x+ = f(x, u) and

a fixed complexity of its PWA approximation f̃(x, u) ≈

f(x, u), how should one design f̃ which minimizes the ap-

proximation error
∫

(f(x, u)−f̃(x, u))2? The answer is non-
trivial even when putting optimality of the approximation
aside. Traditionally, two distinct approaches for deriving
PWA approximations are used. When the mathematical
formulation of the original nonlinear system is known, one
can design the approximation by hand. This is usually
done by employing human knowledge and experience to
devise several linearization points around which the origi-
nal nonlinear model should be linearized. Needless to say,
placement of such points has a crucial impact on the accu-
racy of the approximation. The HYSDEL (Hybrid Systems
Description Language) tool (Torrisi and Bemporad, 2004;
Kvasnica and Herceg, 2010) can be used to accelerate this
line of development. Formally, HYSDEL transforms a lin-
guistic description of a PWA system (or of a hybrid system
in general) into the corresponding mathematical form. The
language allows to define IF-THEN switching rules which,
based on whether some logic condition is satisfied or not,
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enforce certain continuous dynamics. Another option is to
use hybrid identification techniques (Ferrari-Trecate et al.,
2001; Roll et al., 2004; Ferrari-Trecate, 2005) to construct
the PWA approximation from the input-output measure-
ments. The crucial advantage is that the model of the orig-
inal nonlinear system is not required to be fully available.
The downside, however, is that the approximation is only
accurate in the interval captured by the identification data.
Moreover, the procedure is computationally expensive and
suited mainly to low-dimensional problems.

In this work we propose to use an optimization-based
approach to derive PWA approximations of nonlinear sys-
tems whose vector field is an a-priori known function of
multiple variables. After formally stating the problem in
Section 2, we show in Section 3 that an optimal PWA ap-
proximation of generic nonlinear functions in one variable
can be formulated and solved as a nonlinear programming
problem. Several non-trivial illustrative cases are discussed
to show that the approach is both efficient and computa-
tional tractable. Subsequently, the approach is extended to
deriving PWA approximations of multivariable functions
in Section 4. We show that, under a certain assump-
tion, the problem boils down to solving a series of one-
dimensional approximations. The algorithmic and software
implementation of the approximation procedure are then
discussed in Section 5. Specifically, we introduce a new
software tool which is capable of exporting the obtained
optimal PWA approximations into the HYSDEL language.
This brings two crucial advantages. First, the HYSDEL
compiler can be used to convert the PWA approximation
into a mathematical form, which is then suitable e.g. for
control design. Second, since the exported approximation
is described in a human-readable format, it can be further
fine-tuned by hand. Finally, in Section 6 we illustrate the
procedure on a case study involving a highly non-linear
chemical reactor.
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2. PROBLEM STATEMENT

We consider generic dynamic systems in discrete-time

x+ = f(x, u), (1)

where the vector field f(·, ·) is assumed to be continuous
in the state variables x ∈ R

nx and in the inputs u ∈ R
nu .

System states and inputs are assumed to be constrained
to connected and closed domains X ⊂ R

nx and U ⊂ R
nu ,

respectively.

The objective is to approximate (1) by a different dynamic

system x+ = f̃(x, u) whose vector field f̃(x, u) is a PWA
function which consists of a pre-specified number N of
local linear dynamics:

f̃(x, u) =






A1x + B1u + c1 if [ x
u ] ∈ R1

...
...

ANx + BNu + cN if [ x
u ] ∈ RN .

(2)

Here, Ai ∈ R
nx×nx , Bi ∈ R

nx×nu , ci ∈ R
nx , are the state-

update matrices of the i-th local linear approximation,
and Ri ⊂ R

nx×nu is the region of validity of the i-th
local model satisfying Ri 6= ∅, Ri ∩ Rj = ∅, ∀i 6= j, and
∪iRi = X × U .

Formally, the problem which we aim at solving can be
stated as follows:

Problem 2.1. Given a nonlinear vector field f(x, u) of
system (1), find the PWA approximation (2) of pre-
specified complexity which minimizes the approximation
error

eaprx :=

∫
(f(x, u) − f̃(x, u))2 dxdu, (3)

where the integral is evaluated over the whole region of
validity of (1), i.e. over X × U .

In the sequel we show how to solve Problem 2.1 provided
that the vector field f(z), z = [x, u]T satisfies the following
assumption.

Assumption 2.2. The function f(z1, . . . , zn) can be writ-

ten as
∑n

i=1 αi

(∏qi

j=pi
fj(zj)

)
.

As an example, the function z1e
z2 satisfies such an as-

sumption, while the function ez1z2 does not. Although
the assumption is somewhat restrictive, the gained ad-
vantage is that approximating any multivariable function
f(z1, . . . , zn) boils down to solving a series of 1D problems,
as evidenced in the following two sections.

Remark 2.3. Since the approximation procedure discussed
in the sequel considers only the vector field in the right-
hand-side of (1), continuous-time systems ẋ = f(x, u) can
be treated as well.

3. FUNCTIONS IN ONE VARIABLE

First, we consider the one-dimensional case, i.e. approxi-
mating a nonlinear function f(z) : R → R, with domain

Z ⊂ R, by a PWA function f̃(z) = aiz + ci if z ∈ Ri.
Since Z is assumed to be connected and closed, it is a line
segment [z, z]. Regions Ri define the partition of such
a line into N non-overlapping parts, i.e. R1 = [z, r1],
R2 = [r1, r2], . . ., RN−1 = [rN−2, rN−1], RN = [rN−1, z]

with ∪iRi = [z, z]. Solving Problem 2.1 then becomes to
find the slopes ai, offsets ci and breakpoints ri such that
the approximation error is minimized, i.e.

min
ai,ci,ri

∫ z

z

(f(z) − f̃(z))2 dz (4a)

s.t. f̃(z) =






a1z + c1 if z ∈ [z, r1]
...

...

aNz + cN if z ∈ [rN−1, z]

(4b)

z ≤ r1 ≤ · · · ≤ rN−1 ≤ z, (4c)

airi + ci = ai+1ri + ci+1, i = 1, . . . , N − 1,(4d)

where (4d) enforces continuity of f̃(z) along the break-
points ri. The IF-THEN based nonlinear constraint (4b)
can be eliminated by observing that, by definition, regions
Ri are non-overlapping, and the integral in (4a) can hence
be written as
∫ z

z

(
f(z) − f̃(z)

)2
=

N∑

i=1

(∫ ri

ri−1

(
f(z)−(aiz+ci)

)2
)
, (5)

with r0 = z and rN = z. The NLP (4) can therefore be
written as

min
ai,ci,ri

N∑

i=1

(∫ ri

ri−1

(
f(z) − (aiz + ci)

)2
dz

)
(6a)

s.t. z ≤ r1 ≤ · · · ≤ rN−1 ≤ z, (6b)

airi + ci = ai+1ri + ci+1, i = 1, . . . , N − 1.(6c)

For simple functions f(z), the integral in (6a) can be
expressed in an analytical form in unknowns ai, ci, ri,
along with the corresponding gradients. For more complex
expressions, the integrals can be evaluated numerically,
e.g. by using the trapezoidal rule. In either case, prob-
lem (6) can be solved to a local optimality e.g. by using
the fmincon solver of MATLAB. Alternatively, one can
use global optimization methods (Adjiman et al., 1996;
Papamichail and Adjiman, 2004; Chachuat et al., 2006)
which guarantee that an ǫ-neighborhood of the global
optimum can be found.

Example 3.1. Consider the function f(z) = z3 on domain
−1.5 ≤ z ≤ 1.5. The analytic form of the integral (6a) is

N∑

i=1

(
c2
i (ri + ri−1) + aici(r

2
i − r2

i ) +
a2

i

3
(r3

i − r3
i−1) −

−
ci

2
(r4

i − r4
i−1) −

2ai

5
(r5

i − r5
i−1) +

1

7
(r7

i − r7
i−1)

)
,

with r0 = −1.5 and rN = 1.5. The PWA approximation
of f(z) with N = 3 regions was obtained by solving the
NLP (6) using fmincon, which only took 0.05 seconds on
a 2.4 GHz CPU running MATLAB 2009b. The obtained
PWA approximation is then given by

f̃(z) =





4.1797z + 3.1621 if − 1.5 ≤ z ≤ −0.8423

0.4257z if − 0.8423 ≤ z ≤ 0.8423

4.1797z − 3.1621 if 0.8423 ≤ z ≤ 1.5

Naturally, quality of the approximation can be improved
by increasing the complexity of the PWA function, i.e. by
enlarging N . Two PWA approximations with N = 3 and
N = 5 are shown, respectively, in Figures 1(a) and 1(b).
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Fig. 1. Graph of f(z) = z3 (blue line) and the PWA

approximations f̃(z) (red dashed lines).
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(b) PWA approximation with
N = 7 regions.

Fig. 2. Graph of f(z) = |z|+0.5z2−sin (z3) (blue line) and

the PWA approximations f̃(z) (red dashed lines).

Example 3.2. Consider the function f(z) = |z| + 0.5z2 −
sin (z3) on domain −1 ≤ z ≤ 2.5, graph of which is shown
in Figure 2(a). Since no analytic expression of the integral
in (6a) could be obtained, we have opted for numeric
integration of the cost while solving the NLP problem (6)
by fmincon. The PWA approximations for N = 3 and
N = 7 are shown in Figures 2(a) and 2(b).

4. MULTIVARIABLE FUNCTIONS

The task is to approximate a given multivariable function
f(z1, . . . , zn) : R

n → R with domain Z ⊂ R
n by a PWA

function f̃(z1, . . . , zn), defined over the same domain, such
that the approximation error (3) is minimized.

Definition 4.1. (Williams (1993)). Function f(z1, . . . , zn)
is called separable if it can be expressed as the sum of
functions of a single variable, i.e. f(z1, . . . , zn) = f1(z1) +
· · · + fn(zn).

If f(z1, . . . , zn) is readily separable (e.g. when f(z1, z2) =
ez1 + sin (z2)), its optimal PWA approximation can be
obtained by applying the 1D scenario of Section 3 to the

individual components of the function, i.e. f̃(z1, . . . , zn) =

f̃1(z1) + · · · + f̃n(zn). The total number of regions over

which the PWA approximation f̃(·) is defined is hence
given by

∑n
j=1 Nj , where Nj is the pre-specified complex-

ity of the j-th approximation f̃j(zj).

A surprisingly large number of non-separable functions can
be converted into the separable form by applying a simple
trick, elaborated in more details e.g. in Williams (1993). To
introduce the procedure, consider a non-separable function
f(z1, z2) = z1z2 with domain Z := [z1, z1] × [z2, z2].
Define two new variables

y1 = (z1 + z2), y2 = (z1 − z2). (7)

Then it is easy to verify that 1/4(y2
1 − y2

2) = z1z2.
The coordinate transformation therefore transforms the
original function into a separable form, where both terms
(y2

1 and y2
2) are now functions of a single variable. The

procedure of Section 3 can thus be applied to compute
PWA approximations of fy1

(y1) := y2
1 and fy2

(y2) :=
y2
2 , where the function arguments relate to z1 and z2

via (7). Important to notice is that fy1
(·) and fy2

(·) have
different domains, therefore their PWA approximations

f̃y1
(y1) ≈ y2

1 and f̃y2
(y2) ≈ y2

2 will, in general, be
different. Specifically, the domain of fy1

(·) is [y
1
, y1] with

y
1

= min{z1 + z2 | z1 ≤ z1 ≤ z1, z2 ≤ z2 ≤ z2} and

y1 = max{z1+z2 | z1 ≤ z1 ≤ z1, z2 ≤ z2 ≤ z2}. Similarly,
the domain of fy2

(·) is [y
2
, y2], whose boundaries can

be computed by respectively minimizing and maximizing
z1−z2 subject to the constraint [z1, z2]

T ∈ Z. The overall

PWA approximation f̃(z1, z2) ≈ z1z2 then becomes

f̃(z1, z2) = 1/4(f̃y1
(z1 + z2) − f̃y2

(z1 − z2)). (8)

The value of f̃(z1, z2) for any points z1, z2 is obtained

by subtracting the value of the PWA function f̃y2
(·)

evaluated at the point z1 − z2 from the function value of

f̃y1
(·) evaluated at z1 + z2, followed by a linear scaling.

The procedure naturally extends to multivariable func-
tions represented by the product of two nonlinear functions
of a single variable, i.e. f(z1, z2) = f1(z1)f2(z2). Here, the
transformation (7) becomes

y1 = f1(z1) + f2(z2), y2 = f1(z1) − f2(z2). (9)

Therefore, 1/4(y2
1 − y2

2) = f(z1, z2) still holds. Let
fy1

(y1) := y2
1 and fy2

(y2) := y2
2 . The domain of fy1

(·)
is [y

1
, y1] and dom fy2

(·) = [y
2
, y2] with

y
1
= min{f1(z1) + f2(z2) | [z1, z2]

T ∈ Z}, (10a)

y1 = max{f1(z1) + f2(z2) | [z1, z2]
T ∈ Z}, (10b)

y
2
= min{f1(z1) − f2(z2) | [z1, z2]

T ∈ Z}, (10c)

y2 = max{f1(z1) − f2(z2) | [z1, z2]
T ∈ Z}, (10d)

which can be computed by solving four NLP problems.

Finally, since all expressions are now functions of a sin-

gle variable, the PWA approximations f̃1(z1) ≈ f1(z1),

f̃2(z2) ≈ f2(z2), f̃y1
(y1) ≈ fy1

(y1), and f̃y2
(y2) ≈ fy2

(y2)
can be computed by solving the NLP (6). The overall

optimal PWA approximation f̃(z1, z2) ≈ f(z1, z2) then
becomes

f̃(z1, z2) = 1/4

(
f̃y1

(
f̃1(z1)+f̃2(z2)

)
−f̃y2

(
f̃1(z1)−f̃2(z2)

))
.

(11)
The evaluation procedure is similar as above. I.e., given

the arguments z1 and z2, one first evaluates z̃1 = f̃1(z1)

and z̃2 = f̃2(z2). Subsequently, one evaluates ỹ1 = f̃y1
(·)

with the argument z̃1 + z̃2, then ỹ2 = f̃y2
(·) at the point

z̃1 − z̃2. Finally, f̃(z1, z2) = 1/4(ỹ1 − ỹ2).

Example 4.2. Consider a non-separable function given as
the product of the two functions discussed in Examples 3.1
and 3.2, i.e. f(z1, z2) = f1(z1)f2(z2) with f1(z1) = z3

1 ,
f2(z2) = |z2| + 0.5z2

2 − sin (z2)
3 on domain [−1.5, 1.5] ×

Preprints of the 18th IFAC World Congress
Milano (Italy) August 28 - September 2, 2011

8677



(a) Graph of f(z1, z2). (b) Approximation f̃(z1, z2)

Fig. 3. Graph of f(z1, z2) and its PWA approximation (11)
in Example 4.2.

[−1, 2.5]. Graph of the function is shown in Figure 3(a). In
order to convert f(z1, z2) into a separable form, we intro-
duce variables y1 and y2 as per (9). The PWA approxima-

tion f̃(z1, z2) ≈ f(z1, z2) is then given by (11). Here, f̃1(z1)
was obtained by approximating f1(z1) by a PWA function

with 3 regions as shown in Figure 1(a), while f̃2(z2) ≈
f2(z2) was approximated by 7 regions as depicted in Fig-
ure 2(b). Subsequently, the domains [y

1
, y1] and [y

2
, y2]

were computed via (10), which resulted into dom y1 =
[−3.374, 9.095] and dom y2 = [−9.095, 3.374]. Finally, the

PWA approximations f̃y1
(y1) ≈ y2

1 and f̃y2
(y2) ≈ y2

2 were
obtained by solving the NLP (6) with N = 2. Graphs
of y2

1 , y2
2 and their respective PWA approximations are

presented in Figure 4. The overall approximation f̃(z1, z2)
therefore consists of 14 regions. Despite a rather crude
approximation of the square functions, the combined PWA
function (11), shown in Figure 3(b), features only a minor
average approximation error of 3% and a worst-case error
of 15%. By increasing the number of linearizations for
y2
1 and y2

2 from N = 2 to N = 4 (hence increasing the

complexity of f̃(z1, z2) from 14 to 18 regions), the average
and worst-case errors can be further reduced to 1% and
8%, respectively.
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Fig. 4. Functions y2
i (blue) and their PWA approximation

f̃yi
(yi) (red dashed lines) in Example 4.2.

Separation of multivariable functions with more than two
terms can be performed in an inductive manner. Consider
f(z1, z2, z3) = f1(z1)f2(z2)f3(z3). First, approximate the
product f1(z1)f2(z2) by a PWA function of the form
of (11), which requires four PWA approximations

f̃1(·) ≈ f1(·), f̃2(·) ≈ f2(·), f̃y1
(·) ≈ y2

1 , f̃y2
(·) ≈ y2

2 ,

with y1 and y2 as in (9). Let fa(z1, z2) := f1(z1)f2(z2).
Then f(z1, z2, z3) = fa(z1, z2)f3(z3), which can again be
approximated as a product of two functions. Specifically,
define

y3 = fa(·) + f3(z3), y4 = fa(·) − f3(z3), (12)

and hence fa(z1, z2)f3(z3) = 1/4(y2
3 − y2

4). The domains
over which y2

3 and y2
4 need to be approximated are,

respectively, [y
3
, y3] and [y

4
, y4] with

y
3
= min{f1(z1)f2(z2) + f3(z3) | z ∈ Z}, (13a)

y3 = max{f1(z1)f2(z2) + f3(z3) | z ∈ Z}, (13b)

y
4
= min{f1(z1)f2(z2) − f3(z3) | z ∈ Z}, (13c)

y4 = max{f1(z1)f2(z2) − f3(z3) | z ∈ Z}, (13d)

and z = [z1, z2, z3]
T . Subsequently, three additional

PWA approximations

f̃y3
(y3) ≈ y2

3 , f̃y4
(y4) ≈ y2

4, f̃3(z3) ≈ f3(z3)

need to be computed over the corresponding domains. The

aggregated optimal PWA approximation f̃(z1, z2, z3) ≈
f(z1)f(z2)f(z3) consists of 7 individual approximations
and is given by

f̃(·) = 1/4

(
f̃y3

(
f̂a + f̃3(z3)

)
︸ ︷︷ ︸

ŷ3

− f̃y4

(
f̂a − f̃4(z3)

)
︸ ︷︷ ︸

ŷ4

)
. (14)

Here, f̂a is the function value of f̃a(z1, z2) ≈ f1(z1)f2(z2)

at z1 and z2, where f̃a(·) is obtained from (11), i.e.:

f̂a = 1/4

(
f̃y1

(
f̃1(z1) + f̃2(z2)

)
︸ ︷︷ ︸

ŷ1

− f̃y2

(
f̃1(z1) − f̃2(z2)

)
︸ ︷︷ ︸

ŷ2

)
.

(15)

The overall PWA approximation f̃(z1, z2, z3) can then be
evaluated, for any z1, z2, z3 ∈ Z, by computing the
function values of the respective approximations in the
following order:

Step 1: ŷ1 = f̃y1
(f̃1(z1) + f̃2(z2)),

Step 2: ŷ2 = f̃y2
(f̃1(z1) − f̃2(z2),

Step 3: ŷ3 = f̃y3
(1/4(ŷ1 − ŷ2) + f̃3(z3)),

Step 4: ŷ4 = f̃y4
(1/4(ŷ1 − ŷ2) − f̃3(z3)),

Step 5: f̃(z1, z2, z3) = 1/4(ŷ3 − ŷ4).

Such an inductive procedure can be repeated ad-infinitum
to derive PWA approximations of any multivariable func-
tion which satisfies Assumption 2.2. In general, the
PWA approximation will consists of 2p + n individual
PWA functions, where n is the number of variables in
f(z1, . . . , zn) and p is the number of products between
individual subfunctions fj(zj). As an example, for f(·) :=
α1f1(z1)f2(z2)f4(z4) + α2f3(z3)f5(z5) we have p = 3. We
remark that inclusion of scalar multipliers αj into the
PWA description of the form (14)–(15) is straightforward
and only requires linear scaling of the corresponding terms.

5. SOFTWARE IMPLEMENTATION

An algorithmic implementation of the inductive separation
procedure of Section 4 is discussed next, provided that
all functions are given in their symbolic representation.
The procedure relies on two basic building blocks. The
first one, represented by Algorithm 1, constructs the PWA
approximation of a product of two functions, i.e. computes

f̃(zi, zj) ≈ fi(zi)fj(zj). Strictly speaking, the algorithm
differentiates between two scenarios. If either fi or fj are
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(a) Step 1.
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Fig. 5. Parsing tree T built by Algorithm 2.

PWA functions which approximate the product of some

other functions (say fi ≈ fpfq), then f̃ ≈ fifj is computed
as shown in (12)–(15). Otherwise the procedure evidenced
by (7)–(11) is followed.

Algorithm 2 then utilizes this block to construct a parse
tree which defines the PWA approximation of the product
of multiple functions, i.e.

∏n
i=1 fi(zi). To illustrate the pro-

cedure, consider f(z1, z2, z3, z4) = f1(z1)f2(z2)f3(z3)f4(z4).
First, the stack of “unexplored” functions S = {f4, f3, f2, f1}
is formed. In the first pass of the while cycle, f1 and f2

are popped from the stack and the PWA approximation

f̃a ≈ f1f2 is computed by Algorithm 1. Subsequently, f̃a is

pushed back to S (which then becomes S = {f4, f3, f̃a}),
and new nodes of the parse tree T are created as shown
in Figure 5(a). The procedure then repeats from Step 4.

I.e., f3 and f̃a are popped from S, f̃b ≈ f3fa is computed,
and the parse tree is updated as illustrated in Figure 5(b).

Due to Step 6, S = {f4, f̃b}, and the algorithm therefore

performs one more pass at which f̃c ≈ f4fb is created
and inserted into the tree, which finally looks like in
Figure 5(c). The algorithm thereupon terminates since

S = {f̃c} contains a single element.

If the function to be approximated contains sums of
products, e.g. when f(z1, z2, z3, z4) = α1f1(z1)f2(z2) +
α2f3(z3)f4(z4), separate parsing trees have to be built by
Algorithm 2 for each component of the summation. We
remark that treating the scaling factors αi only involves
scaling the bottom-most node of the corresponding tree by
the respective αi.

Algorithm 1 PWA approximation of fi(zi)fj(zj)

INPUT: Functions fi(zi), fj(zj).

OUTPUT: Approximation f̃(zi, zj) ≈ fi(zi)fj(zj).

1: Obtain the PWA approximations f̃i(zi) ≈ fi(zi) and

f̃j(zj) ≈ fj(zj) by solving two NLPs (6).
2: Get y

i
, yi, y

j
, and yj from (10) or (13).

3: Compute the PWA approximations f̃yi
(yi) ≈ y2

i and

f̃yj
(yj) ≈ y2

j on domains [y
i
, yi] and [y

j
, yj ] by solving

two NLPs (6).

4: return f̃i(zi), f̃j(zj), and the symbolic representation

of f̃(zi, zj).

The parsing tree generated by Algorithm 2 can be readily

used to convert the PWA approximation f̃(z1, . . . , zn) ≈∑
i αi

∏
j fj(zj) into a suitable mathematical model, which

can subsequently be used for simulations, analysis, or

Algorithm 2 PWA approximation of
∏n

i=1 fi(zi)

INPUT: Functions fi(zi).

OUTPUT: f̃(z1, . . . , zn) ≈
∏n

i=1 fi(zi).
1: Create an empty last-in-first-out stack S and an empty

tree T .
2: Push fi(zi), i = n, . . . , 1 to the stack S.
3: while S has more than one element do
4: Pop two elements fj(zj) and fk(zk) from S.

5: Obtain f̃j(zj), f̃j(zj), and f̃(zj , zk) ≈ fj(zj)fk(zk)
by calling Algorithm 1.

6: Push f̃(zj , zk) to S.

7: Create nodes f̃j(zj), f̃k(zk) and insert them to T .

8: Create a node f̃(zj , zk) and append it as a child of

nodes f̃j(zj) and f̃k(zk).
9: end while

10: return Tree T representing f̃(z1, . . . , zn) ≈∏n
i=1 fi(zi).

control synthesis. Therefore we have created a software
tool which takes a parsing tree T (or several such trees
to accommodate for sums of products of functions), and
automatically generates the corresponding HYSDEL rep-
resentation of such a PWA approximation. It is available
for free download at http://www.kirp.chtf.stuba.sk/∼sw/.

6. CASE STUDY

Consider a continuous stirred tank reactor (CSTR) where
the reaction A → B takes place. The source compound
is pumped into the reactor at a constant inflow with a
constant concentration. The chemical reaction is exother-
mic and a coolant liquid is therefore pumped into the
reactor’s jacket to prevent overheating. The input tem-
perature of the coolant is constant, while its flow rate qc

can be manipulated and is considered an exogenous input.
Concentration of the reactant cA inside of the reactor,
temperature of the reactor mixture ϑ, and temperature of
the cooling liquid in the jacket ϑc are the state variables of
the CSTR. The normalized material and energy balances
of such a reactor are then given by

ċA = α1 − α2cA − α3cAe−
β/ϑ,

ϑ̇ = α4 − α5α2cAe−
β/ϑ + α6ϑ + α7ϑc, (16)

ϑ̇c = α8qc + α9(ϑ − ϑc) − α10ϑcqc,

with constants αi and β. The state and input variables are
considered to belong to intervals cA ∈ [4, 4.2] mol · m−3,
ϑ ∈ [300, 320] K, ϑc ∈ [290, 310] K, and qc ∈ [0.002, 0.02]

m3 · h−1.

The model features two nonlinearities: ϑcqc and cAe−β/ϑ,
both of which satisfy Assumption 2.2. Since the first one
involves a direct product of two variables, its PWA ap-

proximation f̃a ≈ ϑcqc can be obtained as in (8) by first
defining y1 = ϑc + qc, y2 = ϑc − qc, followed by approx-

imating the functions y2
1 and y2

2 by f̃y1
(y1) and f̃y2

(y2),

respectively. Hence, the approximation f̃1(ϑc, qc) ≈ ϑcqc

is represented by

f̃1(ϑc, qc) = 1/4

(
f̃y1

(ϑc + qc) − f̃y2
(ϑc − qc)

)
. (17)
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The second nonlinearity can be approximated as in (11).
First, the PWA approximation g̃(ϑ) ≈ e−β/ϑ is computed
by solving (6). Then, y3 = cA + e−β/ϑ, y4 = cA − e−β/ϑ

are defined, followed by computing the respective PWA

approximations f̃y3
(y3) ≈ y2

3 and f̃y4
(y4) ≈ y2

4 . f̃2(cA, ϑ) ≈

cAe−β/ϑ is thus given by

f̃2(cA, ϑ) = 1/4

(
f̃y3

(
cA + g̃(ϑ)

)
− f̃y4

(
cA − g̃(ϑ)

))
(18)

The overall PWA approximation of the original nonlinear
system ẋ = f(x, u) with x = [cA, ϑ, ϑc]

T and u = qc is
thus

ċA ≈ α1 − α2cA − α3f̃2(cA, ϑ)
)
,

ϑ̇≈ α4 − α5α2f̃2(cA, ϑ) + α6ϑ + α7ϑc + ϑ, (19)

ϑ̇c ≈ α8qc + α9(ϑ − ϑc) − α10f̃1(ϑc, qc),

which can be easily converted into the general PWA
form (2) as described in the previous section.

To assess approximation accuracy, we have investigated
the open-loop evolution of the original nonlinear model (16)
and compared it to the behavior of its PWA approxima-
tion (19). To derive the PWA model, we have chosen 3

regions for f̃y1
(·), f̃y2

(·) in (17) and f̃y3
(·), f̃y4

(·) in (18),

and N = 2 for g̃(θ) ≈ e−β/ϑ. The simulation results
are shown in Figure 6. To better illustrate advantages
of the PWA approximation, the simulation scenario also
shows evolution of linearized version of (16) around the
nominal steady state cs

A = 4.13, ϑs = 304, ϑs
c = 297, and

qs
c = 0.006. As can be seen from the results, the PWA

approximation clearly outperforms the model based on a
single linearization. Specifically, the model (19) provides
a 15 times more accurate tracking of the nonlinear profile
compared to the linear model. Important to notice is that
the PWA model consists of 14 local linear models. By in-

creasing N to 7 when approximating f̃y1
(·), f̃y2

(·) in (17)

and f̃y3
(·), f̃y4

(·) in (18), the approximation accuracy is
60 times better compared to the linear model. The cost
to be paid is the increased model complexity, which would
then consist of 30 regions.

7. CONCLUSIONS

We have shown that a large class of dynamical sys-
tems with nonlinear vector fields can be approximated by
PWA systems of fixed complexity in an optimal manner.
The procedure boils down to solving a series of one-
dimensional problems for which efficient solution meth-
ods exist. Derivation of the approximation can be easily
automated and the HYSDEL variant of the PWA approx-
imation can be generated, hence allowing for subsequent
control synthesis based on the hybrid model.

ACKNOWLEDGMENT

The authors are pleased to acknowledge the financial
support of the Scientific Grant Agency of the Slovak
Republic under the grants 1/0071/09 and 1/0095/11.
This work was supported by the Slovak Research and
Development Agency under the contract No. LPP-0092-
07.

0 200 400 600
4.08

4.1

4.12

4.14

4.16

4.18

time [min]

c
A

(a) Evolution of cA.

0 200 400 600
302

304

306

308

310

312

time [min]

ϑ

(b) Reactor temperature.

0 200 400 600
290

295

300

305

310

315

time [min]

ϑ
c

(c) Jacket temperature.

0 200 400 600
2

4

6

8

10

12

14
x 10

−3

time [min]

q
c

(d) Randomly varying coolant
flowrate.
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